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Abstract: Biomass-derived levulinic acid (LA) is an excellent substrate to obtain high-value esters
that can be used as second-generation biofuels and biofuel additives. The present study focuses on
the identification and definition of the key parameters crucial for the development of chemically and
environmentally efficient protocols operating in continuous-flow for the preparation of structurally
diverse alkyl levulinates via the esterification of LA. We have focused on the use of solid acid catalysts
consisting of sulfonated cation exchange resins and considered different aliphatic alcohols to prepare
levulinates 3 and 11–17 regioselectively, and in good to high yields (50–92%). Direct correlations
between several reaction parameters and catalyst activity have been investigated and discussed to set
proper flow reactors that allow minimal waste production during the workup procedure, enabling
Environmental factor (E-factor) values as low as ca. 0.3, full recoverability and reusability of the
catalysts, and the production of levulinates up to ca. 5 gxh−1 scale.

Keywords: biomass; levulinic acid; biofuel additives; catalyst recyclability; heterogeneous catalysis;
green chemistry; flow technology

1. Introduction

Levulinic acid (LA) has been recognized by the US Department of Energy as one of the top
biomass-derived platform molecules, owing to its exceptional reactivity and to the fact that it can be
produced at relatively low cost from lignocellulose waste [1–3].

The catalytic upgrading of such a platform molecule into second-generation biofuels and
biofuel additives is currently of great interest [4–6]. Particularly, fuel additives based on LA exhibit
characteristics that make them appropriate for replacing current cold flow improvers in diesel. They
may also be employed as gasoline and diesel oxygenated additives, which help to achieve appropriate
lubricity, flash point stability, and cleaner burning fuels. Finally, such derivatives offer the advantage
of possessing lower blending volatility than the commonly used ethanol. For instance, LA can be
converted into 2-methyl-tetrahydrofuran, a fuel extender and component of the P-series renewable
fuels [7,8].

Furthermore, LA derivative γ-valerolactone can be hydrogenated to valeric acid and subsequently
esterified to yield valerates. Gasoline blended with up to 20% of ethyl valerate is demonstrated to
exhibit enhanced properties, including an increase in octane number and a lowering of the content of
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olefins, aromatics, and sulfur. Longer hydrocarbon chain esters exhibit volatility, polarity, and ignition
properties that are suitable for diesel [9–11].

Alkyl esters of LA have significant potential as blend components in diesel formulations [12–16].
Such esters are structurally related to the biodiesel fatty acid esters that are used in some low-sulfur
diesel formulations, but they do not have their principal drawbacks, i.e., poor oxidative stability,
poor low temperature properties, and a tendency towards gum formation. The addition of alkyl
levulinates to biodiesel is therefore expected to address these issues. The most studied is a formulation
for low-smoke diesel developed by Biofine and Texaco [17] that uses ethyl levulinate as an oxygenated
additive. Additionally, ethyl levulinate has been tested as an additive for transportation fuels to
improve emissions of nitrogen oxides in high compression diesel engines [18–20]. Also, technological
initiatives are being taken to use ethyl levulinate as a 100% biodegradable neat fuel in the near
future [21]. Notably, levulinates are currently in the focus of multiple R&D initiatives in the field, due
to their straightforward accessibility from levulinic acid.

Besides, levulinic acid esters may find an application as alternative green solvents, polymer
plasticizers, and fragrances [22].

Consequently, the development of new routes for the production of levulinates from bio-based
platform molecules have attracted ever more attention [22,23].

The direct esterification of LA with alcohols, which is typically acid catalyzed by homogeneous
catalysts, (e.g., sulfuric acid, phosphoric acid) still remains the most frequently utilized approach [22].
A variety of robust and industrially more benign heterogeneous acid catalysts have been
used since recent times for the esterification of levulinic acid (mostly with ethanol), including
supported heteropolyacids [24–26], zeolites [27,28], hybrid catalysts [29–32], carbon-based materials
functionalized with sulfonic groups [33–36], sulfated metal oxides [37–39], and silicas [40–42].

In this context, it should be noted that organic polymer-supported acid catalysts and, particularly,
polystyrene sulfonic acid resins are among the most important heterogeneous acids in industry
and have been widely used in reactions such as esterification, etherification, alkylation of phenols,
and hydration of olefins [43–45]. In particular, the development of efficient, highly functional,
group-tolerant, controlled, and living polymerization methods has allowed for diverse ranges
of structures and the tuning of the density of catalyst sites along polymers, as well as the easy
incorporation of the catalytic center into polymer structures [43–45]. Yet, there have been only sporadic
attempts at the production of alkyl levulinates by esterification of LA with resin-supported acid
catalysts [40–42,46]. The only report to date focusing exclusively on such a topic has been very recently
published by M.A. Tejero et al. [47], who demonstrated the potential of a range of acidic ion-exchange
resins in promoting the esterification of LA with 1-butanol, selectively obtaining LA conversion into
butyl levulinate in the range 64–94%.

The present paper is focused on the development of a sustainable approach to alkyl levulinates
from LA by using heterogeneous catalysis, safe media and flow conditions aimed at demonstrating
how crucial this approach is to access chemically and environmentally efficient protocols [48–51]
Notably, to the best of our knowledge, this is the first report on the preparation of levulinates under
these conditions.

To this end, a set of acidic resins with different morphologies has been investigated, i.e., Amberlyst
15® (A-15) and polystyrene-supported p-toluensulfonic acid (PS-pTsOH), both available in the market,
as well as perfluorosulfonic polymer Aquivion® PFSA in the form of micronized pellets (Aquivion
mP98) from Solvay Specialty Polymers S.p.A., which has not yet become commercially available. It is
well-known in fact that the morphology of polymer-supported catalysts is a critical parameter from
the point of view of their use under flow conditions [52].

Thus, A-15 and PS-pTsOH are nearly spherical beads of sulfonated co-polymers of styrene (S)
and divinylbenzene (DVB). More specifically, they are classified as macroporous (macroreticular)
resins, i.e., a degree of permanent porosity is induced into the resin beads so that a high amount of
the acidic sites, although distributed through the bulk of the resin, may be accessible to non-swelling
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solvents and reactants. Macroreticular resins are macroporous, typically showing a high cross-linking
ratio. In this case, swelling does not usually produce a noticeable change of the overall resin volume.
The permanent porous structure on the resins facilitates, in principle, the flow through the beads
of the solvents/reactants, and, therefore, the accessibility of the catalytic sites. However, a high
cross-linking degree may limit the access to the sites embedded in the inner polymer matrix regions,
since it precludes proper swelling of those regions. On the other hand, Aquivion mP98 is a co-polymer
of tetrafluoroethylene and sulfonylfluoride vinyl ether which, after hydrolysis of the sulfonyl fluoride,
yields the strongly acidic terminal -CF2CF2SO3H groups. It has no porosity in the dry state and,
as such, depends on being swollen by the reaction medium, giving rise to a porous structure and
therefore enabling the diffusion of reactants through the polymer matrix. From the point of view
of flow application, it is important to bear in mind that swelling leads to a variation in the overall
non-porous resin volume that can be significant. This needs to be taken into account when configuring
the flow reactors to avoid, e.g., overpressures. It should also be noted here that the micronized
form of Aquivion PFSA (Aquivion mP98) exhibits an average particle size which is smaller than the
commercially available Aquivion pellets P98 counterpart (about 0.7 vs. 2.5 mm), and this likely makes
it more useful as catalytic material. In fact, due to the smaller dimension of the pellets, the stirring
of the reactants and the isolation of the product become easier under conventional batch conditions.
Also, this form of Aquivion PFSA is expected to be more useful in view of our final set of a flow
procedure [53].

The catalyst screening is therefore carried out in the direction of identifying robust and stable
organic polymer-based solid acid catalysts, suitable for flow processes, to contribute to improving
significantly the overall efficiency of valuable fuel esters’ large scale production. Our results
demonstrate that a large panel of levulinates can be regioselectively obtained in high yields and
isolated, avoiding the need for chromatography with efficient waste-minimization, as confirmed by
representative green metrics calculations. The role of various reaction parameters, including the
molar ratio of the reactants, the catalyst amount, the temperature, and time is discussed, along with
the catalyst recoverability/reusability issue. It will be seen that flow technique may be successfully
exploited to improve the efficiency of the process. In fact, we demonstrate here that the employment
of flow conditions may help in enlarging the scale of a batch protocol and, besides this, allow to avoid
the breakdown to “fines” of the heterogeneous catalyst under stirring in the batch mode, thereby
improving its reusability. Further, since in flow systems the substrate is actually forced into intimate
contact with an excess of the catalyst [52], higher conversions were achieved (93–99%).

2. Results and Discussion

Table 1 summarizes key catalysts properties, in terms of particle size, porosity, morphology, and
acid density, along with their acronyms.

Table 1. Key properties of the tested catalysts.

Catalyst
Name

Particle Size
(mm)

Surface
Area (m2/g)

Pore Volume
(cm3/g) Matrix 1 Swelling

Volume 2 (%)
Acid Loading 3

(mmol/g)

A-15 <0.3 1 45 1 0.4 1 Styrene/DVB
(macroreticular) 10 4.7

PS-pTsOH 0.25–0.59 1 3.26 0.0036 Styrene/DVB
(macroporous) 50 2.9

Aquivion
mP98 ~0.70 - -

Tetrafluoroethylene/
sulfonylfluoride vinyl

ether (non-porous)
400 1.02

1 Data provided by the manufacturer. 2 1-Pentanol, r.t. 3 Determined by elemental analysis.

The efficiency of A-15, PS-pTsOH, and Aquivion mP98 in the esterification reaction of levulinic
acid (LA, 1) has been tested first by employing 1-pentanol (2) as a reference alcohol substrate (Scheme 1).
Taking into account the earlier discussion, the swelling behavior of the three different resins after
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contact with 1-pentanol has been also evaluated. In this regard, the increase in volume produced by
swelling for the resins featuring very low to no-porosity in the dry state can reach values of up to 400%
(Table 1 and Figure S1, Supplementary Materials, SM).Catalysts 2017, 7, 235  4 of 15 
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Scheme 1. Synthetic route to pentyl levulinate 3.

The most significant data collected from the batch runs are summarized in Tables 2–4. The blank
reaction experiment, in the absence of a catalyst, gave a LA conversion of ~4% after 24 h of reaction
time (Table S1, entry 1, SM), thereby indicating a negligible extent of the esterification of levulinic acid
by auto-catalysis under the tested reaction conditions.

Table 2. Esterification reaction of Levulinic Acid (LA) 1 with 1-pentanol (2) catalyzed by
Aquivion mP98.

Entry Catalyst (mol %) 1 LA/1-Pentanol T (◦C) t (h) C (%) 2

1 4.3

1:5 70

5 45
2 8 62
3 10 64

4 4.3 12 46
5 8 66
6 10 67

7 4.3 24 53
8 8 70
9 10 72

10 4.3

1:5 90

5 50
11 8 68
12 10 70

13 4.3 12 53
14 8 69
15 10 73

16 4.3 24 62
17 8 73
18 10 76 (73) 3

19 4.3

1:10 70

5 47
20 8 58
21 10 59

22 4.3 12 49
23 8 75
24 10 77

25 4.3 24 60
26 8 82
27 10 86

28 4.3

1:10 90

5 50
29 8 63
30 10 68

31 4.3 12 58
32 8 76
33 10 86

34 4.3 24 66
35 8 78
36 10 92 (88) 3,4

1 Referred to the amount of immobilized -SO3H moieties. 2 LA conversion to pentyl levulinate 3, determined by
1H-NMR analysis, using 4-bromoanisole as internal standard; the remaining material was the unreacted mixture of
1 and 2. 3 Isolated yield in parenthesis. 4 Complete conversion of 1 into 3 was achieved after 36 h.
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Table 3. Esterification reaction of LA 1 with 1-pentanol (2), catalyzed by A-15.

Entry Catalyst (mol %) 1 LA/1-Pentanol T (◦C) t (h) C (%) 2

1 4.3

1:5 70

5 29
2 8 43
3 10 50

4 4.3 12 32
5 8 51
6 10 57

7 4.3 24 53
8 8 64
9 10 65 (62) 3

10 4.3

1:5 90

5 22
11 8 38
12 10 46

13 4.3 12 33
14 8 39
15 10 52

16 4.3 24 43
17 8 46
18 10 58

19 4.3

1:10 70

5 50
20 8 51
21 10 56

22 4.3 12 55
23 8 60
24 10 64

25 4.3 24 66
26 8 70
27 10 76 (73) 3

28 4.3

1:10 90

5 38
29 8 41
30 10 44

31 4.3 12 50
32 8 52
33 10 54

34 4.3 24 58
35 8 60
36 10 67

1 Referred to the amount of immobilized -SO3H moieties. 2 LA conversion to pentyl levulinate 3, determined by
1H-NMR analysis, using 4-bromoanisole as internal standard; the remaining material was the unreacted mixture of
1 and 2. 3 Isolated yield in parenthesis.

Aquivion mP98 was found to be the most efficient catalyst, selectively providing up to 92% LA
conversion towards the target product 3 after 24 h at 90 ◦C (Table 2, entry 36). Moreover, the product
was isolated in high yield (88%) and purity (>98%) by a simple work up procedure (see Section 3).
Notably, unreacted 1-pentanol could be nearly quantitatively recovered (96%) by distillation at 75 ◦C
under vacuum (80 mmHg) for later reuse. Additionally, complete conversion of 1 into 3 was achieved
under the same optimal conditions after 36 h.
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Table 4. Esterification reaction of LA 1 with 1-pentanol (2) catalyzed by PS-pTsOH.

Entry Catalyst (mol %) 1 LA/1-Pentanol T (◦C) t (h) C (%) 2

1 4.3

1:5 70

5 32
2 8 44
3 10 58

4 4.3 12 54
5 8 60
6 10 62

7 4.3 24 55
8 8 65
9 10 68 (64) 3

10 4.3

1:5 90

5 25
11 8 50
12 10 56

13 4.3 12 50
14 8 65
15 10 67

16 4.3 24 50
17 8 69
18 10 68

19 4.3

1:10 70

5 43
20 8 50
21 10 56

22 4.3 12 50
23 8 65
24 10 70

25 4.3 24 55
26 8 73
27 10 80

28 4.3

1:10 90

5 50
29 8 50
30 10 51

31 4.3 12 55
32 8 58
33 10 72

34 4.3 24 60
35 8 65
36 10 83 (78) 3

1 Referred to the amount of immobilized -SO3H moieties. 2 LA conversion to pentyl levulinate 3, determined by
1H-NMR analysis, using 4-bromoanisole as internal standard; the remaining material was the unreacted mixture of
1 and 2. 3 Isolated yield in parenthesis.

Amberlyst-15 (10 mol %) allowed the lowest conversion at 90 ◦C when employing a
1:10 LA/alcohol molar ratio (Table 3, entry 36). Notably, the temperature increase led to a ~10%
decrease in Amberlyst-15 activity [54] (Table 3, entry 27 vs. entry 36). The effect of temperature increase
on catalytic efficiency was greater for Aquivion mP98 than for PS-pTsOH (Table 2, entries 27 and 36 vs.
Table 4, entries 27 and 36). Finally, Aquivion mP98 and PS-pTsOH (10 mol %, 1:10 LA/alcohol molar
ratio) allowed a higher conversion increase in the range 5–12 h with respect to Amberlyst-15, at 70 ◦C
as well as at 90 ◦C. This is exemplified by Table 4, entries 30 and 33 vs. Table 2, entries 30 and 33 vs.
Table 3, entries 30 and 33. The influence of the reaction temperature on the efficiency of the catalysts is
also represented in Figures 1 and 2.
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Figure 2. Effect of time and temperature on the reaction of LA with 1-pentanol (1:10 molar ratio),
catalyzed by 10 mol % of Aquivion mP98, PS-pTsOH and A-15.

The catalyst amount varied over a range of 4.3–10 mol %. Conversion of levulinic acid was found
to generally increase proportionally with the catalyst amount, as the number of catalytic sites for the
reaction increased. This is exemplified in Figure S2 (SM) for Aquivion mP98 (1:10 molar ratio, 90 ◦C).
Also, the LA to 1-pentanol molar ratio was investigated at 1:5 and 1:10, and it was generally observed
that the LA conversion into pentyl levulinate increased with an increasing molar ratio, as exemplified
in Figure S3, SM.

Within each set of reaction conditions, the catalysts activity generally tracks the progression
Aquivion mP98 > PS-pTsOH > A-15. This might be, at least partially, explained by considering the
porous structure of A-15 vs. the low to non-porous structure of PS-pTsOH and Aquivion mP98,
respectively. Indeed, in the case of A-15, the water produced during the esterification may limit the
accessibility of reactants to the fraction of the acid sites located inside the pores, due to the fill up of
the latter with water itself. Conversely, PS-pTsOH and Aquivion mP98 (nearly) hamper the adsorption
of water on the outer/inner surface, which ensures the maintenance of their performance for a longer
amount of time [55]. In other words, the increase in surface area, due to the presence of the pores
(Table 1), seems to inhibit the esterification process under the investigated conditions. This is not
uncommon behavior [55–58].

For comparison purposes, the reaction over commercially available Nafion NR50, a fluorinated
congener of Aquivion mP98, has been also performed (Table S1, entry 2, SM) in optimal conditions
(i.e., 1:10 LA/alcohol molar ratio, 10 mol % catalyst, 90 ◦C, 24 h). The lowest conversion value
was achieved (60%), and a progressive marked increase of the catalyst pellets’ size was observed,
which, ultimately, was responsible for a badly efficient stirring of the reaction mixture. FTIR analysis
(Figure S4) of Nafion NR50 after the esterification process suggested the LA and/or pentyl levulinate
adsorption on the catalytic system, although there was repeated washing.
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Furthermore, the esterification reaction over a homogeneous reference catalyst, i.e.,
p-toluensulfonic acid (pTsOH), gave a LA conversion value lower than that achieved by Aquivion
mP98 under the optimal experimental conditions (Table S1, entry 3 and Table 2, entry 36, respectively).
Similar results were obtained by comparing the PS-pTsOH catalyzed esterification process (Table 4,
entry 36) carried out under identical conditions. On the other hand, Amberlyst 15 (Table 3, entry 36)
gave lower LA conversions, thereby indicating the presence of diffusional limitations and/or catalyst
instability at the temperature conditions of 90 ◦C [54].

To broaden the substrate scope, a range of aliphatic alcohols 4–10 with short, moderate, and
branched chains were reacted with LA using the optimized batch conditions for each catalyst to give
the corresponding alkyl levulinates 11–17 (Scheme 2, Table 5).
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(i.e., 1:10 LA/alcohol molar ratio, 10 mol % catalyst, 90 °C, 24 h). The lowest conversion value was 
achieved (60%), and a progressive marked increase of the catalyst pellets’ size was observed, which, 
ultimately, was responsible for a badly efficient stirring of the reaction mixture. FTIR analysis 
(Figure S4) of Nafion NR50 after the esterification process suggested the LA and/or pentyl levulinate 
adsorption on the catalytic system, although there was repeated washing.  
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the alcohols under investigation. Notably, it was effective with branched-chain alcohols (entries 16 
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1 Reaction conditions: 1:10 LA/alcohol molar ratio, 10 mol % catalyst, 90 ◦C, 24 h. 2 LA conversion to alkyl
levulinates 11–17, determined by 1H-NMR analysis, using 4-bromoanisole as internal standard; the remaining
material was the unreacted mixture of 1 and 4–10.

Aquivion mP98 revealed good versatility, giving a good to high conversion (50–84%) with all of
the alcohols under investigation. Notably, it was effective with branched-chain alcohols (entries 16
and 19, Table 2). This is particularly attractive since skeletally branched chain esters are considered
more effective [59] as additives and diluents to improve, e.g., the cold-flow properties of biodiesel.

Additionally, no byproducts coming from the inter-/intramolecular dehydration of the different
alcohols were observed under the tested reaction conditions.

The recovery and reuse of the three catalysts have been investigated, and the results reported
for the reaction of LA with pentyl levulinate carried out at 70 ◦C (1:5 molar ratio, 10 mol % catalyst,
24 h). After the reaction was completed, the catalyst used was recovered by filtration. The recovered
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catalyst was then washed with a minimum amount of ethyl acetate, dried, and subsequently reused.
All the three catalysts substantially retained their activity, even after five consecutive runs (Table S2
and Figure 3). FTIR analyses indicated that there is LA or pentyl levulinate adsorption to some extent
on all resins washed, except Aquivion mP98 (Figures S4–S7, SM).
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The loss of catalysts has been also evaluated. Aquivion mP98 mass was fully recovered even after
five consecutive runs (~5% weight loss), whereas PS-pTsOH was ~80% recovered, and Amberlyst-15
loss was as high as ~40% (Table S2 and Figure 3). The losses were due to the mechanical disintegration
of the catalyst particles, which made their recovery difficult. Indeed, the low to no-porosity of
PS-pTsOH and Aquivion mP98, respectively, guaranteed their superior mechanical strength.

To confirm that there was no leaching of the catalyst -SO3H groups at the reaction temperature, a
hot filtration test was carried out. Esterification of levulinic acid was therefore performed at 90 ◦C,
using the three investigated catalysts. Then, after 30 min, the catalyst was filtered off and the reaction
mixture was allowed to react further. We found that no significant further reaction occurred after
this hot filtration procedure, which suggests there is no significant -SO3H leaching from the catalysts
during the reaction progress (Figure S8).

To evaluate the efficiency of our synthetic strategy, we calculated the Environmental factor
(E-factor, kg waste per kg product) [60]. Values in the range of 0.4–0.9 were obtained, which includes the
recovery (and reuse) of catalysts, as well as that of unreacted 1-pentanol—the optimized esterification
process employing Aquivion mP98 (Table 2, entry 36) giving the minimal production of waste.

Unfortunately, it was not possible to compare the efficiency of our synthetic strategy to those
of already published protocols, since essential experimental details to properly calculate the metrics
are missing in these latter. As a reference, we therefore calculated the E-factor for the homogeneous
p-TsOH catalyzed protocol, which showed a value of 76.36, with a consequent reduction of waste for
our protocol greater than 99% (see Section 3 and SM).

To overcome the issue of the catalysts recoverability, we decided to apply the flow technology. We
have therefore defined a flow protocol by charging catalysts in a PTFE or glass reactor, on the basis of
the estimated volume change that follows the swelling of the polymer with the medium to be used for
the process (vide supra), while the reactants’ solution was charged in a tank acting as a reservoir. All
the equipment was connected by using the appropriate tubes and valves, connected to a HPLC pump
and installed into a thermostatic box. After setting the temperature at 90 ◦C, the reaction mixture was
pumped through the column of appropriate length at a given flow rate (see also SM).

As shown in Table 6, entry 1, in the first run, at a flow rate of 0.1 mL/min, up to 65 mmol of pentyl
levulinate 3 over A-15 was obtained (93% conversion), which corresponded to a production of 0.93 g
per hour (Turnover Number, TON: 11.5; Turnover Frequency, TOF: 0.88 h−1). On the other hand, much
better results were obtained when using PS-p-TsOH and Aquivion mP98 (Figure S9, SM). In fact, at a
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flow rate of 0.55 mL/min, the former (Table 6, entry 3) enabled the preparation of 280 mmol of the
target product (98% conversion), i.e., 4.73 g per hour (TON: 47.8, TOF: 4.3 h−1). Similarly, 210 mmol of
3 were prepared over Aquivion mP98 (Table 6, entry 5) at a reaction mixture flow rate of 0.44 mL/min
(>99% conversion), which corresponded to 4.8 g h−1 (TON 37.4, TOF 4.68 h−1).

Table 6. Reusability of catalysts in flow reactor for representative reaction to 1-pentanol 1.

Catalysts 2017, 7, 235  10 of 15 

 

reservoir. All the equipment was connected by using the appropriate tubes and valves, connected to 
a HPLC pump and installed into a thermostatic box. After setting the temperature at 90 °C, the 
reaction mixture was pumped through the column of appropriate length at a given flow rate (see 
also SM). 

As shown in Table 6, entry 1, in the first run, at a flow rate of 0.1 mL/min, up to 65 mmol of 
pentyl levulinate 3 over A-15 was obtained (93% conversion), which corresponded to a production 
of 0.93 g per hour (Turnover Number, TON: 11.5; Turnover Frequency, TOF: 0.88 h−1). On the other 
hand, much better results were obtained when using PS-p-TsOH and Aquivion mP98 (Figure S9, 
SM). In fact, at a flow rate of 0.55 mL/min, the former (Table 6, entry 3) enabled the preparation of 
280 mmol of the target product (98% conversion), i.e., 4.73 g per hour (TON: 47.8, TOF: 4.3 h−1). 
Similarly, 210 mmol of 3 were prepared over Aquivion mP98 (Table 6, entry 5) at a reaction mixture 
flow rate of 0.44 mL/min (>99% conversion), which corresponded to 4.8 g h−1 (TON 37.4, TOF 4.68 h−1).  

The column was then dried at 120 °C (3 h) by air flow to remove the water produced during the 
reaction and, subsequently, a second batch of reactants was charged into the reservoir, and the 
activity of all resins proved to remain unchanged (Table 6, entries 2, 4, 6, and SM). 

Table 6. Reusability of catalysts in flow reactor for representative reaction to 1-pentanol 1. 

O
OH

O1

+

2

O
O

O 3

OH

cat.

flow reactor
 

Entry Catalyst Type Cycle C (%) 2 gxh−1 TON 3 TOF (h−1) 4 

1 
A-15 

1 93 0.93 
11.5 0.88 

2 2 93 0.93 
3 

PS-p-TsOH 
1 98 4.73 

47.8 4.30 
4 2 98 4.73 
5 

Aquivion mP98 
1 >99 4.8 

37.4 4.68 
6 2 >99 4.8 

1 1:10 LA/1-pentanol molar ratio, 90 °C. 2 LA conversion to pentyl levulinate 3, determined by 
1H-NMR analysis, using 4-bromoanisole as internal standard; the remaining material was the 
unreacted mixture of 1 and 2. 3 Turnover Number = total number of moles of pentyl levulinate 
produced per mole of catalyst. 4 Turnover frequency = number of substrate molecules reacted at each 
available catalytic site per unit time.  

3. Materials and Methods 

3.1. General Remarks  

All reagents were purchased from commercial sources and used without further purification, 
unless otherwise noted. Commercial Amberlyst-15® (4.7 mmol SO3H/g, particle size < 0.3 mm), 
polystyrene-bound p-toluensulfonic acid (PS-pTsOH; 2.9 mmol SO3H/g, particle size: 0.25–0.59 mm), 
and Nafion® NR50 (0.8 mmol SO3H/g, particle size ~ 3.5 mm) were purchased at Sigma-Aldrich, Si 
Milan, Italy. Aquivion mP98 (1.2 mmol SO3H/g, particle size ~ 0.7 mm) was provided by Solvay 
Specialty Polymers S.p.A. Elemental microanalyses were performed using a Fison’s EA1106CHN 
analyzer using atropine, 2,5-bis-2-(5-tertbutylbenzoxazol-yl)-thiophene (BBOT), and phenanthrene 
as a reference standard, with an accuracy of ca. 2 µmol g−1. NMR spectra were recorded on a Bruker 
DRX-ADVANCE 400 MHz (1H at 400 MHz and 13C at 100.6 MHz) in CDCl3, using TMS as an internal 
standard. Fourier Transformed Infrared (FTIR) spectra were recorded on a VERTEX 70 Bruker 
Optics Instrument (Billerica, MA, USA), with a spectral range of 4000–400 cm−1 and a resolution of  
4 cm−1, equipped with a single reflection diamond ATR cell. 

Entry Catalyst Type Cycle C (%) 2 gxh−1 TON 3 TOF (h−1) 4

1
A-15

1 93 0.93
11.5 0.882 2 93 0.93

3 PS-p-TsOH 1 98 4.73
47.8 4.304 2 98 4.73

5 Aquivion mP98 1 >99 4.8
37.4 4.686 2 >99 4.8

1 1:10 LA/1-pentanol molar ratio, 90 ◦C. 2 LA conversion to pentyl levulinate 3, determined by 1H-NMR analysis,
using 4-bromoanisole as internal standard; the remaining material was the unreacted mixture of 1 and 2. 3 Turnover
Number = total number of moles of pentyl levulinate produced per mole of catalyst. 4 Turnover frequency = number
of substrate molecules reacted at each available catalytic site per unit time.

The column was then dried at 120 ◦C (3 h) by air flow to remove the water produced during the
reaction and, subsequently, a second batch of reactants was charged into the reservoir, and the activity
of all resins proved to remain unchanged (Table 6, entries 2, 4, 6, and SM).

3. Materials and Methods

3.1. General Remarks

All reagents were purchased from commercial sources and used without further purification,
unless otherwise noted. Commercial Amberlyst-15® (4.7 mmol SO3H/g, particle size < 0.3 mm),
polystyrene-bound p-toluensulfonic acid (PS-pTsOH; 2.9 mmol SO3H/g, particle size: 0.25–0.59 mm),
and Nafion® NR50 (0.8 mmol SO3H/g, particle size ~3.5 mm) were purchased at Sigma-Aldrich, Si
Milan, Italy. Aquivion mP98 (1.2 mmol SO3H/g, particle size ~0.7 mm) was provided by Solvay
Specialty Polymers S.p.A. Elemental microanalyses were performed using a Fison’s EA1106CHN
analyzer using atropine, 2,5-bis-2-(5-tertbutylbenzoxazol-yl)-thiophene (BBOT), and phenanthrene as
a reference standard, with an accuracy of ca. 2 µmol g−1. NMR spectra were recorded on a Bruker
DRX-ADVANCE 400 MHz (1H at 400 MHz and 13C at 100.6 MHz) in CDCl3, using TMS as an internal
standard. Fourier Transformed Infrared (FTIR) spectra were recorded on a VERTEX 70 Bruker Optics
Instrument (Billerica, MA, USA), with a spectral range of 4000–400 cm−1 and a resolution of 4 cm−1,
equipped with a single reflection diamond ATR cell.

3.2. Representative Experimental Batch Procedure for the Preparation of Pentyllevulinate 3 over Heterogeneous
Acid Catalysts

In a round-bottomed flask capped with a PTFE stopper and equipped with a magnetic
stirrer, levulinic acid (1 g, 8.6 mmol), 1-pentanol (9.35 mL, 86 mmol) and Aquivion mP98 catalyst
(10 mol % 0.7 g) were consecutively added. The mixture was left under stirring at 90 ◦C for 24 h. Then
the reaction mixture was cooled down to room temperature and the catalyst filtered off and washed
with ethyl acetate (80 mL). The filtrate was concentrated by removing solvent and unreacted 1-pentanol
was recovered (96%) by distillation at 75 ◦C under vacuum (80 mmHg). Subsequent filtration using a
basic Al2O3 pad (0.15 g) to remove the residual LA gave pentyl levulinate 3 as a pale yellow oil (1.43 g,
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7.57 mmol, 88% yield). 1H-NMR δ (ppm) 3.9 (t, 2H); 2.6 (m, 2H); 2.4 (m, 2H); 2.1 (s, 3H); 1.5 (m, 2H); 1.2
(m, 4H); 0.81 (m, 3H). E-factor: [1 g (LA) + 7.6 g (1-pentanol) + 0.2 g (Al2O3) − 1.63 g (pentyl levulinate
3) − 6.5 g (96% recovered 1-pentanol)]/1.63 g (pentyl levulinate 3) = 0.4.

The Aquivion mP98 catalyst was not considered in the calculation due to its complete recovery.

3.3. Esterification Reaction to Pentyllevulinate 3 over Homogeneous p-TsOH Catalyst

In a round-bottomed flask capped with a PTFE stopper and equipped with a magnetic stirrer,
levulinic acid (0.8 g, 6.8 mmol), 1-pentanol (7.37 mL, 68 mmol) and p-toluen sulfonic acid (pTsOH,
10 mol %, 0.12 g) were consecutively added. The mixture was left under stirring at 90 ◦C for 24 h.
Then, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate (10 mL),
washed with NaHCO3 saturated solution (20 mL × 3), dried over Na2SO4, filtered, and concentrated to
remove solvent. Next, 90% of unreacted 1-pentanol was recovered by distillation at 75 ◦C under vacuum
(80 mmHg). Pentyl levulinate 3 was obtained as a pale yellow oil (0.98 g, 5.3 mmol, 78% yield). E-factor:
0.8 g (LA) + 0.12 g (pTsOH) + 6 g (1-pentanol)+ 8.9 g (ethyl acetate) + 5.4 g (NaHCO3) + 60 g H2O − 0.98
g (pentyllevulinate 3) − 5.4 g (90% recovered 1-pentanol)/0.98 g (pentyl levulinate 3) = 76.37.

This doesn’t account for the drying agent.

4. Conclusions

Three members of the acidic resins family featuring different morphologies, namely non-porous
micronized Aquivion® PFSA (Aquivion mP98), macroreticular Amberlyst-15®, and macroporous
polystyrene-supported p-toluensulfonic acid (PS-pTsOH), were active catalysts in the esterification
reaction of levulinic acid with 1-pentanol, both under conventional batch conditions and in flow. The
activity generally tracked the progression Aquivion mP98 > PS-pTsOH > A-15, which was tentatively
explained on the basis of the different porous structure of the catalytic systems. Particularly, non-porous
Aquivion mP98 (10 mol %) allowed the highest levulinic acid conversion (92%) into pentyl levulinate
under conventional batch conditions at 90 ◦C when employing a 1:10 LA/alcohol molar ratio (24 h).
Moreover, the reaction was completely selective and the product was isolated (88% yield) by a
straightforward procedure, encompassing the almost complete recovery (96%) of unreacted 1-pentanol
by distillation, for later reuse. The protocol could be extended to aliphatic alcohols with short,
moderate, and branched chains, leading to the preparation of levulinates in good-to-high yields
(50–92%). Moreover, no byproducts coming from inter-/intramolecular dehydration of the different
alcohols were observed under the tested reaction conditions.

Recovery and reuse of all the three catalysts have been investigated. Notably, non-porous
Aquivion mP98 substantially retained its activity even after five consecutive runs, while being fully
recoverable (~5% weight loss).

Calculation of the E-factors confirmed that our approach is very efficient for waste reduction,
especially in the case of the flow conditions (E-factor as low as ca. 0.3). Importantly, the flow technique
proved to be an efficient solution to maintain the physical integrity of the catalysts and also to allow
for its easy recovery and recycling. Additionally, flow conditions enabled the production of levulinates
on a g per hour scale when employing the low- to non-porous catalysts PS-pTsOH and Aquivion
mP98, respectively.

Further investigations are due in due course to demonstrate that resin-supported acid catalysts
can improve substantially the overall efficiency of valuable fuel esters production.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/8/235/s1, E-factor
calculation, Table S1: Esterification reaction of LA with 1-pentanol in batch conditions, Table S2: Recycling of
Aquivion mP98, PS-pTsOH and Amberlyst-15 in esterification reaction of LA with 1-pentanol, Figure S1: Swelling
in 1-pentanol of the three investigated resins, Figure S2: Effect of Aquivion mP98 catalyst loading on conversion
of levulinic acid into pentyl levulinate (1:10 LA to pentanol molar ratio, 90 ◦C), Figure S3: Effect of the mole
ratio on conversion of levulinic acid into pentyl levulinate (10 mol % catalyst, 24 h), Figure S4: FTIR spectra
of Nafion NR50 before use and after esterification reaction of LA with 1-pentanol, Figure S5: FTIR spectra of
Aquivion mP98 before use and after five runs, Figure S6: FTIR spectra of PS-pTsOH before use and after five
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runs, Figure S7: FTIR spectra of Amberlyst 15 before use and after five runs, Figure S8: Hot filtration test for the
heterogeneous acid catalyzed esterification reaction of LA and 1-pentanol (1:5 molar ratio, 10 mol % catalyst) at
90 ◦C, Figure S9: Comparison between the abilities of the investigated catalysts in producing pentyl levulinate 3
under flow conditions.
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