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Abstract: Here, we demonstrate the enhanced water-splitting performance (I = 10 mA/cm2, Tafel
slope = 60 mV/dec, onset potential = −80 mV) of atmospheric air plasma treated (AAPT) SnS
thin films by the hydrogen evolution reaction (HER). The as prepared SnS films were subjected to
Atmospheric Air Plasma Treatment (AAPT) which leads to formation of additional phases of Sn and
SnO2 at plasma powers of 150 W and 250 W, respectively. The AAPT treatment at 150 W leads to the
evaporation of the S atoms as SO2 generates a number of S-vacancies and Sn active edge sites over
the surface of the SnS thin film. S-vacancies also create Sn active edge sites, surface p-type pinning
that tunes the suitable band positions, and a hydrophilic surface which is beneficial for hydrogen
adsorption/desorption. At high plasma power (250 W), the surface of the SnS films becomes oxidized
and degrades the HER performance. These results demonstrate that AAPT (150 W) is capable of
improving the HER performance of SnS thin films and our results indicate that SnS thin films can
work as efficient electrocatalysts for HER.

Keywords: hydrogen evolution reaction; SnS; electrocatalysts; atmospheric air plasma treated

1. Introduction

Hydrogen evolution through the water splitting reaction has been proposed as a clean, efficient
energy resource with zero emissions through an environmentally-friendly process. Recently, much
effort has been undertaken towards the development of electrocatalytic/photocatalytic techniques
to produce hydrogen efficiently through the hydrogen evolution reaction (HER) [1,2]. HER is a
reduction reaction on the cathode surface via the adsorption of hydrogen ions that combine with an
electron to form hydrogen gas (2H+ + 2e− → H2). However, most of the cathode materials have low
reaction efficiency. To overcome this shortcoming, if the cathode surface were to be activated and the
overpotential reduced, HER efficiency could greatly increase.

Recently, two-dimensional layered metal sulfides (MS) (i.e. MoS2 [3,4], WS2 [5], ZrS3 [6], SnS [7,8],
and SnS2 [9,10]) were shown to have a unique graphene-like nanostructure. This excellent carrier
mobility, due to the unique directionality in 2-D materials, and the narrow bandgap renders them as
promising electrocatalysts for HER. Among the MS, SnS and related compounds appear to hold high
potential for applications in HER [11,12]. The layer stacking and structural multiformity of SnS (ex: SnS,
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SnS2, Sn2S3, and Sn3S4) significantly enhance both the catalytic activity and electrical conductivity.
SnS is a IV-VI group compound and the constituent elements are earth abundant and non-toxic, and so
has attracted significant attention recently. Until now, the most common applications of SnS include
Li-batteries [13], photovoltaic cells [14], photocatalysts [11], and electrocatalysts [12,15]. However, the
low effective carrier density, Fermi pinning by the surface states of the electrode and electrolyte, carrier
recombination at the boundaries by small grain sizes, and defects leading to carrier recombination at
the junction have obstructed the HER efficiency of sulfides [16–18].

In response, efforts have been undertaken to enhance the surface conductivity/HER efficiency
of MS via the addition of carbon-based materials [4,12], doping with various elements [7,19], surface
modification [20,21], and surface plasma treatment techniques [22–27]. Efficiencies can also be
enhanced by creating exposed active sites on the surface that can facilitate charge transfer. Among the
several techniques proposed so far, atmospheric air plasma treatment (AAPT) is a simple, low-cost,
stable processing method [23,24] to create active sites on the surface of the MS. Plasma treatments
have been reported to enhance the activity and reduce defects of the MS reaction surface by using
Cl [25], O2 [22,27], amine (NH3) [28], argon [29], and xenon difluoride (XeF2) [30] as the carrier gases.
However, these plasma approaches are toxic, and require a high vacuum system, regular maintenance,
and significant capital expenditure.

In this paper, we attempt to enhance the surface activity of the SnS thin films by a safe, fast, and
low-cost atmospheric air plasma treatment. In doing so, SnS thin films were treated at various plasma
powers to investigate their properties. Herein, we describe a facile method to enhance SnS thin film
electrocatalysts and demonstrate their excellent performance in HER.

2. Results

Figure 1a–c shows the X-ray diffraction (XRD) spectra of the SnS thin film without and with
air plasma treatment at 150 W and 250 W, respectively. As seen, the pure SnS thin film (Figure 1a)
shows only one (040) plane diffraction peak at 2θ = 31.97◦ (JCPDS 39-0354), which is because the SnS is
stacked in the (040) plane along the b-axis [9]. The SnS thin films maintained an orthorhombic structure
for all AAPT processes. In contrast, at 150 W power, the XRD result shows the (200) diffraction peak at
2θ = 30.64◦, which confirms the presence of elemental Sn (JCPDS 04-0673) [31]. A further increase of
plasma power to 250 W eliminates the Sn (200) diffraction peak, but enables a new peak at 2θ = 26.58◦

to emerge, and is ascribed to SnO2 JCPDS 71-0652 (110) [32].
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Figure 1. X-ray diffraction (XRD) patterns of the SnS thin film (a) without, and with (b) 150 W, and (c)
250 W atmospheric air plasma treatment.
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Figure 2 shows the top view SEM images of the SnS thin films without and after AAPT at 150 W
and 250 W power. Without AAPT, the SnS thin films demonstrate a relatively smooth surface without
any visible cracks (Figure 2a). In comparison, the SnS thin films after AAPT feature a rougher surface
(Figure 2b,c)), which increases the area of exposed active sites that may contribute to enhanced HER
efficiency on the working electrode. In the yellow insets of Figure 2b,c, it can be seen that the SnS
nanocrystal is itself covered by fine nanocrystals; and, according to the XRD analysis, these may be Sn
and SnO2 nanocrystals.
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Figure 2. SEM images of the SnS thin films (a) without, and with (b) 150 W, and (c) 250 W atmospheric
air plasma treatment.

The bright-field TEM image (Figure 3a) shows the existence of two different SnS-nanocrystal
microstructures (hexagonal-shaped nanosheets and spherical nanoparticles) in the same matrix. In our
previous study [33], we observed a metastable phase consisting of hexagonal nanosheets and spherical
nanoparticles in transition from the cubic phase to the more stable orthorhombic phase, where the
average spherical-nanoparticle size ranged between 20~40 nm. The high-resolution (HR) TEM image
in Figure 3b shows two lattice spacing values of 2.35 Å and 2.88 Å (angle = 90◦), which correspond to
the (220) and (002) planes of the cubic-phase SnS, respectively. Moreover, the hexagonal SnS nanosheets
are 200–400 nm long and 50–100 nm wide (Figure 3c), which agrees well with the SEM observations.
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The SnS nanosheets comprise single crystals projected along the (010) direction, as shown by the
selected area electron diffraction (SAED) pattern (Inset in Figure 3c). The HRTEM image in Figure 3d
reveals a lattice spacing of 2.91 Å and 2.93 Å (angle = 90◦), corresponding to the (101) and (101) planes
of orthorhombic-phase SnS, respectively. The thickness of the SnS nanosheets is approximately 9 nm,
as confirmed in the HRTEM images (Figure 3e,f). This finding agrees well with the SAXS (small-angle
X-ray scattering shown in Figure S1) results using the generalized indirect Fourier transformation
(GIFT), which revealed the formation of flat disks. The XRD data of the SnS thin films show a single
peak corresponding to the (040) plane of orthorhombic SnS, which is attributed to the stacking of the
SnS nanosheets on the substrate and growth along the (040) plane after spin coating [34,35].
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Figure 3. (a) TEM images of the SnS nanocrystals consisting of orthorhombic phase hexagonal SnS
nanosheets and cubic phase SnS nanoparticles. (b) HRTEM image showing the crystal planes of cubic
phase SnS. (c) TEM image showing the top view of the SnS nanosheet (Inset: selected area electron
diffraction (SAED) patterns indexed to orthorhombic-SnS). (d) HRTEM top-view image of the SnS
nanosheet showing crystal planes of orthorhombic SnS. (e) TEM image showing the cross-sectional
view of the SnS nanosheet. (f) HRTEM image of SnS nanosheet cross-section showing stacked crystal
planes of orthorhombic SnS.

Figure 4 shows the bright-field TEM images of the SnS nanocrystals after 150 W (Figure 4a,b) and
250 W (Figure 4c,d) of AAPT. The surfaces of the cubic SnS nanocrystals are themselves covered by
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agglomerations of fine crystal precipitates (yellow area in Figure 4a) and the HRTEM image reveals
lattice spacing values of 3.01 Å and 2.97 Å, both of which are in agreement with the (200) plane of
metal Sn nanoparticles (2–3 nm) (Figure 4b). Figure 4c shows that plasma treatment at higher power
(250 W) leads to further agglomeration of SnS nanocrystals with an approximate size of 500 nm, where
the large structure shown in the image consists of numerous smaller SnS nanocrystals. The HRTEM
image at the edge of the large agglomerated structure (the yellow area in Figure 4c) is displayed in
Figure 4d, in which the lattice spacing values of 2.64 Å and 2.97 Å were obtained corresponding to the
SnO2 nanocrystal (101) plane. The SnO2 nanocrystal size was approximately 5–7 nm, which is larger
than a Sn nanocrystal (as shown in Figure 4b). Therefore, it may be concluded that the 150 W AAPT of
SnS nanocrystal leads to a reduction in the SnS surface to Sn metal while the AAPT at 250 W causes
the oxidation of the SnS surface to SnO2.
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Figure 4. TEM bright field image and high-resolution image of SnS nanocrystals under (a,b) 150 W and
(c,d) 250 W atmospheric air plasma treatment, respectively. The samples were prepared by stripping
from different watt-treated SnS thin films.

Figure 5 shows the surface wettability image of the SnS thin films with and without AAPT.
As seen, the SnS thin film has a contact angle of 131.68◦ (Figure 5a), which represents the surface
hydrophobicity of SnS thin films. In comparison, after AAPT at 150 W and 250 W, the SnS thin film
surface becomes hydrophilic (Figure 5b,c). The contact angle of the SnS thin film subjected to 150 W
AAPT had a lower contact angle of 60.89◦, indicating stronger hydrophilicity than with 250 W (80.07◦).
Usually, AAPT treatment increases the surface defects, thereby altering the surface from hydrophobic
to hydrophilic, which provides a superior active surface for hydrogen-ion adsorption and desorption.
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Figure 5. Water contact angle (WCA) images of SnS thin films surface (a) without, and with (b) 150 W
and (c) 250 W atmospheric air plasma treatment (AAPT).

The surface atomic valence states and the chemical composition of the SnS thin films before
and after AAPT treatment were analyzed using electron spectroscopy for chemical analysis (ESCA)
(Figure 6). The Sn 3d peak and S 2p peak of the SnS appear at 485.5 eV and 161.7 eV, which respectively
correspond to the Sn–S bonding and S–Sn bonding [9]. However, a trace amount of Sn=O bonding is
still present in SnS. This may arise due to physical adsorption of oxygen on the SnS surface followed
by formation of Sn=O bonds due to the presence of trace impurity Sn4+ ions. Therefore, in Figure 6c,
the O1s peak intensity of C=O bonding (532.2 eV) intensity is relatively weak and can be ignored
as compared to other AAPT treated samples. However, the Sn 3d, S 2p, and O1s peaks become
asymmetric and their peak positions shift after AAPT. Specifically, the plasma treatment at 150 W
leads to the oxidation of sulfide in SnS, and, therefore, in addition to the Sn–S bond at 485.5 eV, two
other peaks are also observed at 486.7 eV (high-intensity Sn=O bond) [9] and at 484.8 eV (elemental
Sn). The S 2p spectrum shows peaks at 161.7 eV and 160.7 eV, corresponding to Sn–S bonding [36].
The O1s peak at 531.6 eV 530.5 eV corresponds to Sn=O bonding [32,37]. However, the XRD result does
not show any diffraction peak of SnO2; rather, a peak corresponding to Sn is observed. Accordingly,
at 150 W power, the SnO2 is most probably in the amorphous phase (Figure 1b). The appearance of the
elemental Sn peak is due to the incomplete oxidation of Sn after the oxidation of S, which evaporates
as SO2 and exposes the Sn metal over the surface. This occurrence is beneficial for HER performance
by enhancing the active edge sites. In contrast, an elemental Sn peak is not observed at 250 W due to
the complete conversion of the entire Sn surface to SnO2.
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Figure 6. Electron spectroscopy for chemical analysis (ESCA) core level spectra analysis of the
(a) Sn3d5/2 peak, (b) S 2p1/2 peak and (c) O1s peak for the untreated SnS thin films and with 150 W
and 250 W AAPT.

Figure 7 shows the valence band maximum (VBM) fitting plots and ESCA elemental composition
ratio of SnS before and after AAPT. It should be noted that the initial binding energies of Sn 3d, S 2p,
and the VBM [36] may vary by sample due to the n/p-type nature of SnS, which might originate
from stoichiometry variations and/or structural defects [27], such as surface steps and dislocations.
To better understand the stoichiometry evolution of SnS after AAPT treatment (150–250 W power) and
without treatment, all samples with similar chemical states and stoichiometry in Table 1 were chosen.
After the AAPT with various working power densities, the VBM in Figure 7a shifted in binding energy
value. Such shifts represent the Fermi-level realignment-induced band-bending [38], which can be
evaluated by the VBM obtained from the valence band region (see Figure 7a and Table 1).

In Figure 7a, the binding energy at 0 eV represents the Fermi level (EF) and the VBM of the SnS
thin films before AAPT relative to the Fermi level is 1.31 eV which is very close to the intrinsic band
gap of bulk SnS [39]. The composition (at%) ratio of S/Sn of SnS before AAPT was 0.78 (as shown in
Figure 7b and Table 1) while the VBM of the as-prepared SnS was 1.31 eV.

After 150 W AAPT, the VBM shifted downward to 0 eV (Figure 7a), and the composition ratio of
S/Sn decreased to 0.20 (Figure 7b). During AAPT treatment, the oxygen ions in the plasma reacted with
the S atoms over the surface of SnS, thereby evaporating the S atoms as SO2 and generating a number
of S-vacancies. Accordingly, the resulting S-vacancies shifted the surface states to the conduction band
edge and introduced a strong p-type pinning effect on the SnS.

When the AAPT power was increased to 250 W, the VBM shifted downward to 0.76 eV (Figure 7a)
and the ratio of S/Sn increased slightly to 0.31, and atomic percent of O increased greatly to 49.0%
(Figure 7b). Compared to the XRD (Figure 1) results, SnO2 existed under the 250 W AAPT state;
therefore, the SnS surface state due to the O introduced a strong n-type pinning effect on the SnS [27].



Catalysts 2018, 8, 462 8 of 15
Catalysts 2018, 8, x FOR PEER REVIEW  8 of 15 

 

 
Figure 7. (a) Valence band maxima (VBM) fitting; and, (b) O atomic percentage and S/Sn atomic ratio 
plot for the SnS thin films before and after AAPT. 

Table 1. Summary of the measured valence band maxima (VBM) fitting, atomic percentages (Sn, S, 
and O), and atomic ratio (S/Sn) from the SnS thin films before and after atmospheric air plasma 
treatment (AAPT). 

Sample Name VBM Atom % (Sn) Atom % (S) Atom % (O) S/Sn Ratio 
Without AAPT 1.31 30.8 24.3 44.9 0.78 
150 W AAPT 0 45.4 9.1 45.5 0.20 
250 W AAPT 0.76 38.9 12.1 49.0 0.31 

Figure 8 shows the electrocatalytic performance of SnS before and after AAPT at different 
powers (150 W, 250 W). The as-prepared SnS thin films without AAPT displayed a weak current 
density of −0.224 mA/cm2 when the applied potential was −0.325 V (Figure 8a). In comparison, the 
SnS thin films after 150 W AAPT showed superior electrocatalytic performance with a current density 
of −10 mA/cm2 at the same applied potential, which was significantly higher than with AAPT at 250 
W. After the 250 W AAPT, the SnS thin films underwent a deterioration of electrocatalytic current 
density (onset: −150 mV; −0.394 mA/cm2 at −325 mV). 

The Tafel slopes (Figure 8b) were determined by fitting the linear portions of the Tafel plots to 
the Tafel equation (ɳ =b log 𝑗 + 𝑎), where j is the current density, 𝑎 is the empirical coefficient, and b 
is the Tafel slope. The overall HER mechanism in acidic media is described through three principle 
steps, namely the Volmer reaction ( H + M + 𝑒 → M − H∗ , Tafel slope ~120 mV/dec), the 
Heyrovsky reaction (M − H∗ + M + 𝑒 → M + H , Tafel slope ~40 mV/dec), and the Tafel reaction 
(2M − H∗ → 2M + H , Tafel slope ~30 mV/dec) [1,40], where M is the electrode surface and H∗ is an 
adsorbed hydrogen atom. Experimentally, the two main pathways through which the HER reaction 
proceeds are either the Volmer–Heyrovsky reaction or the Volmer–Tafel reaction.  

Table 2 describes the detail electrochemical parameters of SnS thin films after different plasma 
process treatment. The Tafel plots show slopes of 174 mV/dec for the as-prepared SnS; meanwhile, a 
significantly lower value of 60 mV/dec is observed for the SnS after 150 W AAPT (Figure 8b) but a 
higher Tafel slope value of 210 mV/dec after AAPT at 250 W. The low Tafel slope (60 mV/dec) for the 
SnS after 150 W AAPT indicates that the HER most probably occurs via the Volmer–Heyrovsky 
mechanism, where the electron reduction of protons provides a hydrogen atom bound to an active 
site (Volmer reaction) and also leads to the electrochemical desorption of hydrogen (Heyrovsky 
reaction). 

Figure 7. (a) Valence band maxima (VBM) fitting; and, (b) O atomic percentage and S/Sn atomic ratio
plot for the SnS thin films before and after AAPT.

Table 1. Summary of the measured valence band maxima (VBM) fitting, atomic percentages (Sn,
S, and O), and atomic ratio (S/Sn) from the SnS thin films before and after atmospheric air plasma
treatment (AAPT).

Sample Name VBM Atom % (Sn) Atom % (S) Atom % (O) S/Sn Ratio

Without AAPT 1.31 30.8 24.3 44.9 0.78
150 W AAPT 0 45.4 9.1 45.5 0.20
250 W AAPT 0.76 38.9 12.1 49.0 0.31

Figure 8 shows the electrocatalytic performance of SnS before and after AAPT at different powers
(150 W, 250 W). The as-prepared SnS thin films without AAPT displayed a weak current density
of −0.224 mA/cm2 when the applied potential was −0.325 V (Figure 8a). In comparison, the SnS
thin films after 150 W AAPT showed superior electrocatalytic performance with a current density of
−10 mA/cm2 at the same applied potential, which was significantly higher than with AAPT at 250 W.
After the 250 W AAPT, the SnS thin films underwent a deterioration of electrocatalytic current density
(onset: −150 mV; −0.394 mA/cm2 at −325 mV).

The Tafel slopes (Figure 8b) were determined by fitting the linear portions of the Tafel plots
to the Tafel equation (
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= b log j + a), where j is the current density, a is the empirical coefficient,
and b is the Tafel slope. The overall HER mechanism in acidic media is described through three
principle steps, namely the Volmer reaction (H+ + M + e− → M−H∗ , Tafel slope ~120 mV/dec), the
Heyrovsky reaction (M−H∗ + M + e− → M + H2 , Tafel slope ~40 mV/dec), and the Tafel reaction
(2M−H∗ → 2M + H2 , Tafel slope ~30 mV/dec) [1,40], where M is the electrode surface and H* is an
adsorbed hydrogen atom. Experimentally, the two main pathways through which the HER reaction
proceeds are either the Volmer–Heyrovsky reaction or the Volmer–Tafel reaction.

Table 2 describes the detail electrochemical parameters of SnS thin films after different plasma
process treatment. The Tafel plots show slopes of 174 mV/dec for the as-prepared SnS; meanwhile,
a significantly lower value of 60 mV/dec is observed for the SnS after 150 W AAPT (Figure 8b) but a
higher Tafel slope value of 210 mV/dec after AAPT at 250 W. The low Tafel slope (60 mV/dec) for
the SnS after 150 W AAPT indicates that the HER most probably occurs via the Volmer–Heyrovsky
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mechanism, where the electron reduction of protons provides a hydrogen atom bound to an active site
(Volmer reaction) and also leads to the electrochemical desorption of hydrogen (Heyrovsky reaction).

The stability test of SnS thin film after 150 W AAPT at −325 mV vs. RHE for 5400 s is shown
in Figure S3. The plasma treated SnS thin films displayed current densities of −9.63 mA/cm2,
−9.22 mA/cm2 and −9.53 mA/cm2 at 1800 s, 3600 s and 5400 s, respectively. Consequently, the
SnS thin films after 150 W AAPT demonstrate a good stable HER current density and the value is
much higher than our previous report using SnS thin films without AAPT [9,33].
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Table 2. Comparison of of the main electrochemical parameters in the hydrogen evolution reaction
(HER) for the SnS thin films under different plasma process treatments.

Sample Name Onset (mV) Current Density (−325 mV) Tafel Slope

Without AAPT −176 mV −0.224 mA/cm2 174 mV/dec
150 W AAPT −80 mV −10 mA/cm2 60 mV/dec
250 W AAPT −150 mV −0.394 mA/cm2 210 mV/dec

Optical measurements of SnS thin films after 150 W AAPT show absorption onsets at about 800 nm
(Support information Figure S2). The relationship between the absorption coefficient (α) and the energy of
the incident photon for semiconductors can be expressed as (αhv)n = B

(
hv− Eg

)
, where B is a constant

and n is a number that depends on the electronic transition of the semiconductor. The dependence of α2

(for n = 2) on the photon energy (hv) for the direct band gap semiconductor is illustrated graphically in
Figure 6f. The direct band gap (Eg) for the SnS thin films after 150 W treatment can be estimated by the
intercepts of the plot after extrapolation and has a value of about 1.55 eV (as shown in Figure S2).

Schematic energy band diagrams of the SnS thin films without and with AAPT are shown in
Figure 9. Initially, the valance band (EVBM) and the SnS band (Eg) were investigated by VBM as shown
in Figure 7a and UV–Vis as shown in Figure S2, respectively. The positions of different energy levels in
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the as-prepared SnS (Figure 9a) were similar to our previous report (SnS at equilibrium) [9], which
found that the moderate catalytic properties were due to the thicker space charge layer and excess
barrier [9]. In this study, the SnS thin films after 150 W AAPT had more metal active edges (due to
S-vacancy) and a more hydrophilic surface, the combined effect of which facilitated an easier pathway
for electron transport and hydrogen adsorption and desorption. The S-vacancy introduced a p-type
pinning effect which resulted in an upward shift of the conduction band position which was higher
than the hydrogen reduction position (Figure 9b). Formation of the metal active edge, hydrophilic
surface and the p-type pinning demonstrate a Volmer–Heyrovsky-type reaction with a Tafel slope of
60 mV/dec.

In contrast, for the 250 W AAPT SnS samples, HER proceeded through the Volmer reaction, as
suggested by its large Tafel slope of 210 mV/dec. The relatively hydrophobic nature and n-type pinning
effect led to less active properties of the SnS thin films, which limited the rate of HER kinetics (Figure 9c).
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Table S1 (Supplementary information) summarizes the current density, applied overpotential
and Tafel slopes from previously published reports. Our SnS thin film electrocatalysts after 150 W
AAPT feature a much higher current density and lower Tafel slope as compared to previously reported
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TMD electrocatalysts [12,41–46]. Although, SnS exhibits excellent catalytic properties for HER, it still
requires a high operating overpotential. This drawback must be reduced to ensure it can be a viable
alternative catalyst to the Pt-group metals, which operate at negligible overpotentials. As shown in
Table S1, a commonly-used protocol to reduce the high operating overpotential is to combine the
working electrode with a conductive material [12,41–44,47,48]. In future studies, we will conduct such
experiments to reduce the operating overpotential and enhance the catalytic efficiency by incorporating
conductive nanomaterials.

3. Materials and Methods

3.1. Synthesis of Mixed Phase SnS Nanocrystals

The SnS nanocrystal powder was synthesized under optimized reaction conditions with the hot
injection method [9,10,33,49]. Following a typical synthesis protocol, 1.35 g of SnO (Tin (II) Oxide,
SHOWA, 99%, Osaka, Japan) was mixed with 13.5 mL OA (Oleic Acid, Sigma Aldrich, 66%–88%,
St. Louis, MO, US) in a three-neck flask and heated to 120 ◦C under argon gas flow for 15 min. The
mixture was then heated further to 280 ◦C to form the tin precursor, Sn(OA)X, after which it was cooled
to 190 ◦C naturally. At this point, the hot sulfur precursor, S-OLA (0.45 mmol of sulfur powder, Sigma
Aldrich, 98% (St. Louis, MO, US), 9 mL of Oleylamine, ACROS, 90%, Geel, Belgium), was quickly
injected into the tin precursor with glass syringes and the final temperature maintained at 190 ◦C for
30 min and cooled immediately to room temperature in ice bath condition. All chemicals were used
without further purification. The resulting SnS nanoparticle solution was then added to ethanol and
acetone for centrifugation for several times [9,49]. Finally, the SnS nanocrystal powder was dried under
vacuum or re-dispersed in hexane for further characterization. The synthesized SnS nanocrystals
(2 mg) were then dispersed in toluene (2 mL) and spin coated on the glass/Cr/Au (50 nm/70 nm)
substrate followed by vacuum drying for 5 min at 85 ◦C.

3.2. Atmospheric Air Plasma Treatment

The SnS thin films were treated at atmospheric-pressure, and with air as the plasma carrier gas.
A similar experimental arrangement of atmospheric air plasma treatment (AAPT) is described in detail
in [24]. The power consumption of the plasmas were 0 W, 150 W, and 250 W for 20 s. A schematic of
the setup used for AAPT on the SnS thin films is shown in Figure 10.
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3.3. Material Characterization

X-ray diffraction (XRD) was performed on a Bruker D2 diffractometer (D2 Phaser, BRUKER,
Karlsruhe, Germany) with Cu Kα radiation (λ = 1.54178 Å) at a scan rate of 0.025◦ s−1 from 2θ = 20–50◦

for structural analysis. Microstructure analysis was given by the field emission gun transmission
electron microscope (Tecnai G2 F20 FEG-TEM, Amsterdam, Netherlands) at an acceleration voltage of
200 kV. Thin films surface morphology was investigated by using the field emission scanning electron
microscopy (UHRFE-SEM, Zeiss, Auriga, Oberkochen, Germany). Electron spectroscopy for chemical
analysis (ESCA, PHI-5000, Waltham, MA, USA) measurements were performed with an exciting source
of Mg Kα = 1253.6 eV. The binding energies obtained in the ESCA spectral analysis were corrected
by referencing C 1 s to 284.5 eV. UV–Vis absorption spectra were obtained using a spectrophotometer
equipped with an integrating sphere (JASCO V-650, Tokyo, Japan).

3.4. SnS Electrochemical Measurements

A three electrode cell configuration was utilized with the SnS (0, 150 W and 250 W AAPT)
as the working electrode (WE), platinum as the counter electrode (CE), and Ag/AgCl (3.0 mol/kg
KCl) as the reference electrode (RE) in a 0.5 M H2SO4 electrolyte (pH = 0). A radiometer analytical
potentiostat (Volta lab PGZ301) was used to perform electrochemical measurements, and the obtained
polarization data were calibrated with respect to the reversible hydrogen electrode (RHE) by
ERHE = 0− (ERE + 0.059× pH). Linear sweep voltammetry was employed to produce polarization
plots with a fixed scan rate of 5 mV/s under the applied potentials from −0.5 to 0.2 V vs. RHE.

4. Conclusions

We reported the use of a simple, low cost, stable, 20 s atmospheric air plasma treatment (AAPT) for
SnS thin films for enhanced HER performance. SnS thin films maintain the crystallographic structure in
the bulk after AAPT, but, the surface changes significantly by different AAPT power with the formation
of S-vacancies, formation of active Sn edge sites at 150 W, and surface oxidation at 250 W. AAPT of
SnS thin films at an intermediate power (150 W) can greatly enhance the electrocatalytic performance
due to the presence of the Sn active edge sites on the surface of the SnS thin films, the introduction of
p-type pinning induced by the S-vacancy, and the formation of the hydrophilic surface. The detailed
HER mechanism is explained by a suitable band diagram where the conduction and valence band
positions are obtained from UV–Vis and ESCA–VBM measurements. Therefore, SnS thin films show
excellent catalytic properties after AAPT without any secondary materials or complicated synthesis
processes. Given our encouraging findings, we anticipate future advances in tin sulfide materials as a
promising alternative to precious metal electrocatalysts for sustainable hydrogen generation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/10/462/s1,
Figure S1: SAXS radiation of SnS nanocrystals: (a) real data (b) pair distance distribution function (PDDF) data,
Figure S2: (a) UV–Vis absorption spectra as a function of incident photon wavelength for SnS thin films after 150
W AAPT treatment. (b) Extrapolation of direct bandgap value of SnS thin films after 150 W AAPT treatment,
Figure S3: (a) SnS thin film at −325 mV vs. RHE for 5400 s stabilized test, Table S1: Literature properties of HER
catalysts (as mentioned in the main text).
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