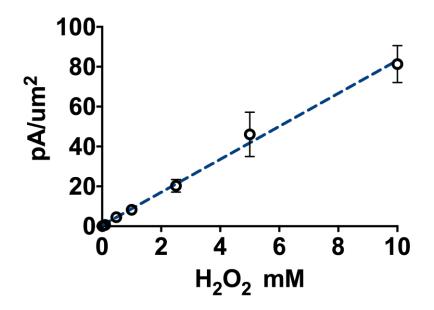


Supplementary information


Co-Detection of Dopamine and Glucose with High Temporal Resolution

Jenny Bergman¹, Lisa Mellander² and Ann-Sofie Cans^{3,*}

- ¹ Department of Chemistry and Molecular Biology, Gothenburg University, 41296 Gothenburg, Sweden; jenny.bergman@chem.gu.se
- ² Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; lisa.mellander@gu.se
- ³ Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg Sweden
- * Correspondence: cans@chalmers.se; Tel.: +46-31-772-1000

Figure S.1 Cyclic voltammetry of a CFME-AuNP in PBS buffer (black) 5 mM H_2O_2 (red) and 10 mM H_2O_2 . The voltammogram shows that H_2O_2 is reduced at potentials below -0.25 V and that no oxidation reaction occurs involving H_2O_2 when potential +0.5 V is applied.

Figure S.2 The AuNP-CFME response to H₂O₂ shows linearity over a large concentration range (10 μ M – 10 mM) and display a sensitivity of 8.4 ± 0.5 pA mM⁻¹ μ m. (R-square 0.996).

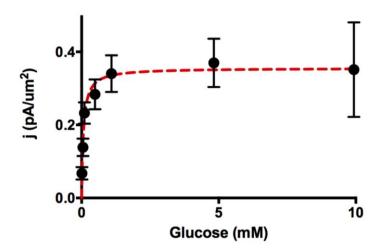


Figure S.3 The GOx-AuNP-CFME response to glucose for the whole concentration range tested (10 μ M – 10 mM).