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Abstract: Unprecedented germanium-based sesquioxane exhibits an extremely high nuclearity
(Cu42Ge24Na4) and unusual encapsulation features. The compound demonstrated a high catalytic
activity in the oxidative amidation of alcohols, with cost-effective catalyst loading down to 400 ppm
of copper, and in the oxidation of cyclohexane and other alkanes with H2O2 in acetonitrile in the
presence of nitric acid. Selectivity parameters and the mode of dependence of initial cyclohexane
oxidation rate on initial concentration of the hydrocarbon indicate that the reaction occurs with
the participation of hydroxyl radicals and alkyl hydroperoxides are formed as the main primary
product. Alcohols have been transformed into the corresponding ketones by the catalytic oxidation
with tert-butyl hydroperoxide.

Keywords: alkanes; amides; hydrogen peroxide; multinuclear complexes; iron complexes;
metallasiloxanes

1. Introduction

The interest to cagelike compounds—which find many unique applications [1–4]—is determined
by the kaleidoscopic multiplicity of their molecular topologies as well as flexibility in the preparation
of either metal-free [5–8] or metal-based [9–12] complexes (with an opportunity to combine several
different metal atoms within one molecule). A proper choice of the ligand is of obvious significance for
the synthesis of metallacages. For example, heterochained ligands based on (R)Si-O-(R)Si fragments
have proven promising for the synthesis of numerous metallacomplexes [4,13–16]. It is the quantity
of organic groups at the silicon atoms that are mainly responsible for the resultant complex’s
molecular topology. Notably, the majority of cage-like metalladerivatives are enabled by branched
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monosubstituted (RSiO1.5) silsesquioxane ligands [17–19]. It is ultimately surprising but to the best
of our knowledge germanium sesquioxane ligands that are the closest analogues of silsesquioxanes,
have been scarcely studied in the context of a possible molecular design of metallacomplexes so
far. We could mention here only the use of (i) bis(carboxyethyl)germanium sesquioxide [20–27] in
hydrothermal reactions and (ii) PhGe(OMe)3 [28,29] in the self-assembly synthesis.

Here we present an alternative convenient and versatile approach to cage-like
metallagermaniumsesquioxanes starting from oligomeric [PhGeO1.5]n that is easily accessible
via the hydrolytic polycondensation of PhGeCl3 (Figure 1). The second step of the synthetic procedure
consists in the generation of highly reactive PhGeO−Na+ fragments through the interaction of
[PhGeO1.5]n with sodium hydroxide. It has been revealed that the resulting mixture remained
heterogeneous at a 1/1 reactant ratio (Na/Ge = 1). By increasing this ratio to 3/1 (Na/Ge = 3),
a homogeneous solution is obtained, which is prone to exchange reactions with diverse sources of
transition metal ions. A high concentration of sodium centers in the resultant sodium germanolate
intermediate (formally, the latter could be regarded as PhGe{ONa}3) enables the uptake of a significant
amount of transition metal ions by a simple and convenient reaction with a transition metal halide.
Taking in mind the fact that Cu-based germsesquioxanes remain exclusively rare [24,30], we chose
CuCl2 as a source of transition metal ions for the very first trial of this reaction (Figure 1). This reaction
accomplished in a DMF/CHCl3 solvent system (also used for the crystallization) afforded a totally
unexpected title product 1 in a 20% yield.
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Figure 1. General scheme of synthesis and structure of coppersodiumgermsesquioxane 1.

The structure of 1, which is the first observation of a Cu(II),Na-germsesquioxane cage, is unique
both as compared to previously reported Cu-containing germsesquioxanes [24,30] and to the best of
our knowledge, to any type of oxametallaclusters. Indeed, the whole complex of 1 is built up of two
similar cage units of unprecedented Cu21Ge12-nuclearity. An isolation of such metal-rich (the M/Ge
ratio exceeds 1/1) product has never been reported for any metallagermaniumsesquioxanes [20–30].
In terms of topology, the spherical shape of cage-like components of product 1 could be compared
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only to non-dimeric Cu(I)-based silsesquioxane reported by the team of Prof. Zhu and Prof.
Roesky [31]. An intriguing feature of the spherical cage of 1 is its composition that could be
described as a coordination complex of three identical units corresponding to the Cu7 nuclearity
(Figure 2, central panel).

Catalysts 2018, 9, x FOR PEER REVIEW  4 of 9 

 

 

 

 

Figure 2. Top panel. The molecular structure of 1. Central panel. A sketch of the cage’s building block 
in 1. Bottom panel. The structure of acyclic germoxane ligands in 1. 

Compound 1 possesses a good solubility in most polar and non-polar aromatic organic solvents. 
Complex 1 was tested as a catalyst in the homogeneous oxidation. First, 1 was evaluated in the 
oxidative amidation of benzyl alcohol (Scheme 1). This reaction represents a promising alternative to 

Figure 2. Top panel. The molecular structure of 1. Central panel. A sketch of the cage’s building block
in 1. Bottom panel. The structure of acyclic germoxane ligands in 1.



Catalysts 2018, 8, 484 4 of 9

Keeping in mind the extraordinary type of nuclearity manifested by complex 1 a concise survey
on related high-nuclearity clusters would be appropriate. A series of 3D open frameworks based
on copper-germanium chalcogenides with such building blocks as [Cu8Ge6S18]4−, [Cu8Ge6Se19]4−,
[Cu8Ge6Se19]6−, and [Cu16Ge6Se31]10− have been reported [32,33]. Prof. Fenske and co-authors
synthesized and characterized numerous copper-based high-nuclearity selenide and phosphide
clusters stabilized by organophosphine ligands [34–36] among which Cu146Se73(PPh3)30 reported
back in 1993 still seems to be record-holding. Germanium is prone to the formation of zeolite-like
microporous framework structures built up of structural units Gen with nuclearities n ranging from
7 to 10 [37–39] Among polynuclear clusters retaining intrinsically molecular character, a remarkable
series of germanium–tin selenides [GexSn60-xSe132]24− is worth noting, which was called by the authors
“Zeoball” due to the combination of a spherical shape with zeolite-related composition [40,41].

Despite the high content of copper centers, the dimerization of two cage components in the
structure of 1 is realized exclusively through sodium ions located at external positions and coordinated
by oxygen centers of (i) four hydroxyl groups and (ii) two bridging water molecules. In turn, copper
centers in 1 demostrate several types of ligation. All copper ions are coordinated by oxa-ligands:
(i) hydroxyl groups, (ii) solvating DMF molecule, and (iii) germsesquioxane ligands. Noteworthy,
all six germanium-containing fragments in compound 1 are bridging acyclic ones corresponding
to the Ph2Ge2O5 composition (Figure 2, bottom panel). Thus, 1 becomes the first example of a
cage metallagermsesquioxane bearing no cyclic germoxane ligands. Second, 21 copper ions in each
cage of 1 form three Cu3O8 and six Cu2O6 nearly planar fragments, in which the metal atoms are
tetra-coordinated in a square-planar fashion. Moreover, six copper atoms are additionally coordinated
by two DMF and four OH external ligands, whereas thirteen copper atoms are additionally coordinated
by chlorine atoms from the encapsulated chloroform molecule. Only two sterically shielded copper
atoms preserve the four-coordinated geometry. The fact of chloroform’s encapsulation by itself is
not unusual for the chemistry of cage compounds (more than 10 examples are described in [42]).
Nevertheless, no examples of such an encapsulation have been reported so far for metallasesquioxanes.
Furthermore, this feature of product 1 as well as the additional coordination of chlorine atoms to
the copper ions point to a possible template effect exerted by CHCl3 during the assembly of cage
metallagermsesquioxanes, which was not emphasized in previous reports [20–30].

Compound 1 possesses a good solubility in most polar and non-polar aromatic organic solvents.
Complex 1 was tested as a catalyst in the homogeneous oxidation. First, 1 was evaluated in the
oxidative amidation of benzyl alcohol (Scheme 1). This reaction represents a promising alternative to
classical amide bond formation that involves carboxylic acid, amine, and stoichiometric quantities of a
coupling agent that could either be toxic or generate stoichiometric quantities of toxic side-products [43].
Herein, benzyl alcohol reacts in the presence of an ammonium chloride, calcium carbonate, tert-butyl
hydroperoxide (TBHP), and a catalytic quantity of 1. Corresponding amides could be obtained through
a double oxidation of benzyl alcohol into benzaldehyde and then of corresponding hemiaminal into
amide. Thanks to the good solubility of 1 in acetonitrile, stock solutions could be prepared and catalyst
loading decreased down to 400 ppm of copper for this reaction. Hydrochloride salts of cyclohexyl
amine and butyl amine could be converted efficiently with the isolation of corresponding amides in 85%
and 88% yields, respectively. Similarly, tertiary amides featuring morpholine and dibenzylamine could
be obtained in yields up to 86%. Turnover numbers (TON) and frequencies (TOF) were calculated [44]
giving values up to 2200 and 92 h−1. This represents a significant improvement compared to our
seminal report on copper-catalyzed oxidative amidation (TON = 44, TOF = 11 h−1) [45].

Complex 1 exhibited a high catalytic activity in the oxidation of cyclohexane and other alkanes
with H2O2 in acetonitrile in the presence of nitric acid (Figure 3 and See Supplementary Materials).
At lower temperatures, the oxidation is less efficient (See Supplementary Materials). The following
selectivity parameters were obtained for the oxidation of n-heptane: C(1):C(2):C(3):C(4) = 1.0:7.4:7.2:7.9.
These data as well as the character of dependence of the initial cyclohexane oxidation rate on the
initial hydrocarbon concentration (approaching a plateau at [cyclohexane]0 > 0.3 M) indicate that



Catalysts 2018, 8, 484 5 of 9

the reaction occurs with the participation of hydroxyl radicals and alkyl hydroperoxides are formed
as the main primary products (Figure 4) [46–48]. The oxygenation of cis-1,2-dimethylcyclohexane
with H2O2 catalyzed by complex 1 gave corresponding isomeric tertiary alcohols in a trans/cis
ratio of 0.8. The oxidation with m-CPBA gave trans/cis = 0.5. Alcohols have been efficiently
transformed into corresponding ketones by the catalytic oxidation with tert-butyl hydroperoxide
(See Supplementary Materials).
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with H2O2 (0.5 M containing 0.94 M H2O) catalyzed by complex 1 (2.5 × 10−4 M) in the presence of
HNO3 (0.05 M) at 40 ◦C. Concentrations of products were measured by GC after the reduction of the
reaction sample with solid PPh3. The yield of oxygenates after 60 min was 22% (TON 400). Curves a:
the same in the absence of HNO3.
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2. Conclusions

In conclusion, these studies demonstrate that simple PhGeCl3 adduct could be converted via
“hydrolytic polycondensation—NaOH cleavage—exchange interaction with CuCl2” approach into a
unique mixed-metal (Cu,Na) germanium-based phenylsesquioxane 1. This three-stage method allowed
to isolate product with an unprecedented high nuclearity (Cu42Ge24Na4) and unusual encapsulation
features. Complex 1 exhibited a high catalytic activity in the oxidative amidation of alcohols, with
cost-effective catalyst loading down to 400 ppm of copper, and in the oxidation of cyclohexane
and other alkanes with H2O2 in acetonitrile in the presence of nitric acid. Selectivity parameters
and the mode of dependence of initial cyclohexane oxidation rate on initial concentration of the
hydrocarbon indicate that the reaction occurs with the participation of hydroxyl radicals and alkyl
hydroperoxides are formed as the main primary product. Alcohols have been transformed into the
corresponding ketones by the catalytic oxidation with tert-butyl hydroperoxide. The current study
advances our basic knowledge of cage metallacomplexes’ self-assembly principles and their application
in homogeneous catalysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/10/484/s1,
Experimental and General procedure for the formation of amides.
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