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Abstract: The nitroxyl radical of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) can electro-oxidize not
only alcohols but also amines. However, TEMPO has low activity in a neutral aqueous solution due
to the large steric hindrance around the nitroxyl radical, which is the active site. Therefore, nortropine
N-oxyl (NNO) was synthesized to improve the catalytic ability of TEMPO and to investigate the
electrolytic oxidation effect on amines from anodic current changes. Ethylamine, diethylamine,
triethylamine, tetraethylamine, isopropylamine, and tert-butylamine were investigated. The results
indicated that TEMPO produced no response current for any of the amines under physiological
conditions; however, NNO did function as an electrolytic oxidation catalyst for diethylamine,
triethylamine, and isopropylamine. The anodic current depended on amine concentration, which
suggests that NNO can be used as an electrochemical sensor for amine compounds. In addition,
electrochemical detection of lidocaine, a local anesthetic containing a tertiary amine structure, was
demonstrated using NNO with a calibration curve of 0.1–10 mM.
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1. Introduction

Electrochemical analysis has the advantages of easily created probes (being an inexpensive
process), the ability to miniaturize the probes, and real-time measurement [1]. In addition, biosensors
can be constructed with high selectivity, sensitivity, and time resolution using enzymatic reactions [2–5].
Biosensors then can be optimized according to its purpose (e.g., food, medical, industrial, or
environmental analysis use). However, the use of enzymes for sensors has encountered barriers
of high cost, low stability, and lack of homogeneity of catalytic activity. Therefore, an electrochemical
catalyst of 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) has been investigated for chemical sensor
probes [6–8]. 2,2,6,6-tetramethylpiperidine N-oxyl is a stable free radical and an organic molecular
catalyst for the oxidation of alcohols [9–15]. In electrochemistry, TEMPO catalyzes the oxidation
of alcohols by application of electric potential in aqueous solutions and organic solvents [16–21].
Since the response current obtained is proportional to alcohol concentration in the solution, alcohol
concentration can be quantified [6,7]. However, TEMPO has low reactivity due to large steric hindrance
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around the nitroxyl radical active site, and an adequate response current could not be obtained under
physiological conditions.

Iwabuchi and colleagues [22] reported that 2-azaadamantane N-oxyl (AZADO), which lacks steric
hindrance around the active site, exhibited greater activity than TEMPO in organic synthesis reactions.
Less-hindered nitroxyl radicals with various steric environments have been synthesized, and those
with less bulky functionality exhibited greater activity [23–26]. Therefore, nortropine N-oxyl (NNO),
which was modeled on AZADO, was synthesized in one step as a novel nitroxyl radical compound [27].
The NNO was capable of electrolytic oxidation of alcohols in neutral aqueous solutions. The NNO
could be used in place of enzymes, allowing non-enzymatic analysis of glucose under physiological
conditions [27]. Phenylboronic acid derivatives have been investigated as glucose sensors [28–30].
Phenylboronic acid (PBA) spontaneously binds with a moiety containing a diol [31]. The structural
and electrical changes in PBA derivative probes when PBA bonds with the diol moiety can be used for
glucose detection [32–34]. However, these probes had low specificity for glucose and did not respond
under physiological conditions. Superiority of NNO was demonstrated from this report [27]. In contrast,
TEMPO has catalytic oxidation ability toward amines as well as alcohols [35–37]. Therefore, the present
study examined the electrolytic oxidation effect of NNO on amines under physiological conditions and
compared the results with those obtained with TEMPO. The results demonstrated that NNO was a
good electrochemical analysis probe for secondary and tertiary amines and for isopropylamine under
physiological conditions (Figure 1). The oxoammonium ion, which is the active species, reacts with the
amine to form hydroxylamine. The catalyst regenerates by reoxidation of hydroxylamine. Furthermore,
electrochemical detection of lidocaine, a general local anesthetic, was accomplished using NNO to show
the applicability of this method to therapeutic drug monitoring (TDM).
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Figure 1. Electrochemical reactions of nortropine N-oxyl (NNO) for secondary amines, tertiary amines,
and isopropylamine.

2. Results and Discussion

2,2,6,6-tetramethylpiperidine N-oxyl is widely known as an oxidation catalyst for alcohols, but it
can also electrochemically oxidize amines [35]. However, the reaction is limited to organic solvents and
basic aqueous solutions. The NNO, a nitroxyl radical compound which improved the functionality of
TEMPO, confirmed that the reaction proceeded even under physiological conditions. Amines with
different structures were added to a phosphate buffer solution (pH 7.4, 100 mM) containing 1 mM
NNO to obtain the cyclic voltammetry (CV) measurements. If NNO electrolytically oxidizes amines at
a sufficiently fast reaction rate, the anodic current should increase and the cathodic current disappear,
depending on the concentration of the amine, resulting in a voltammogram. The oxoammonium ion is
expected at first to react with amines, that is, to eliminate a proton from the amines, then to change
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them to hydroxylamines. The disproportionation of hydroxylamine and oxoammonium ion produces
NNO, which is re-oxidized electrochemically to complete a catalytic cycle. Addition of diethylamine
and triethylamine resulted in an increase in anodic current, depending on the concentration (Figure 2).
For example, ∆Ip values upon addition of 10 mM of diethylamine and triethylamine were 5.5 and
6.9 µA, respectively, indicating the ability to use the system as an electrochemical sensor. The NNO
responded electrochemically to compounds containing secondary amines and tertiary amines.
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Figure 2. Cyclic voltammograms of NNO (1 mM) in the absence and presence of 1, 5, 10, 50, and
100 mM (A) diethylamine and (B) triethylamine in 100 mM phosphate buffer solution (pH 7.4). Scan
rate was 100 mV s−1.

In contrast, no increase in current with NNO was observed for ethylamine or tetraethylammonium
(Figure 3). A significant reduction in cathodic current of NNO was observed upon addition of
ethylamine. The nitroxyl radical moiety was oxidized at the electrode surface to an oxoammonium
ion, which is the active form. The oxoammonium ion reportedly binds to a primary amine in aqueous
solution resulting in the disappearance of catalytic activity [38–40] (Note: TEMPO oxidizes primary
amines in acetonitrile [35]). Likewise, the oxoammonium ion of NNO bonds with ethylamine in
aqueous solution causing the catalytic activity to disappear (Figure 4). However, the results confirmed
that tetraethylammonium does not change and does not react with NNO.
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Figure 3. Cyclic voltammograms of NNO (1 mM) in the absence and presence of 1, 5, 10, 50, and
100 mM (A) ethylamine and (B) tetraethylammonium in 100 mM phosphate buffer solution (pH 7.4).
Scan rate was 100 mV s−1.
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Figure 4. Reaction of NNO and ethylamine.

Similarly, for isopropylamine and tert-butylamine, the oxidizing ability of NNO was investigated
using CV (Figure 5). For isopropylamine, the oxidation current increased depending on the
concentration, indicating that electrolytic oxidation was performed by NNO. The ∆Ip value was 2.4 µA
when 10 mM of isopropylamine was added. No increase in response current could be confirmed with
tert-butylamine, which cannot assume an imine structure as tetraethylammonium can. These results
showed that NNO can act as an electrochemical analysis probe for compounds with secondary, tertiary,
and isopropyl amine structures. The peak potential for generation the radical and oxidation of amines
was not observed at the reach from 0 V to + 0.7 V.
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Figure 5. Cyclic voltammograms of NNO (1 mM) in the absence and presence of 1, 5, 10, 50, and
100 mM (A) isopropylamine and (B) tert-butylamine in 100 mM phosphate buffer solution (pH 7.4).
Scan rate was 100 mV s−1.

An investigation was carried out to determine whether this electrochemical reaction could be
accomplished for TEMPO under physiological conditions (100 mM PBS, pH 7.4), using 10 mM
ethylamine, diethylamine, triethylamine, tetraethylammonium, isopropylamine, and tert-butylamine
in a solution containing 1 mM TEMPO for cyclic voltammetry (Figure 6). The anodic peak current
of TEMPO was observed at approximately +0.6 V vs. Ag/AgCl. Even upon addition of each amine,
this anodic peak did not increase in response current (∆Ip) compared with that without amine.
Although TEMPO has sufficient oxidation catalytic ability in organic solvents [35], it could not oxidize
amines under physiological conditions and was difficult to use for electrochemical analysis under
these conditions.
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Figure 6. Cyclic voltammograms of TEMPO (1 mM) in the absence and presence of 10 mM (A)
ethylamine, diethylamine, triethylamine, and tetraethylammonium, and (B) isopropylamine and
tert-butylamine in 100 mM phosphate buffer solution (pH 7.4). Scan rate was 100 mV s−1.
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Nortropine N-oxyl can be an electroanalysis probe for chemical compounds having secondary
or tertiary amines or isopropylamine structures under physiological conditions. Here, to
show the utility of NNO, electrochemical analysis of lidocaine was conducted. Lidocaine
(2-diethylamino-N-(2,6-dimethylphenyl)acetamide) is a common amide drug with high efficacy as a
local anesthesia and anti-arrhythmia medication [41]. Since lidocaine overdose can damage the heart
and nervous system, highly sensitive and reliable monitors for lidocaine are extremely important
for clinical purposes [41]. For this reason, lidocaine has been analyzed using techniques such as
LC/MS [42], HPLC [43–45], and GC-MS [46,47]. Previous experiments have shown that determining
the amount of a tertiary amine is possible using NNO. Since lidocaine has one tertiary amine in its
molecular structure, electrochemical analysis using NNO was possible. Figure 7 shows a plot of
change in anodic peak current upon addition of lidocaine to phosphate buffer solution (100 mM PBS,
pH 7.4) containing 1 mM NNO, with an anodic current change (∆Ip) of +0.6 V vs. Ag/AgCl. A good
calibration curve was drawn between 0.1 and 10 mM. Although the sensitivity at µmol/L level is
necessary to perform serum TDM of lidocaine [48], this paper shows the detection principle of new
lidocaine. Further sensitivity increase can be expected by electrode materials and electrochemical
measurement equipment. Electrochemical analysis of lidocaine using modified electrodes has been
reported [49,50]. This method is simple as it allows measurements with unmodified electrodes and the
response principle is simple.

Enzyme reactions and antigen–antibody reactions are used for construction of electrochemical
biosensors for reasons of sensitivity and specificity. However, constructing these biosensors for
lidocaine is challenging because antibodies and enzymes for lidocaine are difficult to obtain. However,
rapid electrochemical analysis for molecules such as lidocaine were thought to be possible using NNO.
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Figure 7. Cyclic voltammograms of NNO (1 mM) in the absence and presence of 0.1, 0.25, 0.5, 0.75,
1, 2, 4, 6, 8, and 10 mM lidocaine in 100 mM phosphate buffer solution (pH 7.4). Scan rate was
100 mV s−1 (left). Anodic peak current in cyclic voltammograms of NNO was a function of the
concentration of lidocaine in 100 mM phosphate buffer (pH 7.4). Average values of three electrodes
with standard deviation are plotted (right).

3. Materials and Methods

The NNO was synthesized from nortropine according to a previously reported single-step
procedure, with slight modifications [27]. All amines (hydrochloride form) and the lidocaine were
purchased from Tokyo Kasei Co. (Tokyo, Japan). All other reagents used in this study were
commercially available and reagent grade.

Cyclic voltammetry was conducted using an electrochemical analyzer (ALS model 660B, BAS,
Tokyo, Japan) in a conventional three-electrode cell consisting of a glassy carbon electrode (diameter:
3 mm) as the working electrode, a platinum wire as the counter electrode, and an Ag/AgCl (3.33 M
KCl) reference electrode. The CV was measured in 100 mM phosphate buffer solution containing NNO
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(1 mM) and amines (0–100 mM) at pH 7.4 with a scan rate of 100 mV s−1. The third cycle of the cyclic
voltammograms was recorded and the electrocatalytic responses were evaluated from the difference in
oxidation peak current in the cyclic voltammograms in the absence and presence of substrate (∆Ip).
All experiments were conducted at room temperature (ca. 20 ◦C).

4. Conclusions

The results demonstrated that NNO electrochemically oxidizes secondary and tertiary amines
and isopropylamine under physiological conditions. In addition, the response current depends on
the concentration of the amine in the solution, indicating that this system can be used as a probe for
electrochemical analysis. Using NNO, lidocaine concentration was determined and a good calibration
curve was prepared between 0.1 and 10 mM. Therefore, NNO is useful for the development of
electrochemical sensors without enzymes or antibodies.
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