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Abstract: Carbon–carbon cross-coupling reactions are among the most important processes in organic
chemistry and Suzuki–Miyaura reactions are the most widely used protocols. For a decade, green
chemistry and particularly catalysis and continuous flow, have shown immense potential in achieving
the goals of “greener synthesis”. To date, it seems difficult to conceive the chemistry of the 21st
century without the industrialization of continuous flow process in the area of pharmaceuticals, drugs,
agrochemicals, polymers, etc. A large variety of palladium Suzuki–Miyaura cross-coupling reactions
have been developed using a continuous flow sequence for preparing the desired biaryl derivatives.
Our objective is to focus this review on the continuous flow Suzuki–Miyaura cross-coupling using
homogeneous and heterogeneous catalysts.
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1. Introduction

Among the main reactions in organic chemistry, C–C bond formation via a cross-coupling
reaction catalyzed by transition metals is undoubtedly the most important and has been exploited
very widely in the recent years. Palladium, the most widely used metal, enables the synthesis of
complex and functionalized organic molecules and its chemistry possesses different interesting facets
such as heterogeneous and homogeneous catalysis under mild experimental conditions compatible
with many functional groups [1–5]. Several palladium catalyzed cross-coupling reactions such as
Heck [6–11], Suzuki [12–16], Sonogashira [17–21], Stille [22–25], Hiyama [26], Negishi [27], Kumada [28],
Murahashi [29] and Buchwald–Hartwig [30,31] have been developed over the years.

Due to current impetus in promoting green chemistry for sustainable development, both for
academic and industrial research, chemists have recently established catalytic reactions based on
renewable resources, atom economy, less hazardous chemical steps, safer (least toxic) solvents, auxiliaries
and alternative technologies such as continuous flow, microwave irradiation, ultrasound irradiation, etc.
In the context of green chemistry, catalysis and alternative media, different cross-coupling reactions such
as Suzuki–Miyaura in batch reactors have been developed in aqueous media or in water as sole green
safer solvent via conventional heating or microwave irradiation [32–43]. Continuous flow chemistry as
alternative technology offers significant processing advantages including improved thermal management,
mixing control, application to a wider range of reaction conditions, scalability, energy efficiency,
waste reduction, safety, use of heterogeneous catalysis, multistep synthesis and much more [44–49].
Two different reactors, micro and meso (or flow) reactors, exist and the devices depend on the channel
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dimensions, from 10 to 300 µm for the micro reactor (also called milli or mini) and from 300 µm to more
than 5 mm for the meso reactor. Several advantages and disadvantages are associated with the micro and
meso reactors. The main advantages for the micro reactor are the low material input, low waste output,
excellent mass transfer properties, fast diffusive mixing and the disadvantages are the low throughput,
tendency to channel blockage and high pressure drop. In the case of solid handling due to confined
conditions and increasing of the concentration to have a better productivity, the use of continuous
sonication could prevent clogging [50]. For the meso reactor, the advantages are the high throughput,
low pressure drop and possibility to handle solids for heterogeneous catalysis. Few disadvantages for
meso reactors are poor mass transfer property, slower mixing, etc. Different studies have described the
theory and practicalities of scaled-out micro and meso reactors but no practical examples of large-scale
production have been described. Palladium-catalyzed cross-coupling reactions in continuous flow
reactors have been reported in the literature at temperatures higher than 60 ◦C [51–63], while only few
studies have described micro and meso reactors for the C–C bond formation at temperature lower
than 60 ◦C. In parallel with the synthesis of low molecular weight compounds, this technique has been
applied by academic and industrial groups for the production of polymers [64–67]. For the sake of
clarity, this review describes continuous flow selective palladium-catalyzed cross-coupling reactions
having a good energy efficiency at temperatures ranging between 0 ◦C and 80 ◦C.

2. Accepted Mechanism of Suzuki Cross-Coupling

The Suzuki–Miyaura cross-coupling reaction [12–16] is one of the most versatile and frequently
employed method for C–C bond formation. It consists of the coupling of organoboron compounds
(organoborane, organoboronic acid, organoboronate ester and potassium trifluoroborate) with aryl,
alkenyl and alkynyl halides. Nowadays, a large variety of boronic acids are commercially available.
The general Suzuki–Miyaura catalytic cycle occurs through oxidative addition, transmetallation and
reductive elimination [13–15,68–70]. After formation of the catalytic species Pd(0), generated in situ
starting from palladium Pd(II) or directly from Pd(0) derivatives, oxidative addition of the aryl halide
ArX furnishes the palladium complex (ArPdXLn). The transmetallation step occurs by conversion of
the palladium halide (ArPdXLn) in the presence of the base RO− to a nucleophilic palladium alkoxy
complex (ArPdORLn). This complex subsequently reacts with a neutral organoboron compound
Ar’B(OH)2 to afford the diaryl complex (ArPdAr’Ln) in a cis–trans equilibrium. Then, reductive
elimination of the cis form gives the biaryl derivative Ar–Ar’ and Pd(0) (Scheme 1) [15].
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Using supported palladium catalysts, Suzuki–Miyaura cross-coupling reaction is a heterogeneous
catalysis [71]. During the reaction, the palladium Pd(II) could be release from the surface of the solid
support and this leaching palladium could be responsible for the catalysis as a (quasi)homogeneous
mechanism (Scheme 2) [72–83].
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3. Homogeneous Suzuki–Miyaura Cross-Coupling Reaction in Continuous Flow

Buchwald reported an efficient synthesis of biaryls from aryl halide substrates using a successive
lithiation/borylation/Suzuki–Miyaura cross-coupling sequence in three successive mesoreactors [84].
Starting from aryl bromide, the bromine-lithium exchange afforded the corresponding aryllithium
which reacted with borate to form the boronate agent. Conventional Suzuki–Miyaura cross-coupling
reaction using homogeneous second-generation palladium let precatalyst a furnished the target biaryl
derivatives (Scheme 3). One of the main drawbacks of this nice concept was the formation of solids
such as lithium triisopropylarylborate during the process; optimization of the nature of the solvent
(THF and H2O), the concentration of reagents and the use of acoustic irradiation have been reported to
avoid the formation of such solids.
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In this report, the development of different reactors made with a perfluoroalkoxyalkane (PFA)
tube having the inner diameter of 1 mm has been described [84]. A solution of arylbromide in THF
and a solution of n-butyllithium in hexane (1.6 M or 2.5 M) were injected simultaneously, then mixed
at a T-shaped mixer and delivered to the first reactor (reactor 1) at room temperature with a flow
rate of 50–78 µL min−1 and a varying residence time (2–120 s). A solution of diluted B(OiPr)3 in
THF was injected with a flow rate of 1 µL min−1 and mixed with the exiting stream of aryllithium
derivative at a T-shape mixer. The mixed stream was introduced to the second reactor (reactor 2) at
60 ◦C under acoustic irradiation with a residence time of 1 min. Then, a solution of aqueous KOH
(0.87 M) and a solution of aryl halide (1.00 M) and XPhos precatalyst (a, 1 mol %) in THF were
successively injected into the exiting stream with a flow rate of 100 µL min−1 and 21–40 µL min−1,
respectively. The combined mixture was introduced to the third reactor (reactor 3) at 60 ◦C under
acoustic irradiation with a residence time of 10 min (Scheme 4). Ultrasound chemistry was used for
reactors 2 and 3 to avoid reactor clogging and ensure a good mixing of reagents during the formation
of the borate and the Suzuki–Miyaura cross-coupling reaction.
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Application of the above methodology was realized with a range of various aryl halides (Figure 1),
the limiting step of the process being the lithiation of aryl halides. In their hands, Buchwald described
that the aryl bromide could be lithiated at room temperature. Whatever the nature of the starting
aryl bromide having different electronic and steric demands in para, meta and ortho positions, the
aryllithium and then the corresponding lithium arylborate were obtained in good yields. For the
third step, the Suzuki–Miyaura cross-coupling reaction with aryl bromide or chloride with both
electron-withdrawing and electron-donating substituents, afforded the target compounds in good
yields. It was noteworthy that non-canonic heteroatomic halides such as quinoline, isoquinoline,
pyrimidine and benzothiophene were good reagents for the continuous flow reaction.

It is noteworthy that five-membered 2-heteroaromatic boronic acids are unstable at room
temperature and consequently give low yields in the Suzuki–Miyaura cross-coupling reaction [85–90].
Consequently, Buchwald turned attention to the lithiation/borylation/Suzuki–Miyaura cross-coupling
of heteroarenes such as thiophene and furan derivatives; starting from furanic derivatives, selective
deprotonation of the hydrogen atom in position 2 at room temperature afforded the corresponding
lithium analog which reacted with borate to form the boronate agent. Then, conventional homogeneous
Suzuki–Miyaura cross-coupling reaction furnished the target biaryl derivatives. After optimization
of the first continuous flow process (Scheme 4), the borylation was made at room temperature with
a reduced time (6 s vs. 60 s) and acoustic irradiation was not needed for this step in reactor 2
(Scheme 5) [84].
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Application of the method was realized to show the scope of the reaction [84]. Starting from
thiophene, 2-alkylthiophene and 2-alkylfuran, borylation in two steps was efficient: the coupling with
different substituted aryls and heteroaromatic halides afforded the target compounds in good yields
(Scheme 6). This novel process allows the use of low-cost heteroarenes instead of more expensive and
unstable 2-heteroaromatic boronic acids and 2-heteroaromatic bromides.

In order to illustrate the synthetic potential of this methodology, Diflunisal [91,92] was obtained
in a multi-step sequence [84]. Starting from 4-bromoanisole, the lithiation/borylation followed by
Suzuki–Miyaura cross-coupling with 1-bromo-2, 4-difluorobenzene permitted the synthesis of the key
intermediate in the production of Diflunisal (Scheme 7).
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a microflow system.

In order to develop an automated, droplet-flow microfluidic system applied to Suzuki–Miyaura
cross-coupling reaction, Buchwald and Jensen reported a systematic methodology including key
mechanistic insights [93].

A three-step flow diazotization, iododediazotization and Suzuki–Miyaura cross coupling reaction
has been reported by Organ starting from aniline derivatives [94]. Starting from the arylamine,
the diazotation followed by the introduction of iodide atom furnished the iodobenzene derivatives.
Then conventional Suzuki–Miyaura cross coupling afforded the biphenyl derivatives (Scheme 8).
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Three reactors were made with PFA capillary tubing with an inner diameter of 1.52 mm and
different volumes. The residence time in reactors was adjusting the length of the reactor tubing.
A solution of aniline derivative in CH3CN and a solution of tBuONO in CH3CN were injected
simultaneously, followed by mixing with a T-mixer and injection of a solution of methanesulfonic
acid in CH3CN. The three solutions were used with a flow rate of 22 µL min−1. The mixed stream was
introduced to the first reactor at room temperature with a residence time of 2.7 min. Then, a solution of
nBuNI in CH3CN was injected into the stream with the same flow. The combined mixture was introduced
to the second reactor for which is immersed in an ultrasonic bath. The residence time was 20 min at
room temperature and then the segmented effluent was temporarily collected in an intermediate reservoir.
Due to the used reservoir a continuous flow unit (CFU) was accommodated. A solution of [PdCl2(PPh3)2],
CuI, iPr2NH in CH3CN and a solution of boronic acid in MeOH were injected simultaneously to the main
stream and introduced to the third reactor at 60 ◦C for 45 min (Scheme 9) [94].
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Application of the above protocol with little variations to the production of biphenyl compounds
was reported (Figure 2). In function of the different steric and electric demands in the aromatic core,
the coupling gave satisfactory yields [94].
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Application to continuous flow process on a large scale was reported recently and could open
new way for industrial use [95,96].

4. Heterogeneous Suzuki–Miyaura Cross-Coupling Reaction in Continuous Flow

A suitable solid support having Pd(II) species precursors to Pd(0) catalysts are now commercially
available but different groups prefer to design their home-made catalysts. In the first part the use of
Pd(0) reagent is reported and in the second part Pd(II) is described.

Monguchi and Sajiki reported a palladium on carbon-catalyzed Suzuki–Miyaura coupling reaction
using an efficient and continuous flow system (Scheme 10) [97]. To investigate the scope of the reaction,
a range of arylboronic acids and halogenobenzene derivatives were tested in mild conditions for 20 s
during a single-pass (Figure 3). The authors have reported the detection of little leaching (<1 ppm).
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Using the same apparatus H-Cube®, another group reported the Suzuki–Miyaura cross
coupling in the presence of graphene supported palladium nanoparticles [98]. A solution of
4-bromobenzaldehyde and phenylboronic acid dissolved in H2O-EtOH-THF (1:1:1) was injected
with a flow rate of 0.2 mL min−1 resulting in a contact time of less than 1 min at 135 ◦C. The target
biaryl compound was obtained in good yield with a conversion of 96% (Scheme 11).

Catalysts 2017, 7, 146  9 of 23 

 

Figure 3. Substrate scope of continuous flow Suzuki–Miyaura cross-coupling sequence in a flow 
system using H-Cube®. 

Using the same apparatus H-Cube®, another group reported the Suzuki–Miyaura cross coupling 
in the presence of graphene supported palladium nanoparticles [98]. A solution of 4-
bromobenzaldehyde and phenylboronic acid dissolved in H2O-EtOH-THF (1:1:1) was injected with 
a flow rate of 0.2 mL min−1 resulting in a contact time of less than 1 min at 135 °C. The target biaryl 
compound was obtained in good yield with a conversion of 96% (Scheme 11).  

 
Scheme 11. Suzuki–Miyaura cross coupling in a flow system using H-Cube®.  

In 2006, Canty was the first to develop a macroporous monolith support as a suitable substrate 
for anchoring a palladium complex for Suzuki–Miyaura cross-coupling continuous flow capillary 
microreactors [99]. Ten years after, Nagaki reported an efficient three-step flow sequence using Pd 
catalyst [100]. The aryllithium obtained from arylbromide reacted with B(OMe)3; after the borylation 
reaction, the Suzuki–Miyaura cross coupling reaction in the presence of immobilized Pd(0) on the 
polymer afforded the target biaryl derivatives (Scheme 12). 

 
Scheme 12. Halogen/lithium exchange/borylation/Suzuki–Miyaura cross-coupling sequence for the 
synthesis of biaryl derivatives. 

In this report, a solution of bromobenzene in THF (0.10 M) and a solution n-BuLi (0.6 M in 
hexane) were injected simultaneously with a flow rate of 6.0 mL min−1 and 1 mL min−1, respectively, 
in a micromixer (ID = 500 µm) and then in a reactor (ID = 1000 µm) for a residence time of 1.7 s. A 
solution of diluted B(OMe)3 (0.12 M) in THF was injected with a flow rate of 6.0 mL min−1 and the 
main stream was introduced to a micromixer (ID = 500 µm) and the second reactor (ID = 1000 µm) 
for a residence time of 2.0 s (Scheme 13). After producing the boronic acid solution, iodoaryl 
derivative (0.33 M) in methanol was added and the mixture was passed through the palladium 
catalyst at 100 °C with a residence time of 4.7 min or at 120 °C with a residence time of 9.4 min. 

Scheme 11. Suzuki–Miyaura cross coupling in a flow system using H-Cube®.

In 2006, Canty was the first to develop a macroporous monolith support as a suitable substrate
for anchoring a palladium complex for Suzuki–Miyaura cross-coupling continuous flow capillary
microreactors [99]. Ten years after, Nagaki reported an efficient three-step flow sequence using Pd
catalyst [100]. The aryllithium obtained from arylbromide reacted with B(OMe)3; after the borylation
reaction, the Suzuki–Miyaura cross coupling reaction in the presence of immobilized Pd(0) on the
polymer afforded the target biaryl derivatives (Scheme 12).
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Scheme 12. Halogen/lithium exchange/borylation/Suzuki–Miyaura cross-coupling sequence for the
synthesis of biaryl derivatives.

In this report, a solution of bromobenzene in THF (0.10 M) and a solution n-BuLi (0.6 M in
hexane) were injected simultaneously with a flow rate of 6.0 mL min−1 and 1 mL min−1, respectively,
in a micromixer (ID = 500 µm) and then in a reactor (ID = 1000 µm) for a residence time of 1.7 s.
A solution of diluted B(OMe)3 (0.12 M) in THF was injected with a flow rate of 6.0 mL min−1 and the
main stream was introduced to a micromixer (ID = 500 µm) and the second reactor (ID = 1000 µm) for
a residence time of 2.0 s (Scheme 13). After producing the boronic acid solution, iodoaryl derivative
(0.33 M) in methanol was added and the mixture was passed through the palladium catalyst at 100 ◦C
with a residence time of 4.7 min or at 120 ◦C with a residence time of 9.4 min.
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Scheme 13. Halogen/lithium exchange/borylation/Suzuki–Miyaura cross-coupling sequence for the
synthesis of biaryl derivatives in a microflow system.

Application of the above methodology was successfully applied to the cross-coupling of various
functional aryl and heteroaryl iodides (Figure 4) [100]. It was noticeable that cyano derivatives in this
process tolerated the experimental conditions. Adapalene, a drug used for the treatment of acne, was
produced in 86% yield by applying this methodology.
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sequence in a flow system using immobilized Pd on polymer monolith.

A large-scale Suzuki–Miyaura cross-coupling reaction using solid supported palladium Pd0

nano/microparticles and ultrasound irradiation was reported in continuous flow by Das [101].
The continuous flow technique used by the authors required a syringe, a reservoir, a pump and
a reaction vessel. After the introduction of the aryl bromide, phenylboronic acid and potassium
carbonate in MeOH-H2O in the reservoir via the syringe a, the reagents were pumped (127 mL min−1)
to the reaction vessel e where the solid supported palladium (0) nano/microparticles (SS-Pd) as
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heterogeneous catalyst had been charged. Ultrasonication of the mixture (20 kHz) was realized and
the reaction product was poured through b into the reservoir. Two exits (d and g) were present to
recover the mixture after completion of the reaction (Scheme 14). In comparison with microreactor and
mesoreactor, this process permitted to furnish biaryl derivatives on a gram scale in continuous flow.
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Scheme 14. Continuous flow Suzuki–Miyaura cross-coupling on a gram scale of the substrate.

Reactions of various aryl iodides with phenylboronic acids gave excellent yields. Aryl iodides
having different substituents were explored without significant change in their reactivity. The activation
of the aryl chloride was more difficult than expected, but gave good yields using this methodology
(Scheme 15) [101].
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Scheme 15. Continuous flow Suzuki–Miyaura cross-coupling reaction of phenyl boronic acid with aryl
halides using SS-Pd as heterogeneous catalyst.

The catalytic stability in MeOH-H2O under flow conditions was studied by Das and a mechanism
was proposed (Scheme 16) [101]. No significant loss of activity was observed after recycling five times.
In their hands, the SEM analysis of SS-Pd showed the presence of Pd(0) nano-microparticulates on the
solid support which implies its reusability and minimum leaching of Pd from the solid surface.
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Scheme 17. Suzuki–Miyaura cross coupling in a flow system using Pd MOF. 

Variations of the aryl halides and boronic acid derivatives permitted the production of a mini-
library (Figure 5). The authors always used the same cartridge for the preparation of the mini-library 
of biaryl derivatives. It is noticeable that after the reaction, the recovery catalyst was found to be 
partially crystalline with a remaining Pf content of 6.81 wt % (initially 7.29 wt %) [102].  

Scheme 16. A schematic diagram of the Suzuki–Miyaura cross-coupling reaction of phenyl boronic
acid with aryl halides using SS-Pd as heterogeneous catalyst.

Martin-Matute developed a novel strategy using Pd nanoparticles supported in a functionalized
mesoporous Metal-Organic Frameworks (MOFs) [102]. To the best of our knowledge, it was the
first report on the use of metallic nanoparticles supported on MOFs in flow chemistry for catalytic
applications. A mixture of aryl halide, boronic acid/ester and K2CO3 in water and ethanol was passed
through a column of homemade 8 wt % Pd@MIL-101-NH2 at room temperature for a residence time of
35–40 min (Scheme 17).
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Variations of the aryl halides and boronic acid derivatives permitted the production of
a mini-library (Figure 5). The authors always used the same cartridge for the preparation of the
mini-library of biaryl derivatives. It is noticeable that after the reaction, the recovery catalyst was
found to be partially crystalline with a remaining Pf content of 6.81 wt % (initially 7.29 wt %) [102].
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Pd NPs with low metal leaching [103,104]. 

Figure 5. Substrate scope of continuous flow Suzuki–Miyaura cross-coupling sequence using
immobilized Pd on MOFs.

A very nice strategy based on dendrimer-encapsulated Pd nanoparticles as catalyst in flow
reactor was developed by Verboom [103,104]. In contrast with the conventional heterogeneous
Suzuki–Miyaura cross-coupling reaction using cartridge filled with solid catalysts, Verboom’s method
anchored Pd nanoparticles onto the inner walls of the flow reactor. Aryl halides (10 mM) were mixed
with boronic acid derivatives (15 mM) in ethanol at 80 ◦C using n-Bu4NOH (20 mM) as base at 80 ◦C.
The solution was passed through the catalytic microreactor with a residence time of 13 min (Scheme 18).
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Scheme 18. Suzuki–Miyaura cross coupling in a flow system using dendrimer-encapsulated
Pd nanoparticles.

The electronic substituents effects have been studied and different biaryl compounds have been
obtained (Figure 6). This strategy demonstrated the influence of dendrimers in the stabilization of the
Pd NPs with low metal leaching [103,104].
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dendrimers encapsulated microreactor.

Another group developed dendrimers for continuous flow Suzuki–Miyaura cross-coupling
reaction [105]. Variation was noticeable since the authors described magnetic Fe3O4 fixation of
dendron-functionalized iron oxide nanoparticles containing Pd nanoparticles. In this process, the
non-covalent magnetic fixation of solid material inside the glass reactor microstructures was applied
using external magnetic forces and the reversible immobilization of catalyst materials onto the wall
of microchannels was possible. Application of this methodology was realized to produce only one
compound using 4-methoxy-1-bromobenzene and boronic acid.

Another strategy used palladium nanoparticles immobilized in a polymer membrane for the
Suzuki–Miyaura cross-coupling reaction but this particular area has not been developed in this review.
As examples, some works have been written recently in this field and are just quoted in this review for
interested researchers wishing to gain deeper knowledge of the field [106–108].

Alcazar reported an efficient cross-coupling reaction using commercial heterogeneous
silica-supported palladium catalyst and a mesoreactor [109]. The authors used a simple and efficient
experimental set-up using a 6.6 mm (internal diameter) Omnifit column containing 1 g of heterogeneous
catalyst and commercial boronic acids and aryl halides (Scheme 19). A solution of aryl halide in THF
and a solution of boronic acid and base in water were pumped at 0.2 mL min−1 with two independent
pumps. The flow streams met at a T-shaped mixer and then passed through a column containing
SiliaCat DPP-Pd as diphenylphosphine palladium (II) heterogeneous catalyst at 60 ◦C with a residence
time of 5 min. A biphasic solvent system such as THF-H2O was used to ensure complete dissolution of
any solid and avoiding any subsequent clogging.
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Application of this strategy permitted the synthesis of the biaryl derivatives starting from
halides/pseudohalides and (4-methoxyphenyl) boronic acid in excellent yields (Scheme 20) [109].
Whatever the leaving group on the benzene ring, the target biphenyl derivatives were obtained in
high yields. Of course, the use of aromatic ring bearing electron-donor groups such as 2,4-dimethoxy
analogs gave lower yields (50%). It was notable that bromo- and chloropyridines provided good yields
and the ester functionality was tolerated despite the use of KOH as strong base. Using this process, the
authors claimed that the crude products are clean and free of phosphine ligand avoiding the need of
chromatographic purification. Moreover, low leaching of palladium from the support and the stability
of the catalyst after more than 30 cycles was observed.
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In order to further explore the scope of the reaction, Alcazar reported the use of bromobenzene
and phenyltriflate as starting materials with different boronic acid derivatives (Scheme 21) [109].
Excellent yields were obtained with commercial boronic acids and boronic ester, borane and borate
freshly prepared from the corresponding bromo derivatives by metalation [110].
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Recently, Kappe presented a comparative investigation of four commercial immobilized
phosphine-based Pd catalyst [111]. One of them was SiliaCat DPP-Pd as diphenylphosphine palladium
(II) heterogeneous catalyst developed by Pagliaro [112–114]. In this work, the best process used
two stock solutions. The first solution contained aryl halide (0.83 M) in THF and the second one
phenylboronic acid (0.45 M) and K2CO3 (0.55 M) in a mixture of H2O-EtOH (1:1). These two solutions
were pumped in different feeds, 0.055 mL min−1 and 0.155 mL min−1, respectively, and mixed in
a T-mixer and then introduced to the catalyst cartridge of the X-cube flow reactor at 80 ◦C (Scheme 22).
Under these conditions, full conversion was obtained in less than 20 min and almost quantitative yield
of the biaryl target compound was reported.
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Buarque and Esteves reported an interesting work using heterogeneous catalyst from Covalent
Organic Frameworks (COFs) [115], COFs are different than MOFs since COFs do not contain
metallic ions or heavy elements as part of their structures. In this study, the authors developed
Pd(OAc)2@COF-300 for the Suzuki–Miyaura cross-coupling reaction in continuous flow (Scheme 23).
The mixture of bromobenzene, phenylboronic acid in a solution of MeONa (2 M) in MeOH was injected
on to a glass column (Omnifit column with a volume of 6.3 mL), which was filled with glass beads
(2 mm) and Pd(OAc)2@COF-300 (100 mg). The residence time was 20 min and the temperature was
maintained at 60 ◦C; under these conditions, the maximal conversion was obtained between 20 and
40 min with a very high degree of selectivity.
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An efficient approach was reported for the production of furan-based biaryls [116]. A mixture of
aryl halide, boronic acid derivative and TBAF in methanol (0.37 M) was injected through an X-cube
fitted with a FC1032 catalyst at flow rate of 0.5 mL min−1 at 120 ◦C for 2 h (Scheme 24).
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Over to catalyst cycles, the furan derivatives were obtained in good yields (82–92%) using FC1032
catalyst as t-butyl based palladium polymer (Figure 7) [116].

The same process was developed after substitution of FC1032 catalyst by PdCl2(PPh3)2 DVB
catalyst at flow rate of 0.3 mL min−1 at 120 ◦C for 3 h. It is well known that PdCl2(PPh3)2 DVB
catalyst is a more efficient catalyst than FC1032 catalyst. In this regard; starting with the deactivated
aryl bromides or aryl chlorides in the presence of PdCl2(PPh3)2 DVB catalyst afforded the target
furan-based biaryls in 83–92% yields (Figure 8) [116].
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5. Concluding Remarks

The main focus of this review has been the observance of the continuous flow chemistry
and Suzuki–Miyaura cross-coupling reactions. Homogeneous Suzuki–Miyaura cross-coupling
reactions have been reported in two different elegant and modular strategies: (i) lithiation/
borylation/homogeneous Suzuki–Miyaura sequence using a three-step triphasic flow system; and
(ii) diazotization/iododediazotization/homogeneous Suzuki–Miyaura sequence using a three-step
triphasic flow system. More examples have been reported in heterogeneous Suzuki–Miyaura
cross-coupling reactions. Some groups used Pd(0) as the active catalyst and some groups preferred to
start with Pd(II) as precursor of Pd(0). Whatever the type of catalyst, homogeneous, heterogeneous,
Pd(II) or Pd(0), the residence times were less than one hour and the Pd loading were low compared
with the conversion, yield and selectivity. As mentioned by Kappe, “palladium which is leached from the
support is most likely responsible for the catalysis, thus suggesting a (quasi)homogeneous mechanism”. In this
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regard, homogeneous metal catalyst/ligand system should probably be more efficient if the recycling
of the catalyst could be improved.

Depending on the parameters used (concentrations, temperature, pressure, etc.), the lifetime of
all the elements of the process, pumps, pipes and reactors, is longer or shorter. To date, no realistic
study has been published on this aspect. Varying the nature of the materials, and the designs of the
reactor with the microfluidic system, the possibilities to work in high concentrations are new avenues
to explore in the future. Chemists and chemical engineers have the means to pave the way to a more
widespread implementation of continuous flow strategies for the production of industrially relevant
products in the future. Importantly, we hope that these demonstrated advantages of combining
Suzuki–Miyaura cross-coupling reaction and flow processes can stimulate further advances in the field
from the younger generations for the benefit of the chemical industry in the future.
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