Supplementary Materials: High Performance of Manganese Porphyrin Sensitized p-Type CuFe₂O₄ Photocathode for Solar Water Splitting to Produce Hydrogen in a Tandem Photoelectrochemical Cell

Xia Li¹, Aijuan Liu¹, Dongmei Chu¹, Chunyong Zhang¹, Yukou Du¹, Jie Huang² and Ping Yang^{1,*}

2. Results

2.1. Morphology and Structure

Figure S1. High-resolution XPS spectra of **A**) Fe 2p and **B**) Cu 2p of CuFe₂O₄ nanospheres; **C**) Mn 2p from MnTPP/CuFe₂O₄ hybrid.

2.3. Photocatalytic Activity

Figure. S2. Amount of hydrogen evolved from the PEC device with CuFe₂O₄, MnTPP/CuFe₂O₄ and Pt/MnTPP/CuFe₂O₄ at -0.2 V applied bias vs. RHE. Reaction conditions: electrolyte 0.2 M phosphate buffer solution. Light intensity 16 mW cm².

Figure S3. IPCE spectra of the PECs in 0.2 M phosphate buffer solution without any bias voltage.

Figure S4. Current density vs time behavior from the PEC device with (A) CuFe₂O₄, (B) MnTPP/CuFe₂O₄ and (C) Pt/MnTPP/CuFe₂O₄ as the photocathode at different applied voltages vs. RHE. Reaction conditions: electrolyte 0.2 M phosphate buffer solution. Light intensity 16 mW cm².

Scheme 1. Scheme of three-electrode PEC device.

Catalysts 2018, 8, 108

nhotocathode	F/V	n/H ₂	Flectrolyte condition	Light source	Ref
ZnPc/C60/Pt	0.2 V vs. RHE	110 μL	H ₃ PO ₄ solution (pH 2)	90 mW cm ⁻²	[1]
Pt/TiO2/N, Zn-Fe2O3/Cr2O3	0.1 V vs. RHE	11 μmol cm ⁻²	0.5 M Na2CO3-NaHCO3 (1:1) buffer electrolyte (pH 9.7)	300 W Xenon lamp	[2]
TiO2/CaFe2O4/Pt	1.2 V vs.RHE	1.8 µmol	0.1 M NaOH	A solar simulator (400 mW cm ⁻²)	[3]
Pt/In2S3/CdS/CZTS	0.5 V vs. RHE	9.5 µmol	0.2 M Na2HPO4/NaH2PO4 (pH 6.5)	AM 1.5G light irradiation	[4]
N-Ta2O5/Pt	-0.4 V vs. Ag/AgCl	0.58 μmol cm ⁻²	0.2 M K2SO4	A 500 W Xeon lamp	[5]
CuFe2O4/MnTPP/Pt	-0.2 V	760 µmol	0.2 M phosphate	A 300 W solar	This
	vs.RHE	g^{-1}	buffer solution (pH 7)	simulator	work

Table S1. Comparison of the performance of photocathodes

References:

Abe, T.; Fukui, K.; Kawai, Y.; Nagai, K.; Kato, H. A water splitting system using an organo-photocathode and titanium dioxide photoanode capable of bias-free H₂ and O₂ evolution, *Chem. Commun.* **2016**, *52*, 7735–7737.

Sekizawa, K.; Oh-ishi, K.; Kataoka, K.; Arai, T.; Suzuki T.M.; Morikawa T. Stoichiometric water splitting using a p-type Fe₂O₃ based photocathode with the aid of a multi-heterojunction, *J. Mater. Chem. A.* **2017**, *5*, 6483–6493.

Ida, S.; Kearney, K.; Futagami, T.; Hagiwara, H.; Sakai, T.; Watanabe, M.; Rockett, A.; Ishihara, T. Photoelectrochemical H₂ evolution using TiO₂-coated CaFe₂O₄ without an external applied bias under visible light irradiation at 470 nm based on device modeling, *Sustainable Energy & Fuels*. **2017**, 1, 280–287.

Jiang, F.; Gunawan.; Harada, T.; Kuang, Y.; Minegishi, T.; Domen, K.; Ikeda, S.

Pt/In₂S₃/CdS/Cu₂ZnSnS₄ Thin film as an efficient and stable photocathode for water reduction under sunlight radiation, *J. Amer. Chem. Soc.* **2015**, 137, 13691–13697.

Suzuki, T.M.; Saeki, S.; Sekizawa, K.; Kitazumi, K.; Takahashi, N.; Morikawa, T.

Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-Type N-doped Ta₂O₅ photocathode active under visible light irradiation, *Appl. Catal. B: Environ.* **2017**, 202, 597–604.