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Abstract: Abscisic acid (ABA) is a natural product, which is a well-known phytohormone. However,
this molecule has recently exhibited interesting biological activities, emphasizing the need for a
simple and direct access to new analogues based on the ABA framework. Our strategy relies on a
pallado-catalyzed Mizoroki-Heck cross-coupling as key reaction performed in solvent and ligand
free conditions. After a careful optimization, we succeeded in accessing various (E/Z)-dienes and
(E/E/Z)-trienes in moderate to good yields without isomerization and applied the same approach to
the synthesis of ABA in an environmentally sound manner.
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1. Introduction

Polyenic scaffolds constitute an important functionality among organic compounds and have
a high synthetic interest since medicinally relevant molecules and natural products exhibit diene
fragments (Figure 1) [1].
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Figure 1. Examples of biologically active natural products containing diene moieties.

Several synthetic methods have therefore been developed to obtain these carotenoid moieties in
iterative process or in convergent methods [2]. Traditionally, the olefination reaction was extensively
used. However, it is often associated with the uncontrolled production of E and Z isomers which may
require careful purification [3]. Then transition metal-catalyzed cross-coupling reactions galvanized
the synthesis of these complex conjugated molecules. Catalysts such as ruthenium [4], zirconium [5-7],
zinc [8] and nickel [9] were successfully used. The use of palladium has been widely reported with
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Negishi [10,11], Stille [12-15], Suzuki-Miyaura [16-18], Sonogashira [19], Kumada-Tamao [20] and
Mizoroki-Heck [21-25] cross-coupling reactions [26-28]. Lately, the use of single unsaturated units as
building blocks was promoted to respond to the challenging but crucial control of the configuration
of the double bond generated [29-33]. In our effort to develop environmentally benign tools [34-36],
we herein report the use of the Mizoroki-Heck reaction, which requires simple and directly accessible
starting materials to build stereocontrolled dienes and trienes. Unlike other cross-coupling approaches,
which may require several steps to install the pre-activated partners, the Mizoroki-Heck reaction
enables the direct formation of dienes from terminal olefin substrates. The efficiency of our method
was then evaluated in the synthesis of abscisic acid, an important phytohormone [37-43] which has
been recently reported to have interesting biological effects [44,45].

2. Results and Discussion

2.1. Optimization of the Mizoroki-Heck Reaction

To achieve the optimized conditions, the cross-coupling reaction of 1-ethenyl-3-methylcyclohex-2-
en-1-ol 1 with methyl (2Z)-3-iodobut-2-enoate 2 was selected as the model reaction under the standard
conditions previously described by Cossy and co-workers (Table 1, entry 1) [46]. Surprisingly,
only degradation was observed. Since conjugated products are prompted to make versatile
rearrangement [47,48], the reaction was next performed in a flask protected from natural light. A small
amount of the expected product 3a was isolated along with the side product 4 (entry 2). The formation
of 4 can be explained by a 1,3-rearrangement of the allylic alcohol, a transformation previously
described by Qu and co-workers under a thermal activation in water [48]. The use of acetonitrile
moreover of an additional ligand induced no positive change (entries 3 and 4) [49]. However, a
significant improvement was obtained by replacing silver acetate by silver carbonate and 1.5 equiv. of
silver carbonate proved to be the optimized amount (entries 5-7). A moderate heating is recommended
since the formation of 3a was significantly reduced at 80 °C.

Table 1. Optimization of the Mizoroki-Heck reaction between 1 and 2.

MeO,C
Pd(OAc), (5 mol%), OH

cOo,Me OH CO,Me /7
Addit
b& + = —)I ves AN + /
Z Solvent, 50 °C

1 2 3a 4
Ent 1 2 Additive Solvent Time Yield
y (equiv.) (equiv.) (equiv.) (h) 3:4 (%)
1 1.2 1 AgOAc (1.1) DMEF 17 0:0°
2 12 1 AgOAc (1.1) DMF 17 5:4b
3 1.2 1 AgOAc (1.1) MeCN 17 9:0b
AgOAc (1.1) A b
4 1.2 1 P(eTol)s (0.1) MeCN 17 9:20
5 1.2 1 AgyCO3 (1.5) MeCN 17 63:0 b<
6 1.2 1 AgyCO3 (2) MeCN 17 63:0 bc
7 1.2 1 AgrCO;3 (1.1) MeCN 17 54:0 be
8 1.2 1 AgyCO3 (1.5) MeCN 17 10:0 bed
9 1.2 1 AgyCO3 (1.5) none 1 63:0 b<
10 1 2 AgyCO3 (1.5) none 1 60:0 b<
11 1 1+1 AgyCO3 (1.5) none 1 50:0 be
12 1.2 1 AgyCO3 (1.5) none 1 62:0 b4

® The reaction was performed under natural light. * Reaction performed protected from natural light. ¢ Reaction
performed under air. ¢ The reaction temperature was set at 80 °C. ¢ Reaction performed under inert atmosphere.

Next, neat conditions were tried, and even if the reaction mixture was a thick paste, the expected
product 3a was isolated in similar yield (63%) in a considerably shorter time (1 h vs. 17 h). To the best
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of our knowledge, this is the first example of neat Mizoroki-Heck reaction for the formation of dienes.
The vinylation of acrylic substrates has been already reported in solvent-free conditions but it usually
requires the use of a ligand, palladium supported catalyst, palladium nanocatalyst or microwave
activation [50-57]. Finally, 2 was introduced in excess, in one portion or in sequential addition, without
improving the yield (entries 10 and 11). Hence the optimized reaction conditions were as follows:
in a flask protected from light, 1 (1.2 equiv.) and 2 (1 equiv.) in presence of Pd(OAc); (5 mol %) and
AgrCOs3 (1.5 equiv.) at 50 °C for 1 h. It should be noted that working under an inert atmosphere did
not improve the yield of the products 3a and 4 (entry 12).

2.2. Substrate Scope

A diversity of terminal olefin substrates was tested in the coupling reaction with methyl
(2Z)-3-iodobut-2-enoate 2. The results are reported in Scheme 1. Various allylic cyclohexenols and
cyclohexanols were examined and the expected dienes were obtained in moderate to good yields 3a-3f.
The presence of an unsaturation and/or different methyl substituents on the ring had little influence on
the efficiency of the reaction. The variation of the yield observed was more substrate-dependent since
3c and 3d appeared to be very unstable and degraded spontaneously if not stored at low temperature
in dark conditions. For these compounds, the reaction was tried at room temperature; however,
the cross-coupling reaction failed completely. The stability issue was even more pronounced for
1-ethenylcyclopentan-1-ol, since its formation from cyclopentanone was difficult. The cross-coupling
reaction was performed on the crude starting material, which could explain the low yield observed.
Surprisingly, the resulting product 3g was completely bench stable. Satisfyingly, sterically hindered
secondary alcohols 3h and sensitive?ertiary alcohols (3a-3g) were well tolerated under our optimized
conditions. Even the volatile ethenylcyclohexane, which;equired working in a sealed tube, and the
unstable styrene led to the corresponding dienes 3i and 3j in 42% and 78% yields. It is worth noting
that all the coupling products were obtained as pure (E,Z)-dienes. The configuration of the diene was
confirmed by 'H NMR (Supplementary Materials: Figure S1). The chemical shift of the hydrogen
alpha to the ester moiety is in accordance with the values reported in the literature for a (E/Z)-diene,
around 5.5 ppm (vs. 6.0 ppm for a E/E fragment) [58].

Finally, different vinylic iodides were submitted to our solvent-free Mizoroki-Heck conditions.
(2Z)-3-iodobut-2- enenitrile 2a, Methyl (2Z)-3-iodoacrylate 2b, and 4-nitrophenyl(2Z)-3-iodobut-2-enoate 2¢
were successfully introduced on 1-ethenyl-3-methylcyclohex-2-en-1-o0l 1 leading to expected compounds
(3k-3m). Compound 3k appeared to be more sensitive to degradation than 3a, but the (E,Z) configuration
remained unchanged. The reaction conditions were then extended to the formation of (E,E,Z) tertiary
trienol 3n, using Methyl (2Z 4E)-5-iodo-3-methylpenta-2,4-dienoate (2e), which was isolated in 56% yield.
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Scheme 1. Scope of substrates. @ 1 h of reaction time. ¥ 2 h of reaction time. ¢ 1 h 40 min was required

for the reaction time. 4 sealed tube. ¢ 40 min of reaction time.

2.3. Synthesis of ABA

Having a method to obtain the diene scaffold in hand, we focused on the synthesis of abscisic
acid (ABA). Several syntheses have already been reported in the literature [59-61]. Most of them are
based on the introduction of the carbon skeleton of the side chain via the corresponding alkyne in
one step [62-65] or with trimethylsilylacetylene [66,67], which is then functionalized by a Sonogashira
reaction (Scheme 2). Our strategy requires a reduction step to obtain the final (E,Z) diene fragment.
Our approach is based on the introduction of the side chain with our solvent-free Mizoroki-Heck
reaction between methyl (2Z)-3-iodobut-2-enoate 2 and 7. Our key cross-coupling precursor was
straightforwardly obtained from the commercially available 2,6,6-trimethylcyclohex-2-ene-1,4-dione 5.
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Scheme 2. Retrosynthetic approaches for the synthesis of ABA.
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First, the mono protection of the diketone 5 was tried following the conditions described by Ferrer
and co-workers (Scheme 3) [68]. (S,5)-hydrobenzoin, our chiral auxiliary, was heated in presence of
a catalytic amount of pTsOH in benzene. However only the degradation of the hydrobenzoin into
benzaldehyde was observed. We then decided to use pyridinium p-toluenesulfonate (PPTS), which is

a milder acidic catalyst [69].

Ph  Ph Ph.  Ph
o . :
(S, S)-Hydrobenzoine o O VinylMgBr O 0O
PPTS (0.11 equiv) (5 equiv)
Cyclohexane, A, 18 h THF, 0°C, 1 h
O 96 % 100 %
o) HO /
3 ] z
Ph Ph S/IR=2/1
O
o__0O
1- NaOH 1N, TBACI,
Mizoroki-Heck THF, 40 °C, 2h
condtions 2-HCIIN,RT, 1h_ HG
HO
50 °C, 17 h / 59 % [
0,
8 ABA
HO S/IR=2/1
O\

Scheme 3. Synthesis of ABA.

This time, in benzene the desired product 6 was isolated after 5 days in a promising 24% yield.
A survey of different solvents was made and fortunately, the environmentally sound cyclohexane
significantly improved the yield and the reaction time since 6 was obtained in 96% yield after 18 h.
Next, the Grignard reaction with an excess of vinylmagnesium bromide gave quantitatively 7 as a
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mixture of inseparable diastereoisomers. The R/S ratio of the newly formed center was determined by
HPLC. Disappointingly, working at a lower temperature (—20 °C or —78 °C) did not improve this ratio
much while it considerably reduced the formation of 7. Nevertheless, our key step was performed
on the mixture of both isomers and the expected (E/Z)-diene 8 was isolated in 96% yield without
racemization, the R/S ratio remained unchanged during the formation of the diene 8. A saponification
followed by an acidic treatment enabled the formation of abscisic acid with the same R/S ration and
therefore enantiomerically enriched in its S isomer. The final product was synthetized in four steps
from 5 in 54% global yields.

3. Conclusions

To conclude, we managed to develop an efficient, environmentally sound method to synthetize
delicate dienes and trienes via a Mizoroki-Heck reaction. The configuration of the double bonds was
controlled, and no isomerization was observed. The salient features of our approach are the association
of simple terminal olefins with various vinylic iodides, palladium acetate under air without any ligand
or solvent. Our optimized solvent-free Mizoroki-Heck reaction was next successfully applied to the
synthesis of ABA. This method offers a short new pathway where solvents and reagents were chosen
to give an environmentally friendlier alternative to the synthesis already available in the literature.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2073-4344/8/3/115/s1,
Figure S1: 'H NMR and 3C NMR Spectra of all compounds.
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