

Supplementary Materials Effect of Ni-Mo carbide catalyst formation on furfural hydrogenation

Ivan N. Shilov 1,2, Andrey A. Smirnov 1,2,*, Olga A. Bulavchenko 1,2 and Vadim A. Yakovlev 1,2

- ¹ Novosibirsk State University, Pirogova Str., 2, 630090, Novosibirsk, Russia; shilov@catalysis.ru (I.N.S.); smirnov@catalysis.ru (A.A.S.); isizy@catalysis.ru (O.A.B.); yakovlev@catalysis.ru (V.A.Y.)
- ² Boreskov Institute of Catalysis SB RAS, Lavrentev Ave., 5, 630090, Novosibirsk, Russia.

* Correspondence: asmirnov@catalysis.ru (S.A.A.); Tel.: +7-383-32-69-652

1. Mass Transfer Calculations

Weisz-Prater Criterion for Internal Diffusion (Fogler, p839):

If $C_{WP} = \frac{r_{(obs)}\rho_c R_p^2}{D_{eff}C_{As}} < 1$, then internal mass transfer effects can be neglected.

Mears Criterion for External Diffusion (Fogler, p841; Mears, 1971):

If $C_M = \frac{r_{(obs)}\rho_b R_p n}{k_c c_{Ab}} < 0.15$, then external mass transfer effects can be neglected.

Where:

robs= observed reaction rate, mol/kgcat·s

n= reaction order

R_p= catalyst particle radius, m

Qc = bulk density of catalyst bed, kg/m³

Qb = bulk density of catalyst bed, kg/m³

 $Q_b = (1-\Phi) \cdot Q_c \quad (\Phi=\text{porosity})$

Deff = effective diffusivity, m²/s Deff=0.1DAB

For the estimation of D_{AB} the Wilke-Chang equation was used.

 $D_{AB} = \frac{7.4 \times 10^{-8} (\Phi \times M)^{1/2} T}{\eta V^{0.6}} \times 10^{-4} , \text{ m}^2/\text{s (where } \Phi - \text{ dimensionless association factor; M - the adjust the adjust$

molecular weight of the solvent, g/mol; T – temperature of reaction, K; η – the solvent viscosity, cPs; V – the liquid molar volume at the solute's normal boiling point, cm³/mol.)

C_{As} = gas concentration of A at the external surface of the catalyst, mol/m³.

 C_{Ab} = bulk gas concentration of A, mol/m³.

kc = external mass transfer coefficient, m/s

1. Mass Transfer Calculations for furfural hydrogenation

In the current work, a 300 mL autoclave with 60 mL of 5 wt% of furfural in isopropyl alcohol was used and the initial hydrogen pressure was 6.0 MPa at T = 423 K. A catalyst particle size of 0.071 mm was employed for the kinetic study.

For the furfural hydrogenation, the obtained highest reaction rate was $3.93 \times 10^{-2} \text{ mol kg}_{cat^{-1}} \text{ s}^{-1}$. $r_{obs}=3.93 \times 10^{-2} \text{ mol kg}_{cat^{-1}} \text{ s}^{-1}$ n=1 $R_{p}=3.55 \times 10^{-5} \text{ m}$ $Q_{c} \approx Q_{b} \approx Q_{cat} = 1370 \text{ kg/m}^{3}$ $C_{As} \approx C_{Ab} = 1730 \text{ mol /m}^{3}$ $D_{eff} = \frac{7.4 \times 10^{-8} (\Phi \times M)^{1/2} T}{\eta V^{0.6}} \times 10^{-5} = \frac{7.4 \times 10^{-8} \sqrt{1 \times 60.09} \times 423}{0.011 \times 82.8^{0.6}} \times 10^{-5} = 1.56 \times 10^{-8} \text{ m}^{2}/\text{s}$

The parameter $k_c \approx 1.3 \times 10^4$ m/s was calculated according data presented in study Hajek, J., & Murzin, D. Y. (2004). Liquid-Phase Hydrogenation of Cinnamaldehyde over a Ru– Sn Sol–Gel

Catalyst. 1. Evaluation of Mass Transfer via a Combined Experimental/Theoretical Approach. *Industrial & engineering chemistry research*, *43*(9), 2030-2038.

$$C_{WP} = \frac{r_{(obs)}\rho_c R_p^2}{D_{eff} C_{As}} = \frac{3.93 \times 10^{-2} \cdot 1370 \cdot (3.55 \times 10^{-5})^2}{1.56 \times 10^{-8} \cdot 1730} = 0.0025 < 1$$

$$C_M = \frac{r_{(obs)}\rho_b R_p n}{k_c C_{Ab}} = \frac{3.93 \times 10^{-2} \cdot 1370 \cdot 3.55 \times 10^{-5} \cdot 1}{1.3 \times 10^{-4} \cdot 1730} = 0.00085 < 0.15$$

Therefore, internal and external diffusion effects could be neglected during the kinetic experiments.

Figure S1. The dependence of the lattice parameter on the parameter *x* in Ni_{1-x}Mo_x. Mo (JCPDS card No. 421120); Ni (JCPDS card No. 40850); Mo_{0.09}Ni_{0.91} (JCPDS card No. 105048); Mo_{0.36}Ni_{0.64} (JCPDS card No. 105045); Mo_{0.984}Ni_{0.016} (JCPDS card No. 105049).