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Abstract: Hydrogen storage materials have been a subject of intensive research during the last
4 decades. Several developments have been achieved in regard of finding suitable materials as
per the US-DOE targets. While the lightweight metal hydrides and complex hydrides meet the
targeted hydrogen capacity, these possess difficulties of hard thermodynamics and sluggish kinetics
of hydrogen sorption. A number of methods have been explored to tune the thermodynamic and
kinetic properties of these materials. The thermodynamic constraints could be resolved using an
intermediate step of alloying or by making reactive composites with other hydrogen storage materials,
whereas the sluggish kinetics could be improved using several approaches such as downsizing and
the use of catalysts. The catalyst addition reduces the activation barrier and enhances the sorption
rate of hydrogen absorption/desorption. In this review, the catalytic modifications of lightweight
hydrogen storage materials are reported and the mechanism towards the improvement is discussed.

Keywords: hydrogen storage materials; metal hydrides; magnesium hydride; complex hydrides;
alanates; borohydrides; amides
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1. Introduction

Hydrogen is considered as an alternative fuel which has the capability to replace current fossil
fuel based energy infrastructure. It is important to note that hydrogen is not a primary energy source;
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it can store, transport, and deliver the energy. In contrast to fossil fuels such as gasoline, diesel, etc.
which emit greenhouse gases, it emits only water as byproduct when converted to electrical energy.
The gravimetric energy content of hydrogen is 2–3 times higher than conventional fuels, however, the
volumetric energy density is quite low in comparison to conventional fuels [1]. It needs more than
twice the space in liquid state as compared to the space required by gasoline for a car to run 300 miles.
The amount is increased to 3–5 times for the compressed state with 10,000 psi and 5000 psi tanks.
Moreover, the need for bulky and expensive tanks, low temperature of liquefaction, and the safety
issues with both of the above options renders them impractical for commercial application. Thus,
the third method of hydrogen storage through solid state materials has attracted the attention of the
scientific community as it reduces the required storage pressure as well as increases the gravimetric
and volumetric capacity significantly. Thus, hydrogen storage in solid state through the physically or
chemically bounded form in the material has been a subject of various studies in last few decades [2–6].
Several materials/families have been developed in search of suitable material having a target operating
temperature of −40 ◦C–85 ◦C and storage capacity of >8 wt% respectively as per US-DOE [7], which
are summarized in Table 1 [8–16].

Table 1. Hydrogen storage families with their storage capacities and operating temperatures.

Materials Storage Capacity Operating Temperature

Sorbent Systems [8]
Hydrogen is attached to the surface via physisorptionEx.—C-based
materials, MOFs 2–7 wt% ~77 K

Conventional metal hydrides [9–11]
Hydrogen forms various bonds with metal atoms.
• Interstitial Hydrides

Ex.—LaNi5, FeTi etc
1~4 wt% RT

• Ionic/covalent hydride
Ex.—LiH, MgH2 etc.

>7 wt% >600 K

Complex Hydrides [12,13]
Hydrogen covalently bonded and the formed anion complex is
bonded with cation via ionic bond
Alanates (Ex.—LiAlH4, NaAlH4, Mg(AlH4)2 etc.) 5.8~10.5 wt% ≥400 K
Borohydrides (Ex.—LiBH4, NaBH4, Mg(BH4)2 etc.) 10~18.5 wt% ≥400 K
Amides (Ex.—LiNH2, NaNH2, Mg(NH2)2 etc.) 5~10 wt% ≥400 K
Silanides (Ex.—KSiH3, RbSiH3, CsSiH3) 2~4.5 wt% RT~500 K

Chemical Hydrides [14,15]
Hydrogen is covalently bonded and these materials are irreversible
Ex.—NH3, NH3BH3 17.8~20 wt% 373~>773 K

Liquid Organic Materials [16]
Ex.—methylcyclohexane-toluene-hydrogen (MTH cycle),
Cyclohexane-benzene-hydrogen (CBH cycle) etc. ~6–7 wt% 500~750 K

It is clear that the sorbent systems are not capable of achieving the targeted capacity, moreover,
they have very low operating temperature too. The conventional metal hydrides such as LaNi5, FeTi,
V–Ti–Cr etc., have been studied extensively. These could be employed for stationary applications
such as hydrogen compressors [17], however, these cannot be employed for onboard applications due
to their low gravimetric storage capacity. The chemical hydrides have high capacity, but these are
irreversible, thus, only suitable for a single use of hydrogen supply. Among all these, light hydrides
such as LiH, MgH2, and complex hydrides fit with high capacity of 7–18.5 wt%. Although these
light element based hydrides and complex hydrides have very high hydrogen capacity, they possess
two serious issues at the same time. The first is the thermodynamic issue, which is caused by the
presence of strong covalent/ionic bonds, thus making these hydrides very stable and requiring a
high operating temperature (>200 ◦C). The thermodynamic destabilization can be achieved by two
methods: one of which is downsizing the particles, however, it can be achieved only if the size is
reduced to several nanometers, which is neither easy to achieve nor to maintain. Thus, the second
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approach of introducing an intermediate state (Figure 1) can solve this issue [18]. However, this is
not in the scope of this article. Herein, we will review the second issue of slow kinetics of hydrogen
sorption in light element hydrides/complex hydrides. The challenge of kinetics arises due to the highly
directional nature of bonding present in these hydrides, which creates a large diffusion barrier leading
to a prohibitively slow reaction rate for hydrogen charging–discharging. Several other factors also
contribute to the kinetics problem, e.g., the dissociation of H2 molecule to atomic H, etc. In the next
section, we will explain the mechanism of hydrogen absorption and desorption in terms of its kinetics.
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Figure 1. Schematic of destabilization process of a hydride MH using third element A. Adapted with
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2. The Mechanism of Hydrogen Absorption/Desorption and the Need of Catalyst

The kinetics of hydrogen sorption is defined as the rate of hydrogen absorption and desorption
by a particular metal or alloy, and is equally as important and decisive a factor as thermodynamics.
While the thermodynamics is represented by enthalpy of formation (∆H) and entropy (∆S) of hydride,
the kinetics is usually represented by activation energy (E) of the reaction. The activation energy of
sorption reaction can be calculated by Arrhenius Equation (1) and Kissinger Equation (2) as follows:

K = A exp[−Ea/RT] (1)

ln (β/Tp
2) = ln (AR/Ea) − Ea/(RTp) (2)

where Ea is activation energy, k is rate constant, A is frequency factor, R is gas constant, T is temperature,
β is heating rate, and Tp is peak temperature.

The kinetics of hydrogen sorption is influenced by several factors such as the diffusion
coefficient of H2, the occurrence of phase transition, the heat of solution, and the intrinsic rate of
H2 transfer through solid–gas interface, etc. [19]. This can be understood on the basis of a hydrogen
absorption–desorption mechanism as mentioned by Martin et al. [20]. The hydrogen is stored in the
metal/alloys through the following 5 processes as shown in Figure 2:

1. Physisorption of H2 molecule;
2. Chemisorption of H atoms;
3. Surface penetration of H atoms;
4. Diffusion of hydrogen atoms;
5. Hydride formation at metal/hydride interface.
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Figure 2. Reaction partial steps for the absorption (left) and desorption (right) of hydrogen by
a spherical metal/hydride powder particle. Adapted with the permission from [20], copyright
Elsevier, 2016.

One of these steps is considered as a rate limiting step for a particular reaction and the other steps
are in equilibrium. Since the physisorption of H2 molecule need almost no activation energy, it is not
a rate limiting step. The concentration of H2 molecules impinged on the surface of metal is directly
proportional to the applied pressure. All other steps can be rate-limiting steps and affect the kinetics of
hydrogen sorption. The desorption reaction follows the same steps but in a reverse direction as shown
in Figure 2.

Several methods have been proposed for reducing the activation barrier and enhancing the kinetics
of hydrogen sorption. These include nano-scaling and use of catalysts [21–24]. Some researchers also
include alloying as a tool of altering the kinetics [24], however, in our opinion alloying mainly affects
the thermodynamics of a system. In fact, alloying changes the entire path of hydrogen sorption of a
metal/alloy. By forming thermodynamically more stable alloys (Figure 1), the operating temperature
can be reduced effectively, but it is not really a kinetic alteration. Thus, only downsizing and use of
catalysts should be considered as kinetics enhancement tools, where only the activation barrier is
altered without affecting the thermodynamics as shown in Figure 3.
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using catalyst.

Downsizing to nano-scale has been considered as an effective method to improve the sorption
kinetics. As mentioned above, the kinetics depends on the activation barrier involved with the
chemisorption of H atoms on the metal surface, diffusion of hydrogen atoms, or nucleation of the
hydride phase, thus, nano-scaling can accelerate the kinetics through the creation of fresh surface
for chemisorption, decreased diffusion distance for H atoms, and increased surface to volume ratio,
thus providing more nucleation sites for hydride formation [25–27]. For example, it has been shown
that MgH2 nanowires show a much lower energy barrier (~33.5–38.8 kJ mol−1) than bulk MgH2

(120–142 kJ mol−1) [28]. It is noteworthy that the nanosizing down to <50 nm can enhance the kinetics,
whereas the size <5 nm can alter the thermodynamics of MgH2 as well [25]. In spite of the outstanding
performance of the nano-sizing, it cannot be used for practical applications, especially because of two
issues: (1) The preparation of such small sized structure is not easy on commercial/industry level,
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(2) The cyclic stability of these nano-structures is not good as these agglomerates during the sorption
cycles and they lose their benefits of nano-size. The approach of using a catalyst to enhance the kinetics
has a benefit over nano-sizing as it is easy to prepare in comparison to nano-sizing and shows even
better performance over it. A catalyst is defined as a material which enhances the sorption rate of a
metal/alloy without participating into the chemical reaction and reducing the activation barrier only.
In some cases, a catalyst can also participate in the chemical reaction, but remains intact at the end of
reaction. Until now, several catalysts have been developed for different hydrogen storage materials,
which will be reviewed in the next section in accordance with respective hydrogen storage materials.

3. Catalysts for MgH2

Magnesium hydride (MgH2) has been an attractive contender for hydrogen storage due to its
high hydrogen content (7.6 wt%). It can be formed directly through the reaction of magnesium with
hydrogen under mild conditions thermodynamically (<1 bar and ~50 ◦C), however, the sluggish
kinetics allow the hydrogenation to occur only at 350–400 ◦C and high pressure, i.e., 3 MPa [29–31].
There are several factors which affect the kinetics of magnesium hydride formation, including the
surface oxidation [32], low dissociation rate of H2 molecules on metal surface [33], and slow diffusion
of dissociated H2 atoms within the hydride [34]. Even if the surface oxide layer is broken the
through activation process, it takes several hours to form MgH2 at >350 ◦C. And, even if the initial
hydrogenation is somehow fast enough due to high pressure, the formation of a hydride layer on the
surface blocks further penetration of hydrogen [35,36]. It is reported that a 30–50µm thick hydride
layer can stop further hydrogenation abruptly [32,37]. Thus bulk MgH2 cannot be used practically
due to the above mentioned reasons and needs to be modified for its sorption kinetics using catalysts.
The present section will describe different types of additives, used to improve the sorption kinetics
of MgH2.

3.1. Transition Metal Catalysts

Since, the dissociation of H2 molecules and diffusion of hydrogen atoms through the metal are
two rate limiting steps for H2 absorption in Mg, several theoretical studies have been conducted
to analyze the hydrogen magnesium interaction in respect to the transition metal catalysts [38–42].
Kecik et al. [38] used the first principle molecular dynamics method for the calculation of adsorption
energies of Mo, Nb, Mn, Cr, Co, Fe, V, Pd, and Ni on a magnesium surface and suggested that the
transition metals including and to the left of the VI-A column tend to be adsorbed on a substitutional
site while other transition elements have a tendency to be adsorbed on a bridge site. In addition to
this, they also found that the transition metals having a higher chance of adsorption are also capable
of causing dissociation of the hydrogen molecule. According to this, all 3d and 4d transition metals
should work as effective catalysts, however, it is not always the case with experiments. Slow kinetics
is still a problem with many of the transition metals, which can be understood on the basis of DFT
calculations carried by Pozzo et al. [39]. They suggested that all the transition metals show two
opposite catalytic activities at the same time; the metals effective for the dissociation do not have any
effect for the diffusion and vice versa. It can be well understood from Figure 4. The activation energy
barrier for H2 dissociation and diffusion strongly correlates with the d-band center. It is clear that
except for Ag, Cu, and Pd, all other metals have a very low dissociation barrier, however, at the same
time they have a large diffusion barrier. On the other hand, Ag, Cu, and Pd do not bind the H atoms
too strongly and, therefore, have almost no diffusion barrier, but at the same time they do not have
any effect on the dissociation of H2 molecule. This suggests that Ni, Fe, Rh, and Pd have the best
possible catalytic activity with a good balance in overcoming the diffusion barrier and dissociation
barrier at the same time. The above theoretical findings are well supported by several experimental
works, which were carried out during the 70 s to the 90 s of the last century, however, the operating
temperature was still more than 330 or 350 ◦C for the H2 sorption by magnesium with sufficient rate
and capacity. Zaluska et al. [43] were the first ones who prepared nano-crystalline MgH2 decorated
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with nano-particles of Pd, as well as other metals such as Fe, V, and Zr, and reduced the absorption
temperature to less than 200 ◦C and desorption temperature to less than 280 ◦C. In a contemporary
report, Liang et al. [44] ball milled a number of transition metals, i.e., Ti, V, Mn, Fe, and Ni and found
the rapid desorption for MgH2–V followed by Ti, Fe, Ni, and Mn at low temperatures, whereas Ti
addition showed rapidest absorption followed by V, Fe, Mn, and Ni. In a later study [45] on MgH2 +
5 at%V, they suggested that hydrogen desorption at high temperature is controlled by the interface
motion. However, at low temperatures, where the driving force is small, the hydrogen desorption
is first controlled by nucleation and growth followed by long range hydrogen diffusion. Reactive
mechanical milling under H2 atmosphere has been found to be an effective method to enhance the H2

sorption properties of Mg. Bobet et al. [46] demonstrated that RMA for even a short time (2 h) with Co,
Ni, and Fe improved the sorption properties of magnesium. A further improvement in the surface
properties of MgH2 was achieved by the use of nano-sized metal catalysts such as Pd, Pt, Ru [47], Fe,
Co, Ni, Cu [48]. Hanada et al. [48] showed that the activation energy of desorption was reduced to
94 ± 3 kJ mol−1 by the addition of 2 mol% nano-Ni in comparison with the 323 ± 40 kJ mol−1 for pure
MgH2. The MgH2–2%nano-Ni system desorbs a large amount of H2 (0.5 wt%) in the temperature
range of 150–200 ◦C under He flow (Figure 5).

Catalysts 2018, 8, x FOR PEER REVIEW  6 of 35 

 

works, which were carried out during the 70 s to the 90 s of the last century, however, the operating 
temperature was still more than 330 or 350 °C for the H2 sorption by magnesium with sufficient rate 
and capacity. Zaluska et al. [43] were the first ones who prepared nano-crystalline MgH2 decorated 
with nano-particles of Pd, as well as other metals such as Fe, V, and Zr, and reduced the absorption 
temperature to less than 200 °C and desorption temperature to less than 280 °C. In a contemporary 
report, Liang et al. [44] ball milled a number of transition metals, i.e., Ti, V, Mn, Fe, and Ni and found 
the rapid desorption for MgH2–V followed by Ti, Fe, Ni, and Mn at low temperatures, whereas Ti 
addition showed rapidest absorption followed by V, Fe, Mn, and Ni. In a later study [45] on MgH2 + 
5 at%V, they suggested that hydrogen desorption at high temperature is controlled by the interface 
motion. However, at low temperatures, where the driving force is small, the hydrogen desorption is 
first controlled by nucleation and growth followed by long range hydrogen diffusion. Reactive 
mechanical milling under H2 atmosphere has been found to be an effective method to enhance the H2 
sorption properties of Mg. Bobet et al. [46] demonstrated that RMA for even a short time (2 h) with 
Co, Ni, and Fe improved the sorption properties of magnesium. A further improvement in the surface 
properties of MgH2 was achieved by the use of nano-sized metal catalysts such as Pd, Pt, Ru [47], Fe, 
Co, Ni, Cu [48]. Hanada et al. [48] showed that the activation energy of desorption was reduced to 94 
± 3 kJ mol−1 by the addition of 2 mol% nano-Ni in comparison with the 323 ± 40 kJ mol−1 for pure 
MgH2. The MgH2–2%nano-Ni system desorbs a large amount of H2 (0.5 wt%) in the temperature 
range of 150–200 °C under He flow (Figure 5). 

 
Figure 4. Activation energy barrier for hydrogen dissociation (black) and diffusion (red) of hydrogen 
on pure Mg and metal-doped Mg surfaces as a function of d-band center positions. Adapted with the 
permission from [39], copyright Elsevier, 2009. 

Following the above reports, several efforts have been devoted to improve the sorption 
properties of MgH2 using different nano-transition metals in different amount, prepared by different 
routes etc. [49,50], however, nano-Ni has always shown superior performance among them [51–54]. 
Recently Chen et al. [53] prepared a composite of porous Ni nano-fibers via electrospinning technique 
and prepared a composite of these with MgH2 using ball milling. The resulting composite has shown 
an activation energy of 81.5 kJ mol−1 with the onset desorption temperature of 143 °C. Lu et al. [55] 
prepared a novel core-shell structured Mg–TM (TM = Co, V) composite through a combined arc 
plasma and electroless plating method. The ternary Mg–Co–V composite has shown a much lower 
activation energy (Ea = 67.66 kJ mol−1) in comparison with other binary composites or pure MgH2. 

Figure 4. Activation energy barrier for hydrogen dissociation (black) and diffusion (red) of hydrogen
on pure Mg and metal-doped Mg surfaces as a function of d-band center positions. Adapted with the
permission from [39], copyright Elsevier, 2009.Catalysts 2018, 8, x FOR PEER REVIEW  7 of 35 

 

 
Figure 5. Thermal desorption mass spectra of hydrogen for the MgH2 composites milled for 15 min 
at (a) 400 rpm with 1 mol % Ninano, (b) 200 rpm with 1 mol % Ninano, and (c) 200 rpm with 2 mol % 
Ninano, respectively. Adapted with the permission from [48], copyright ACS, 2005. 

3.2. Carbon and Other Elements as Additive 

Besides transition metals as catalysts, several other elements have also been studied to modify 
the kinetics of magnesium hydride. Carbon structures are one of the most studied systems as 
composite materials with MgH2. Imamura et al. [56], in 2003, focused on the composite of graphite 
and magnesium prepared by mechanical milling in the presence of organic additives. According to 
them, the dangling bonds of carbon, produced by high energy milling, act as hydrogen 
accommodating sites. The hydrogen uptake by the Mg increased in the order of additive benzene, 
cyclohexene, and cyclohexane. It was observed that the addition of crystalline graphite had very little 
effect on the desorption properties, but lead to a rapid hydrogen absorption in comparison to pure 
MgH2 [57]. In addition, it formed a protective layer and inhibited the formation of oxide layer on Mg. 
Different species of carbon including graphite, activated carbon, multi-walled carbon nano-tubes, 
and carbon nano-fibers have shown great influence on the sorption properties of MgH2 in terms of 
lower desorption temperature and fast sorption kinetics [58–62]. Reactive ball milling under 
hydrogen atmosphere further enhances the effect of graphite/carbon addition [63,64]. Recently 
Lototsky et al. [64], using time resolved studies, showed that carbon acts as a carrier of activated 
hydrogen through spill-over mechanism. They suggested that high energy reactive ball milling 
destructs the original carbon structure and forms graphene layers, which encapsulate MgH2 
nanoparticles and prevents the grain growth. This helps to keep the sorption cycling stability much 
better. Besides carbon material, rare earth metals have also shown positive effects on the sorption 
properties of MgH2 [65]. It is known that rare earth metals work as oxygen getters, so their presence 
reduces the possibility of the formation of surface oxide layer of Mg, thus improving the sorption 
properties. Mainly La, Y and Ce metals (either in metallic form or hydride form) have been used as 
catalyst for MgH2 [66–68]. Shang et al. [66] showed that Ce addition improves desorption kinetics of 
MgH2, much better than the Y addition. It occured due to CeO2 formation, which produced surface 
defects on MgH2 benefiting the desorption kinetics. Recently, other rare earth elements such as Nd, 
Gd and Er were also investigated as catalysts for MgH2 [69]. Zou et al. [69] prepared the Mg–RE nano 
composite through the arc plasma method with a special metal oxide type core-shell structure. The 
ultrafine Mg–RE particles covered by nano-sized MgO and Re2O3 showed greatly enhanced kinetics 
as well as anti-oxidation properties of MgH2. 

3.3. Metal Oxide Catalysts 

In addition to metal based catalysts, several oxides such as TiO2, V2O5, Cr2O3, Mn2O3, Fe3O4, CuO, 
Al2O3, SiO2, Sc2O3, CeO2, Nb2O5, ZnO, etc., [70–74] have shown enormous catalytic acceleration of 
hydrogen sorption properties of MgH2. Oelrich et al. [70], in a comparative study, depicted the 
comparable effects of TiO2, V2O5, Cr2O3, Mn2O3, Fe3O4, and CuO on the absorption kinetics, whereas 
Fe3O4 lead V2O5, Mn2O3, Cr2O3, and TiO2 to improve the desorption kinetics. Later, in a systematic 

Figure 5. Thermal desorption mass spectra of hydrogen for the MgH2 composites milled for 15 min
at (a) 400 rpm with 1 mol % Ninano, (b) 200 rpm with 1 mol % Ninano, and (c) 200 rpm with 2 mol %
Ninano, respectively. Adapted with the permission from [48], copyright ACS, 2005.
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Following the above reports, several efforts have been devoted to improve the sorption properties
of MgH2 using different nano-transition metals in different amount, prepared by different routes
etc. [49,50], however, nano-Ni has always shown superior performance among them [51–54]. Recently
Chen et al. [53] prepared a composite of porous Ni nano-fibers via electrospinning technique and
prepared a composite of these with MgH2 using ball milling. The resulting composite has shown
an activation energy of 81.5 kJ mol−1 with the onset desorption temperature of 143 ◦C. Lu et al. [55]
prepared a novel core-shell structured Mg–TM (TM = Co, V) composite through a combined arc plasma
and electroless plating method. The ternary Mg–Co–V composite has shown a much lower activation
energy (Ea = 67.66 kJ mol−1) in comparison with other binary composites or pure MgH2.

3.2. Carbon and Other Elements as Additive

Besides transition metals as catalysts, several other elements have also been studied to modify the
kinetics of magnesium hydride. Carbon structures are one of the most studied systems as composite
materials with MgH2. Imamura et al. [56], in 2003, focused on the composite of graphite and
magnesium prepared by mechanical milling in the presence of organic additives. According to them,
the dangling bonds of carbon, produced by high energy milling, act as hydrogen accommodating
sites. The hydrogen uptake by the Mg increased in the order of additive benzene, cyclohexene,
and cyclohexane. It was observed that the addition of crystalline graphite had very little effect
on the desorption properties, but lead to a rapid hydrogen absorption in comparison to pure
MgH2 [57]. In addition, it formed a protective layer and inhibited the formation of oxide layer
on Mg. Different species of carbon including graphite, activated carbon, multi-walled carbon
nano-tubes, and carbon nano-fibers have shown great influence on the sorption properties of
MgH2 in terms of lower desorption temperature and fast sorption kinetics [58–62]. Reactive ball
milling under hydrogen atmosphere further enhances the effect of graphite/carbon addition [63,64].
Recently Lototsky et al. [64], using time resolved studies, showed that carbon acts as a carrier of
activated hydrogen through spill-over mechanism. They suggested that high energy reactive ball
milling destructs the original carbon structure and forms graphene layers, which encapsulate MgH2

nanoparticles and prevents the grain growth. This helps to keep the sorption cycling stability much
better. Besides carbon material, rare earth metals have also shown positive effects on the sorption
properties of MgH2 [65]. It is known that rare earth metals work as oxygen getters, so their presence
reduces the possibility of the formation of surface oxide layer of Mg, thus improving the sorption
properties. Mainly La, Y and Ce metals (either in metallic form or hydride form) have been used as
catalyst for MgH2 [66–68]. Shang et al. [66] showed that Ce addition improves desorption kinetics of
MgH2, much better than the Y addition. It occured due to CeO2 formation, which produced surface
defects on MgH2 benefiting the desorption kinetics. Recently, other rare earth elements such as Nd,
Gd and Er were also investigated as catalysts for MgH2 [69]. Zou et al. [69] prepared the Mg–RE nano
composite through the arc plasma method with a special metal oxide type core-shell structure. The
ultrafine Mg–RE particles covered by nano-sized MgO and Re2O3 showed greatly enhanced kinetics
as well as anti-oxidation properties of MgH2.

3.3. Metal Oxide Catalysts

In addition to metal based catalysts, several oxides such as TiO2, V2O5, Cr2O3, Mn2O3, Fe3O4,
CuO, Al2O3, SiO2, Sc2O3, CeO2, Nb2O5, ZnO, etc., [70–74] have shown enormous catalytic acceleration
of hydrogen sorption properties of MgH2. Oelrich et al. [70], in a comparative study, depicted the
comparable effects of TiO2, V2O5, Cr2O3, Mn2O3, Fe3O4, and CuO on the absorption kinetics, whereas
Fe3O4 lead V2O5, Mn2O3, Cr2O3, and TiO2 to improve the desorption kinetics. Later, in a systematic
study on several high performance catalysts, Barkhordarian et al. [73] suggested that four different
physico-thermodynamic properties of these catalysts influence the catalytic activity, namely, (1) a
high number of structural defects, (2) the low stability of compound, (3) the high valence state of the
transitional metal ion, (4) and high affinity of transition metal ion to hydrogen. On the basis of these
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factors, they summarized the catalysts according to their catalytic activity as shown in Figure 6. It is
clear from the figure that Nb2O5 has the highest catalytic activity for the sorption properties of MgH2,
which makes it one of the most studied catalyst in the hydrogen storage community [75–86]. In earlier
studies, Barkhordarian et al. studied the effect of Nb2O5 content, milling time etc., on the sorption
properties [75–77] and deduced that the rate limiting step is greatly influenced by the catalyst content.
At lower temperatures, i.e., 250 ◦C and catalyst content up to 0.1 mol%, the reaction is 3-dimensional
growth controlled due to slower diffusion (because of low temperature) as well as slow hydrogen
draining and a longer diffusion path (because of lack of catalyst). With the same content of catalyst
but at a higher temperature, i.e., 300 ◦C, the reaction becomes surface controlled as the diffusion of
hydrogen is easier at 300 ◦C and the reaction rate is only controlled by a slow gas–solid reaction due to
low content of catalyst. When the catalyst amount is increased to 0.2 mol% or more, the reaction is
interface controlled because the recombination rate of hydrogen atoms is no longer a rate limiting step.
The absorption is diffusion controlled, whereas, the rate limiting step for desorption changes from
chemisorption to interface growth with the increase of milling time or Nb2O5 content [77] as shown in
Figure 7.
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While other attempts were focused on the sorption behavior at more than 200 ◦C, the group of
Ichikawa presented the room temperature absorption behavior of Nb2O5 catalyzed Mg [78–81]. They
showed that the composite with 1 mol% Nb2O5 absorbs 4.5 wt% H2 at 1 MPa H2 pressure within
15s even at room temperature. A further improvement was achieved by the same group by using
mesoporous Nb2O5 as a catalyst, where the absorption occurred at even −50 ◦C with an activation
energy of 70 kJ/mol H2 and 38 kJ/mol H2 for desorption and absorption respectively [80]. It was
suggested that Nb2O5 was reduced to the oxides with lower oxidation state of Nb, i.e., NbO, which is
responsible for the decrease in activation energy [81]. Another possible mechanism has been suggested
by Friedrich et al. [82,83], where they proposed the formation of MgNb2O3.67 phase in addition to Nb
and MgO during the first cycling of sorption. They suggested all these phases contribute to the kinetic
enhancement of MgH2. Ma et al. [86] also confirmed the existence of above phases using TEM analysis
and proposed the Nb-gateway model where Nb facilitated the hydrogen transportation from MgH2

to outside. Inspired from the above study, Pukazhselvan et al. [87–89] prepared rock salt structured
MgxNb1−xO nano-particles separately and suggested that it can catalyze MgH2 much better than
in-situ formed MgxNb1−xO in 2 wt% Nb2O5 catalyzed MgH2.

Several other transition metal oxides also have been subject of intensive research, especially
V-oxide [90–92], Cr oxide [93–96], Ti oxide [97–99], ZrO2 [100] have shown promising effects in
improving the kinetics of MgH2. Recently, rare earth metal oxides [101–104] have also attracted
attention as catalysts for MgH2. In a recent study by Liu et al. [104], CeO2 was shown to have a
dramatic catalysis capability toward MgH2 when mixed with CeH2.73 in 1:1 ratio and the hydrogen
desorption could be started at temperature as low as 210 ◦C. Recently, a new class of catalysts emerged
with potential catalytic effect, which are termed as complex metal oxides. These complex metal
oxides are composed of two metals and oxygen such as CoFe2O4 [105], NiFe2O4 [106], Co2NiO [107],
SrFe12O19 [108], Li2TiO3 [109], MnFe2O4 [110], Na2Ti3O7 [111], BiVO4 [112] etc. Some of these could
reduce the desorption activation energy of MgH2 down to 70 kJ/mol H2 [111].

Recently, a different mechanism for catalytic behavior of oxides has been proposed [113], which
is claimed to have more generalized coverage of all the oxides. The earlier hypothesis given by
Klassen et al. [70,73] was more focused on transition metal oxides, which have defective oxide sites
and high valence state metals capable of high electron exchange rate, thus are suitable for the sorption
kinetics improvement. However, this model fails to describe the effects of MgO and other non-transition
metal oxides. A tribological effect model has been proposed to explain the high catalytic activity of
MgO, almost comparable to that of Nb2O5, the best known catalyst. According to this model, a
correlation between the desorption temperature and electronegativity of the oxide addition has been
established and is shown in Figure 8. This correlation has been explained on the basis of a lower
friction coefficient at the interface of solid oxides having higher electronegativity, which allows effective
grinding process. This enhances the stabilization of small particles which can have fast sorption rate
due to shorter diffusion path.
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3.4. Metal Halide Catalysts

Metal halides having chloride and fluoride ion have been considered effective catalysts, even better
than the metal or metal oxide. In a comparative study, Bhat et al. [114] suggested that NbCl5 addition
shows much better catalytic effect than the well-known Nb2O5. Thus, they suggested that neither the
oxide ion nor transition metal/transition metal cation are crucial, but it is the chemical nature/iconicity
of catalyst which acts as a deciding factor. Malka et al. [115] studied 19 different chlorides and fluorides
of different metals and concluded that fluorides are better catalysts than chlorides. In addition, they
also suggested that halides with higher oxidation state are more effective in reducing the desorption
temperature. As a conclusion of this work, it was stated that the halides of group IV and V, namely
ZrF4, TaF5, NbF5, VCl3, and TiCl3 were more effective catalysts than other halides. In a later study,
it was suggested that fluorides have higher catalytic activity because of the MgF2 formation in addition
to transition metal, which itself acts as a catalyst and further improves the sorption kinetics [116,117].
Several chlorides i.e., CrCl3 [118], NiCl2, CoCl2 [119], TiCl3 [120], FeCl3 [121], LaCl3 [122], CeCl3 [123],
ZrCl4 [124] etc., have been extensively studied, however, most of them could reduce the desorption
activation energy only to more than 100 kJ/mol H2. A remarkable improvement was observed for
ZrCl4 addition, where the reduction of ZrCl4 to ZrCl3 and Zr metal showed good catalytic effect and
the desorption activation energy could be lowered to 92 kJ/mol H2. The catalyzed sample could be
rehydrogenated even at 0 ◦C under moderate hydrogen pressure. The results of superior catalytic
effect of fluorides on sorption kinetics of MgH2, lead to several comparison studies, mainly focused
on the comparison between TiF3 and TiCl3 [125–127]. The XPS experiments [125,126] suggested the
mechanism of superior catalytic effect of TiF3 over TiCl3. According to this, both samples react with
MgH2 and form TiH2 as well as dead magnesium halides. However, F ions participate to generate
Mg–Ti–F metastable species in addition to the formation of MgF2. This additional Mg–Ti–F species was
found responsible for better catalytic activity of TiF3. Since in-situ formed MgF2 has been suggested
as one of the responsible component for catalytic enhancement, Jain et al. [128] reported the effect
of direct addition of MgF2 and found that it is beneficial for kinetic enhancement as well as cyclic
stability, with low sensitivity to atmospheric conditions and easy handling. Inspired by the merits
of F ions, several researchers have developed different fluoride materials such as CeF4, NbF5, ZrF4,
TiF3, TiF4 etc. [129–133]. An assumption has been proposed on the basis of intermediate Hδ−–Nbδ+

bond formation, which is favored by large electronic delocalization of the Nb–F bond. This leads to
the weakening of surface Mgδ+–Hδ− bonds. It also justifies the higher activity of NbF5 in comparison
with Nb2O5, as the electronegativity of fluorine is greater than that of oxygen, which in turn produces
more pronounced electronic delocalization for F than O, thus increasing the weakening of Mgδ+–Hδ−

bonds. Although all the fluorides have shown promising effects, they all were limited to bringing
the activation energy down to 90 kJ/mol H2. A drastic improvement was achieved recently by the
addition of TiF4 [132,133], where the activation energy could be reduced down to 70 kJ/mol H2. The
onset desorption temperature could be reduced down to 150 ◦C in comparison to 300 and 400 ◦C
for ball milled and as received MgH2, respectively, as shown in Figure 9 [132]. The XPS study [133]
agrees well with the results of Ma et al. [125,126], which suggested that Ti4+ state is reduced to lower
oxidation states i.e., Ti3+/Ti2+ and formed TiH2 in addition to Ti–Mg–F species. Inspired by the
successful implementation of single metal fluorides, recently several binary metal complex fluorides
namely K2TiF6 [134], K2ZrF6 [135], K2NiF6 [136], Na3FeF6 [137] etc. have been tested. The best
performance was observed with the addition of 10% Na3FeF6, which reduced the activation energy
down to 75 kJ/mol H2. It was suggested that in-situ formation of NaMgF3, NaF and Fe play catalytic
roles to improve the sorption kinetics of MgH2. A similar mechanism was also proposed for other
complex fluorides.
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3.5. Hydride, Hydride Forming Alloys and Sulfide as Catalyst

The use of hydride materials as catalyst for MgH2 is led by TiH2 [138–144]. The mixture of
MgH2 and TiH2 in 7:1 molar ratio, prepared through high energy high pressure mechanical milling,
showed drastic improvement of H2 desorption kinetics and reduction in desorption temperature.
The desorption onset temperature was reduced down to 126 ◦C, much lower than 381 ◦C for MgH2

alone [138]. The activation energy was reduced down to 71 kJ/mol H2. In a later report, Lu et al. [139]
prepared a nanosized MgH2–0.1TiH2 system with a grain size of 5–10 nm. The transmission electron
microscopy (TEM) study suggested uniform distribution of TiH2 among MgH2 particles, which,
in addition to nano size, was an important factor for such a drastic improvement. They also reported a
reduced ∆H value (−68 kJ/mol H2) for this system, which is significantly lower than that of pure MgH2.
It was also observed that this system can reabsorb hydrogen at room temperature with a significant
rate and very stable cyclability [139,140]. Three different possibilities have been proposed for this
catalytic property of TiH2 by considering TiH2 as (1) grain growth inhibitor (prevents coarsening of
MgH2 particles); (2) nucleation and growth center (TiH2 is non-stoichiometric compound and allows
faster diffusion); (3) alloying or solid solution forming compound with MgH2 (since ∆H and ∆S
values are different from those of MgH2). A theoretical and microscopic investigation on MgH2–TiH2

system [144] suggested TiH2 as a stable component during H2 absorption and desorption which acts
as dynamic dopant, i.e., TiH2 particles are located on the top surface of MgH2, which then migrates to
the subsurface during dehydrogenation as shown in Figure 10 [144]. Other hydrides for the catalysis of
MgH2 sorption are NbH and AlH3 [145,146], however, they don’t show any impressive improvement
like TiH2.
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In addition to metal hydrides, several complex hydrides also have been tried out as catalysts for
MgH2 [147–153]. However, in our opinion, these systems work on the basis of chemical destabilization
of MgH2 and thus alter the thermodynamics rather than altering kinetics. The next category of
catalyst material is not very different from the hydride materials, the only difference being their
use in an unhydrided state in contrast with TiH2, NbH, or other complex hydrides. Several studies
have focused on various alloys such as LaNi5 [154], FeTi [155,156], Ti–V–Cr alloys [157–160], and Zr
based alloys [161–171]. Vijay et al. [155] studied the effect of FeTi and FeTiMn alloys in different
proportions (5–40 wt%). The lowest absorption and desorption temperature was found as 80 and
240 ◦C respectively for Mg-40 wt% FeTiMn composite. A remarkable decrease in activation energy
down to 71 kJ/mol H2 was achieved using Ti–Cr–Mn–V BCC alloy [157]. A recent study on several
V-based hydride forming materials suggested that better kinetic activity can be achieved with the
less stable V-based hydrides [159]. A number of Ti-based alloys have been tried out to enhance the
sorption kinetics of MgH2 by Zhou et al. [160]. They suggested that a TiAl compound reduced the
desorption activation energy of MgH2 to 65.08 kJ/mol H2, which makes it one of the best known
catalysts in terms of activation energy, whereas, TiMn2 addition improves the hydrogenation kinetics
at room temperature with the activation energy of 20.59 kJ/mol H2. The addition of Zr based AB2 type
alloys also attracted attention due to their interesting catalytic activity for MgH2 sorption properties.
The addition of ZrCrCu alloy [161] produced Mg2Cu phase at the grain boundaries of Mg and alloy
phase during the cycling, which provided diffusion paths and nucleation sites for the easy formation
of hydride and enhanced the kinetics. The above reaction was not observed between Mg and other
alloy ZrCrX (X = Ni, Fe, Mn, Co) composites [163–169].

Sulfide materials having transition metal as cation and S as anion have attracted attention as
catalysts very recently [172–176]. Jia et al. [172] prepared MgH2–MoS2 composite and suggested
the reduced activation energy of 87 kJ/mol H2 for desorption. This improvement was found to
be associated with the in-situ formation of MgS and Mo. Zhang et al. [173,176] studied the effect of
iron-based sulfides, i.e., Fe3S4 and FeS2, and suggested an almost similar mechanism as found for MoS2

except for the formation of Mg2FeH6 phase in addition to MgS and Fe. This reduced the activation
energy down to much lower value, i.e., 68.94 kJ/mol H2, in comparison with MoS2 addition. Even
a much lower value of 64.71 kJ/mol H2 could be achieved by the addition of flower-like NiS [175].
The mechanism of sorption process for this nanocomposite system is shown in Figure 11. The prepared
nanocomposite comprises of Mg/NiS core/shell structure. The first sorption cycle decomposes NiS
shell into Ni, MgS, and Mg2Ni phases, which are decorated on the surface of Mg nanoparticles. So this
multi component composite (Mg–MgS–Mg2Ni–Ni) system shows high sorption rate of hydrogen at
lower temperature.
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4. Catalysts for Complex hydrides

Complex hydrides have attracted attention as hydrogen storage materials during the last two
decades [5] owing to their high hydrogen capacity. While complex hydrides have high hydrogen
content compared to metal hydrides, i.e., MgH2, they also possess a complex multistep sorption
process due to the presence of an H atom covalently bonded in a tetrahedron AlH4 and BH4 or NH2

anion, which is bonded with the alkali or alkaline metal cations, thus forming alanate, borohydride,
and amide families [21–24,177,178]. The presence of strong covalent bonds, i.e., Al–H, B–H, and N–H,
makes them hard to decompose and rehydrogenate. The discovery by Bogdanovic et al. [179] in 1997
of using TiCl3 as catalyst, opened a new era for these complex hydrides by attaining the reversibility of
NaAlH4 with sufficiently high kinetics. In this section, we will describe different catalysts for alanate,
borohydride, and amides, respectively, in order.

4.1. Catalysts for Alanates

The DECOMPOSITION of alanates undergoes through several steps as follows:
Alkali metals i.e., Li, Na, K

MAlH4 →M3AlH6 + 2Al + 3H2 (3)

M3AlH6 + 2Al + 3H2 → 3MH + 3Al + 9/2H2 (4)

3MH→ 3M + 3/2H2 (5)

Magnesium Alanate
Mg(AlH4)2 →MgH2 + 2Al + 3H2 (6)

MgH2 →Mg + H2 (7)

And Calcium Alanate
Ca(AlH4)2 → CaAlH5 + Al + 3/2H2 (8)

CaAlH5 → CaH2 + Al + 3/2H2 (9)

Following the discovery of reversibility in complex hydride by Bogdanovic et al. [179], several
methodologies have been adopted such as, nanoscaling, alloying, adding catalysts, etc. However, this
review focuses only on the use of catalysts to enhance the kinetics, so will include only this approach
and explain the mechanism of catalysis here.

The breakthrough invention of Bogdanovic et al. [179] and the following studies [180–182]
suggested that the activation energy for the two steps of NaAlH4 decomposition could be reduced
down to 73 and 97 kJ/mol H2, respectively, by the addition of only 0.9 mol% TiCl3 in comparison to
118 and 124 kJ/mol H2, respectively, for pure NaAlH4. These preliminary studies have been followed
by a number of studies on TiCl3 based catalysts in order to understand the mechanism of catalysis,
the effect of preparation method of catalyst etc. [183–186]. The studies were not only limited to TiCl3,
several other halides and salts of Ti were also employed to enhance the sorption kinetics of NaAlH4

such as Ti–Al [187,188], TiB2 [189], TiC [190,191], TiF3 [192], TiF4 [193], TiN [194], Ti-oxides [195,196]
etc. The use of Ti–Al compounds such as Ti3Al, TiAl3 was motivated from the mechanism that the
in-situ formed Ti–Al alloys were found responsible for the catalytic enhancement of TiCl3 or TiCl4
added NaAlH4. However, the catalytic performance of Ti–Al is controversial as some researchers
have shown that it has no effect on the decomposition of NaAlH4 [187], whereas some groups found
significant improvement in desorption of NaAlH4 [188]. Lee et al. [188] prepared Ti–Al powders
through different mechanochemical reactions and achieved a good catalytic effect, depending on the
particle size of prepared Ti–Al alloys. Not only Ti–halide, but also TiO2 possesses a good catalytic
behavior. The addition of nano-crystalline TiO2 supported on nano-porous carbon decreased the
desorption temperature of NaAlH4 and enhanced the reaction kinetics. A systematic XPS and TEM
study [196] suggested that Ti undergoes a reduction process of Ti4+ to Ti0 during the milling and/or
heating process and forms either TiH2 or Ti–Al compounds. They also suggested that the catalytic



Catalysts 2018, 8, 651 14 of 36

effect of Ti based species is in the order of Ti–Al species > TiH2 > TiO2. Inspired by the performance of
TiO2, Pukazhselvan et al. [197] studied a number of other metal oxide nano-particles including TiO2,
CeO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, and Gd2O3, and observed that TiO2 possessed the best
catalytic effect among all the studied oxides. It was also pointed out that the catalytic activity was not
very good when Ti powder was directly mixed with NaAlH4, even if it has an advantage of being
free of inactive byproducts and unwanted gas impurities [198,199]. In another study, Zidan et al. [200]
reported that Zr mixing is inferior to titanium for NaAlH4 to Na3AlH6 reaction, but superior for
Na3AlH6 to NaH reaction, thus using a combination of Ti and Zr mixing together from their precursors
Ti(OBun)4 and Zr(OPr)4, enhanced the overall kinetics of NaAlH4 and showed a stable reversible
capacity of more than 4 wt%. Wang et al. [201] reported the synergetic effect of ternary combination of
TiCl3, ZrCl4, and FeCl3 up to a total content of catalyst limit to 4 mol% and observed activation energy
as low as 76 kJ/mol for decomposition of NaAlH4, however, the effect for the second step was not
as pronounced as for the first step decomposition. TiCl3 was considered the best catalyst until the
discovery of ScCl3, CeCl3, and PrCl3 by Bogdanovic et al. in 2006 [202,203]. They found that ScCl3 had
a nice effect towards improving the storage capacity, whereas CeCl3 and PrCl3 can improve the cyclic
stability with a reduced hydrogenation time by a factor of 2 at high pressure and by a factor of 10 at low
pressure. Later, Rongeat et al. [204] pointed out that the efficiency of the above dopants is different for
absorption and desorption, which suggested that different reaction mechanism and rate limiting steps
took place during both steps. Similar to a TiCl3 doped NaAlH4 system, a CeCl3 doped system exhibited
the formation of Ce–Al species, which are considered as catalytically active for the decomposition
of NaAlH4 [205]. Thus, CeAl2 and CeAl4 alloys were directly mixed to NaAlH4 and were found to
be quite effective in reducing the activation energy of both steps, which were found in the range of
72–90 and 93–104 kJ/mol H2 for first and second step decomposition [206,207]. Similar to NaAlH4

system, several catalysts were developed for solving the kinetic problem of LiAlH4 decomposition,
which included Ti based halides [208–211], other metal halides [212–218], nano-sized oxides [219–221],
carbon [222–224], etc. Recently a new class of complex precursors for metal doping are being used,
such as K2TiF6 [225,226], MnFe2O4 [227,228], NiFe2O4 [229], NiCo2O4 [230], LiTi2O4 [231]. It was
suggested that K2TiF6 reacted with NaAlH4/LiAlH4 and thus in-situ formed TiH2, Al3Ti, LiF, and
NaH/KH worked together as an active species for the synergetic catalysis [225,226]. The addition of
MnFe2O4 nanoparticles reduced the activation energy of both the steps of NaAlH4 decomposition
down to 57 kJ and 75 kJ/mol H2, respectively [227], whereas it was reduced to 67 and 76 kJ/mol H2

respectively for both the steps of LiAlH4 decomposition [228]. All of these complex precursors acted
as catalyst by following more or less similar mechanism.

In summary, several catalysts have been developed in last two decades, however, the first
discovered Ti catalyst is still leading the field in terms of its overall performance. Several efforts
have been devoted to understanding the mechanism of Ti induced catalysis in alanates, which were
summarized by Terry J. Frankcombe [232]. The earlier mechanism was based on the assumption that
the presence of Ti on or in the surface can break and form H–H bonds with very low activation energy
as compared to other sites, which enhanced the dehydrogenation/hydrogenation kinetics faster [233].
However, this “hydrogen pump”/spillover behavior could not explain the inactive nature of Pd or
Pt, which also has the ability of barrier less adsorption of H2 on their surface. Another argument for
slow kinetics was given on the basis of nucleation and growth of compact product phases mainly
proposed by Fichtner and group [234–236]. Ti particles were suggested to be the centers for nucleation
and growth of the decomposed phase [237,238]. However, this mechanism also failed to justify the
reabsorption process. On the basis of elemental kinetic theory, which suggests the dependence of
decomposition temperature of alanates on the Al–H bond strength, it was proposed that the Ti catalyst
destabilized the Al–H bonds [239,240]. Several researchers, on the basis of experimental as well as DFT
calculations [241–245], supported the above-mentioned model. Another model based on the existence
of Al–H mobile species during decomposition, suggests that the mobility of Al–H species is enhanced
due to the hydrogen attached to Ti–Al clusters [246–250]. Araujo et al. [251] proposed a Na vacancy
mediated model, according to which Ti catalyst promotes the formation and migration of Na vacancies
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within alanate crystal. A totally different model based on AlH3 and NaH mobile species vacancies
has been proposed by Gunaydin et al. [251], which was also supported by Borgschulte et al. [252]
using the H–D exchange experiment. They suggested that Ti in the alanate system acts as shuttle at
the Al–NaAlH4 interface. Peles and Vande Walle [253] suggested that the charged hydrogen defect
formation energy can be decreased through the alteration of Fermi level through Ti doping. This
decrease in defect formation energy increases the diffusion rate of these charged defects. This model
easily explains the better catalytic activity of Ti as compared to other metals. For example, Zr doping
alters the fermi level of alanate by 0.07 eV, which is much smaller than 0.44 eV for Ti doping. Thus,
the defect formation energy (counts same as the alternation of fermi level) by Ti dopant would be
decreased by almost 6 orders more than that for Zr dopant and enhanced diffusion rate in a much
better way. A “zipper model” was recently proposed by Marashdeh et al. [254], where Ti species on
the surface of NaAlH4 worked as a slider of a zip, ejecting Na ions from the subsurface by opening the
well-ordered crystal, where they can react quickly. However, this model works only for decomposition
reaction like many other models. None of the mechanisms could explain the catalytic effect of Ti
for both decomposition and reabsorption. Recently, Atakali et al. [255] proposed a bidirectional
mechanism based on the thermodynamic data of all possible hydrides involved in the reaction, which
is valid for absorption and desorption. According to this atomistic model, the catalyst transfer of M+

and H− occurs from AlH4
− to the AlH6

3−, thus acting as a bridge for first step. Again in the second
step, Ti acts as bridge to form isolated MH and leaves AlH3 behind, which decomposes to Al and H2

spontaneously, as shown in Figure 12.
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4.2. Catalysts for Borohydrides

Borohydrides are considered as favorable materials for hydrogen storage with a high capacity
ranging from 10~18 wt%. All the borohydrides generally decompose through following thermolysis
reactions:

MBH4 →MH + B + 3/2H2 (10)

MH→M + 1/2H2 (11)

Some intermediate products were also reported for some of the borohydrides e.g., formation of
Li2B12H12 during decomposition of LiBH4 [256]. The emission of diborane in addition to H2 was also
reported [257] for some of the borohydrides. It was found that the charge transfer from Mn+ to [BH4]−

is a key feature for the stability of M(BH4)n and is directly related to the Pauling electronegativity χp

as shown in Figure 13. The charge transfer becomes smaller with the increasing value of χp, which
makes ionic bonds weaker, thus reducing the decomposition temperature. It was also noticed that the
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borohydride contains M with χp ≥ 1.5 desorb diborane in addition to H2, thus making borohydrides
with cation of χp ≤ 1.5 suitable as hydrogen storage material. It is clear from Figure 13 that the highly
stable borohydride has high temperature of hydrogen desorption, so the catalysis has been considered
widely and several catalysts have been investigated to reduce the activation barrier and enhance the
kinetics of hydrogen release and uptake.
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Carbon materials were found to be very effective as an additive. It was suggested that increased
curvature of carbon structure reduces the hydrogen removal energy [258]. Various forms of carbon have
been employed to improve the kinetics and lower the desorption temperature [259–265]. Yu et al. [259]
prepared a mixture of LiBH4 and carbon nanotube mixture by ball milling and showed a lower onset
temperature, i.e., 250 ◦C, of hydrogen desorption. They suggested that the in-situ formed Li2C2 can
be reversed to LiH, which contributed to almost 1/4th of total capacity. Carbon nanotubes were also
found useful for the kinetic enhancement of Mg(BH4)2 recently [260], where the onset temperature
of hydrogen desorption was decreased to 120 ◦C with an addition of only 5 wt% of CNT with an
activation energy of 130 kJ/mol H2, much lower than the pure Mg(BH4)2. Fang et al. [261] compared
the performance of various carbon additives and concluded that single walled carbon nanotubes
(SWNT) and activated carbon (AC) exhibited much better performance than the normal graphite.
The use of fluorinated graphene/graphite [263,264] was also found to be quite effective in reducing
the dehydrogenation temperature of LiBH4, which alters the thermodynamics as well as kinetics of
LiBH4 decomposition. It was suggested that F− substitutes H anion in LiBH4 or LiH partially, which
produces the thermodynamic modification. The activation energy was also found to be reduced down
to 131 kJ/mol H2 from 182 kJ/mol H2 for pure LiBH4. Another approach to reduce the activation energy
of borohydrides is their nanocaging into carbon scaffold [265]. The onset desorption temperature
for nano-caged LiBH4 was found 180 ◦C lower than that of pure LiBH4 with a reduced activation
energy of 113 kJ/mol H2. The in-situ formed Li3BO3 works as an efficient catalyst for the reversible
hydrogenation properties.

Not only the carbon materials, but also carbon/graphene supported metal nanoparticles were
used as catalysts for the improvement of sorption properties of borohydrides [266–268]. The use
of nano-Ni particles effectively reduced the activation energy of LiBH4 and Mg(BH4)2. The values
were found as 88 kJ/mol H2 [267] and 21.3 kJ/mol H2, respectively, which were almost half of bare
borohydrides. Xia et al. [269] showed that addition of Ni powder does not alter the thermodynamics
but enhances the sorption rate and could be helpful to achieve the partial reversibility at 600 ◦C and
10 MPa H2 pressure. Several other pure metals and non-metals were also examined as catalysts in order
to reduce the activation barrier and desorption temperature e.g., Mg, Al, Ti, Sc, V, Cr, B etc [270–272].
However, it was observed that the use of high amounts of these metals can alter the whole reaction
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pathway instead of reducing the kinetic barrier only. The use of oxide materials as additives to alter
the sorption temperature of borohydrides came up in a very early report by Zuttel et al. [273], where
SiO2 was mixed with LiBH4 and allowed the release of H2 starting at 250 ◦C through the reaction
LiBH4 → LiH + B + H2. Several other oxides namely ZrO2, V2O3, SnO2, TiO2, Fe2O3, V2O5, Nb2O5,
Co3O4, MoO3, and ZnO then followed as the target of studies [274–283]. Some of them were claimed
to reduce the activation energy of desorption reaction, however, most of them reacted with LiBH4

through redox reactions and thus modified the entire reaction pathway. The next known category
of catalyst is halides, which mainly include chloride and fluorides, which were also successfully
employed to enhance sorption kinetics of magnesium hydride as well as alanates. With the hope
of having similar benefits, several halides were employed as additive with borohydrides [284–303].
It was suggested [284] that transition metal halides reduce the decomposition temperature of LiBH4,
however, at the same time the formation of unstable transition metal borohydrides lead to the release
of diborane gas due to immediate decomposition, which causes the loss of reversibility. Thus, retaining
boron was suggested as a key factor for the reversibility of borohydrides. The addition of TiF3

and ScCl3 to Mg(BH4)2 in a small amount of 5 mol% could significantly improve the desorption
rate [286]. It was suggested that the presence of these additives promote the formation of MgB12H12

intermediate during rehydrogenation. Similarly TiF3 was also found to be a promising catalyst
for NaBH4 decomposition and rehydrogenation process [288]. The dehydrogenation process was
suggested to occur in two steps: (i) NaBH4 partially reacted with TiF3 and forms NaF, TiB2, and B,
then (ii) these Ti and F species catalyzed the remaining NaBH4. A partial reversibility could be
achieved through the formation of intermediate amorphous Na2B12H12 phase as confirmed by fourier
transform infra red (FTIR) spectroscopy. Rare earth fluorides have also shown impressive effects on the
reversibility of borohydrides through the formation of metal borides such as PrB4, NdB6 etc. [293–295].
Recently ZrCl4 has shown promising effects on the decomposition of NaBH4 and Mg(BH4)2 [300,301].
The activation energy could be lowered down to 180 kJ/mol H2 from 275 kJ/mol H2 through the
addition of ZrCl4 to NaBH4. It was suggested that ZrCl4 reduced to ZrCl2 and/or metallic Zr, which
acted as catalyst and lowered the dehydrogenation temperature.

In summary, it can be easily seen that the additives can modify the decomposition temperature of
borohydrides, however, it is difficult to distinguish the difference between thermodynamic alteration
and kinetic modification. Until now, only partial reversibility could be achieved for all the borohydride
systems. The key point for the reversibility of borohydride has been decided as “boron retention”
during the decomposition rather than the diborane release.

4.3. Catalysts for Amides

The discovery of hydrogen absorption by nitride material in 2002 opened up a new class of
hydrogen storage materials, named as amide-imide system [304]. The reaction proceeds through the
following two reactions:

Li3N + H2 ↔ Li2NH + LiH (12)

Li2NH + H2 ↔ LiNH2 + LiH (13)

While the reaction (12) proceeds at high temperature because of high enthalpy value (−165 kJ/mol
H2), the reaction (13) has a smaller enthalpy of −44 kJ/mol H2 and thus, easily occurs at lower
temperatures. So the LiNH2 + LiH system became one of the most studied systems in the last two
decades. It was reported that the desorption reaction of LiNH2 + LiH is quite slow even at temperatures
higher than 200 ◦C, thus leading to a search for a catalyst to enhance the sorption rate. TiCl3 was the
first catalyst, tested with LiNH2 + LiH system [305–307]. It was observed that the activation energy
for pristine LiNH2–LiH system was smaller (54 kJ/mol H2) than the TiCl3 doped LiNH2–LiH system
(110 kJ/mol H2), however the sorption rate of the TiCl3 doped LiNH2–LiH system was found to be
much better. Thus it was concluded that the catalyzed and non-catalyzed systems undergo different
rate limiting steps. The positive effect of TiCl3 addition on the sorption kinetics accelerated several
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studies using different halides for the improvement of the LiNH2–LiH system [308–313]. Although
the addition of AlCl3 was found effective in enhancing the sorption rate and lowering desorption
temperature [308], it was found to occur due to the thermodynamic alteration by the formation of
the Li–Al–N–H system. No actual kinetic alteration could be observed in the AlCl3 modified system.
A similar effect was observed for MgCl2 addition, where the formation of the Li–Mg–N–H system
drastically improved the properties of the Li–N–H system [311]. Recently, the sorption kinetics of
the LiNH2–LiH system could be enhanced by the addition of Ce based additives, i.e., CeO2, CeF3,
CeF4 [313]. Especially, CeF4 addition showed a significant catalytic effect in reducing the desorption
temperature and NH3 suppression by forming CeFx species in-situ. The addition of BN and TiN
was also found effective in improving the sorption properties of the Li–N–H system, however they
possess different catalytic roles [314]. It was suggested that the catalytic activity originated from the
improvement of surface reactivity and diffusion enhancement for TiN and BN respectively. This work
also suggested a similar possibility for TiCl3, which can in-situ transform to TiN and follow the same
reactivity for the Li–N–H system.

Apart from the LiNH–LiH system, the LiNH2/MgH2 or Mg(NH2)2/LiH system has shown much
better properties with much lower enthalpy of 34 kJ/mol H2 with reasonably high hydrogen capacity
of 4.5 wt% through following reaction:

2LiNH2 + MgH2 ↔ Li2Mg(NH)2 + 2H2 (14)

Several other composition ratios of Mg(NH2)2 and LiH, i.e., 3:8 or 3:12, were also attempted
and a higher capacity was observed for these but the desorption temperature also increased at the
same time [315–317]. The lower enthalpy value of this system suggests near ambient temperature
desorption, however, it can occur only at more than 150 ◦C practically, which must be caused by the
kinetic constraints. Thus, in order to improve the sorption kinetics, several additives were attempted
with this system [318–326]. Shahi et al. [319] studied the effect of various V-based additives and
found VCl3 as the best catalyst among them. The kinetics of Mg(NH2)2/2LiH could be enhanced
up to 38% followed by 20% and 10% enhancement for V and V2O5 respectively. Hu et al. [321] and
Ulmer et al. [322] reported the catalytic effect of ZrCoH3 separately and together with LiBH4. The
presence of LiBH4 and ZrCoH3 together showed better catalytic activity, compared to their individual
presence. Another high performing catalyst is RbF, the addition of which could significantly enhance
the sorption kinetics and reduce the temperature. The Mg(NH2)2–2LiH–0.08 RbF system could store
up to 4.76 wt% hydrogen reversibly with an onset temperature of 80 ◦C and 55 ◦C for dehydrogenation
and rehydrogenation respectively [32]. The addition of carbon has also been found suitable for kinetic
enhancement [324,325]. Ru doped SWNT addition to Mg(NH2)2–LiH could effectively suppress the
NH3 emission as well as enhance the sorption kinetics. Bill et al. [313] studied calcium halides and
suggested that both CaCl2 and CaBr2 reduced the onset temperature by 30 and 45 ◦C more than the
undoped Li–Mg–N–H system. The activation energies were calculated as 91.8 and 78.8 kJ/mol H2

for CaCl2 and CaBr2 doped samples, respectively, in comparison to 104.2 kJ/mol H2 for undoped
Li–Mg–N–H system.

Despite several efforts, the dehydrogenation temperature of Li–Mg–N–H was still higher than
the theoretical value of 90 ◦C at 1 bar H2 pressure until the discovery of KH catalyst by Wang et al.
in 2009 [326]. The hydrogen desorption peak was shifted to 132 ◦C with KH doping from 186 ◦C
for undoped Mg(NH2)2/LiH system as shown in Figure 14. The addition of only 3 mol% KH could
drastically enhance the kinetics of system and allowed the rehydrogenation by the system at 107
◦C. Following the discovery of above enhancement, several attempts were made to understand
the mechanism of this improvement and to optimize other parameters [327–330]. Teng et al. [327]
suggested that this improvement can be understood on the basis of NH3 mediated process, where
KH reacts with NH3, emitted from Mg(NH2)2, and forms KNH2. This KNH2 immediately reacts with
LiH to regenerate KH. These two processes continue as follows and enhance the decomposition of
Mg(NH2)2/LiH system via the pseudo-catalytic effect of KH:
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Mg(NH2)2 ↔MgNH + NH3 (15)

KH + NH3 ↔ KNH2 + H2 (16)

KNH2 + LiH↔ LiNH2 + KH (17)

The activation energy of this reaction was observed to be reduced down to 87 kJ/mol H2 from
the 119 kJ/mol H2 for undoped system [328]. Luo et al. [329] has shown through the thermodynamic
observation by PCT studies that the ∆H value remained unchanged for the K-doped and undoped
Mg(NH2)2/LiH system, which suggested the true catalytic nature of KH instead of thermodynamic
alteration. Recently another mechanism has been reported for the abovementioned improvement [330],
according to which KH reacts with Mg(NH2)2 and forms stable K2Mg(NH2)4. This kinetically stable
K2Mg(NH2)4 phase weakens the N–H bonds and reacts with LiH immediately to produce KH in a
metathesis process. These reactions proceed as follows with enhanced kinetics:

2KH + 3Mg(NH2)2 ↔ K2Mg(NH2)4 + 2MgNH + 2H2 (18)

2K2Mg(NH2)4 + 3LiH↔ KLi3(NH2)4 + 2Mg(NH2)4 + 3KH (19)

The above improvement from KH addition ignited the studies using several other hydrides such
as RbH, CsH, and CaH2 as catalysts [331–335]. Durojaiye et al. [334] showed the catalytic effect in the
order of RbH > KH > CsH > uncatalyzed 2LiNH2/MgH2 system. The higher catalytic role is of Rb,
which expands the lattice of Li2Mg(NH)2 by replacing Li by Rb and facilitates the diffusion process.
Torre et al. showed the superiority of CaH2 as catalyst, where they found the decomposition started at
78 ◦C, much lower than 125 ◦C for pristine Mg(NH2)2 + 2LiH system [335] with a reduced activation
energy of 105 kJ/mol H2 in comparison to 133.8 kJ/mol H2 for the undoped Mg(NH2)2/LiH system.
Inspired by the catalytic effect of KH, Liu et al. [336] studied the effect of potassium halides on the
Mg(NH2)2–2LiH system and suggested that only KF addition was beneficial. The KF added sample
showed a desorption onset temperature of 80 ◦C with a reversible capacity of 5 wt% via two stage
reaction. The reaction of KF with LiH, converting into KH and LiF, acts as a catalyst similar to the
system with directly KH added [337,338]. In the recent reports [339,340], the addition of KOH was
found even better than the KH addition. It was found that KOH reacts with Mg(NH2)2 and LiH to
convert into Li2K(NH2)2, KH and MgO, which enhanced the kinetics and started to decompose at 75
◦C with a peak appearing at 120 ◦C.
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4.4. Catalysts for Silanides

This is the most recent category of hydrogen storage material, which contains the ternary
compound of alkali metal, silicon, and hydrogen. This category attracted the attention of hydrogen
community with the detailed investigation of hydrogen absorption properties of KSi by a French group
in 2011 [341]. The cubic structured KSi with a space group P43n transforms to KSiH3 upon hydrogen
absorption, which is also crystallized in cubic structure with space group Fm3m. The short Si–H bonds
(dSi−H = 1.47 Å), similar to that of silane gas (dSi−H = 1.40 Å), makes this compound an interesting
candidate for hydrogen storage with a very nice ∆H value of−28 kJ mol−1 H2. Several other zintl phase
alloys with other alkali metals (Li, Na, Rb, Cs) were also investigated for their reversible hydrogenation
properties [342–348]. It is very difficult to prepare LiSi single phase by conventional melting method
and it needs extremely high temperature (600 ◦C) and pressure (4 GPa) conditions, however, recently it
could be prepared by the ball milling of elemental Li and Si under Ar [343]. Both of the LiSi and NaSi
systems undergo disproportionation during the hydrogenation/dehydrogenation reaction, thus losing
the reversibility. Thus, the reversibility was observed only in KSiH3, RbSiH3, and CsSiH3 with a total
hydrogen capacity of 4.3, 2.6, and 1.85 wt% respectively. In spite of having salient features, it is difficult
to use KSiH3 or other similar systems for practical applications due to their extremely slow kinetics.
The thermodynamics suggest the possibility of room temperature sorption of KSi/KSiH3 system,
however, due to high activation barrier it can absorb hydrogen only at 100 ◦C at 5 MPa H2 pressure and
desorb the hydrogen at around 200 ◦C. Even at such high temperatures, it needs ~5 h to ab/desorb its
total hydrogen content. In the earlier attempts, carbon was added to reduce the activation barrier and
enhance the sorption kinetics of KSi/KSiH3 system [341]. Although it enhances the sorption kinetics,
it disproportionates the system into KH, Si, and K–Si intermetallic at the same time, which causes
the irreversibility. Later, our group investigated the effect of several known catalysts, i.e., TiO2, TiCl3,
Nb2O5 [13], and nano metals (Ni, Co, Nb) [349]. We achieved drastic improvement by the addition
of 5 mol% of mesoporous Nb2O5, which reduced the activation energy from 142 kJ mol−1 to 63 kJ
mol−1 [13]. The XPS study suggested that Nb2O5 was reduced to NbO phase during milling, which
acts as a catalyst for the H2 sorption. In addition, it was also pointed out that the heat management
during the exothermic reaction of KSi and hydrogen is an important factor and affected the reversibility
of above reaction. It was suggested by Chotard et al. [341] that the excess local heat disproportionates
the KSiH3 system, which was avoided by allowing hydrogenation of KSi in controlled way. This
was achieved by filling H2 at room temperature followed by the increase of temperature up to the
desired value [13]. Using a similar methodology, Janot et al. [350] has shown good performance of
NbF5 addition with a low value of activation energy, i.e., 61–66 kJ mol−1, in comparison to 121 kJ
mol−1 for the non-catalyzed sample [350].

5. Concluding Remark & Future Prospective

We have reviewed the kinetic modifications of hydrogen storage materials. It is clear that there
has been tremendous growth in this field in last few decades. While the heavy metals have quite
nice thermodynamics as well as kinetics, these have low gravimetric capacities. On the other hand,
the light weight hydrides and complex hydrides can deliver high hydrogen amount, but they suffer
from poor thermodynamics as well as sluggish kinetics. While the thermodynamic destabilization
can be achieved by alloying and/or inserting an intermediate state, the kinetics can be tuned using
several approaches such as nano-sizing, use of catalyst etc. The catalytic modification has several
advantages over nano-sizing and several catalysts have been developed so far. In particular, Nb2O5

has remained the best catalyst for MgH2 over number of years. Also, the newly developed ZrCl4,
TiF4, and some complex oxides have shown similar performance to that of Nb2O5. Ti-based catalysts
have shown promising effects for the alanates, whereas no real kinetic alteration could be achieved for
borohydrides. The breakthrough discovery of KH as a catalyst for Mg(NH2)2/LiH system opened a
new family of catalysts for amide systems and several potassium based catalysts have been explored
so far. In summary, a lot of developments have been achieved in the field of catalysts for hydrogen
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storage materials with a scope of further enhancement, as the activation barrier still remains as a
challenge for several potential candidates. The fundamental mechanism of this catalytic modification
is also an important aspect, which still needs to be elaborated in order to establish suitable catalysts.
As a concluding remark, we can say that the use of catalysts will be an unavoidable part of hydrogen
economy establishment.
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