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Abstract: An organocatalytic system based on an unprecedented proline analogue and iron oxide
magnetic nanoparticles (Prn/Fe2O3@SiO2) was designed and employed in vanillin production from
isoeugenol and vanillyl alcohol. Full characterization of the obtained catalyst revealed the successful
functionalization of the nanoparticle surface with the organic moieties. The activity of the magnetic
bifunctional material was compared with its proton-unexchanged counterpart. Interestingly, the
oxidation of isoeugenol resulted in being highly dependent on the acidic functionalities of the
organocatalyst. Nonetheless, the catalytic performance of the proton-unexchanged catalyst suggested
that the acidic and basic sites of the Prn/Fe2O3@SiO2 exhibited a synergic effect, giving rise to higher
conversion and selectivity. The presence of bifunctional groups in the proline analogue, together
with the magnetic properties of the iron oxide nanoparticles, could lead to high efficiency, versatility,
recoverability, and reusability.
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1. Introduction

Valorization of lignocellulosic biomass has become an attractive approach for the production of
added value chemicals and fuels, decreasing as well, environmental problems related to agricultural
residues. Lignocellulosic biomass is typically composed by three main constituents: cellulose,
hemicellulose, and lignin. In particular, lignin is a highly functionalized aromatic compound, which
could lead to the design of outstanding chemical platforms. In this sense, vanillin is one of the
most preeminent molecules, which can be obtained from lignin derived compounds such as eugenol,
isoeugenol, and ferulic acid via oxidation pathways [1]. Synthetic vanillin is commonly used as
flavoring agent in food, cosmetic, pharmaceutical, and fine chemical industries. Nowadays, this
molecule is mainly produced from petro-based intermediates, predominantly glyoxylic acid and
guaiacol, employing non-sustainable synthetic methodologies such as Riedel process [2]. Although
synthesis of vanillin has been explored for many years, much more effort should still be devoted to
excavating facile an environmentally-friendly protocols for the catalytic oxidation of lignin model
compounds using cost effective organo-catalytic based technologies.

Vanillin synthesis from isoeugenol and vanillyl alcohol should be further investigated in order
to find new alternatives to the conventional oxidation methods that require stoichiometric amounts
of inorganic oxidants such as potassium permanganate, which are highly toxic and polluting [3].
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In order to minimize chemical waste, the scientific community is moving towards the use of green
oxidants including, H2O2 [4,5] and molecular oxygen [6]. In addition, the inherent arduous separation
and recovery of homogeneous catalysts have led to the development of heterogeneous systems,
as a priority of research activity in the green chemistry field. Thus, the use of clean oxidants and
heterogeneous catalytic systems, open new possibilities to further develop environmentally friendly
catalyzed processes [7,8]. In this regard, supported iron oxide nanoparticles has been reported to
convert the isoeugenol to vanillin using H2O2 [9].

Moreover, the use of heterogeneous catalytic systems usually requires a filtration or centrifugation
step to recover the catalyst. In this regard, magnetic nanoparticles (MNPs) has attracted a great interest
since they can be easily separated from the reaction mixture by using a magnetic external field and
reused for several cycles [10–12]. Nonetheless, maintaining the stability of these particles for a long
time without agglomeration or precipitation is still a challenge [13,14]. Aiming to stabilize MNPs,
several strategies have been proposed, such as coating or encapsulation in the form of core–shell
structures or nanocomposites [15]. In particular, core–shell frameworks composed of γ-Fe2O3 and
silica (γ-Fe2O3@SiO2) are one of the most stable and efficient reported nanostructure for catalysis.
Silica surface can be easily post-modified with a wide variety of catalytic species by using different
organosiloxane precursors [16,17].

Functionalization of γ-Fe2O3@SiO2 with organocatalysts could represent significant progress
in the field of catalysis [18–20]. So far, many organocatalysts have been developed based on their
carboxylic and amine functionalities, which could play a crucial role in the catalytic reaction [21–23].
Particularly, proline is an amino acid which contains α-amino and α-carboxylic acid groups [24,25].
Proline and its derivatives have been used as asymmetric catalysts in proline organocatalysis
reactions [26], including aldol reaction [27], Knoevenagel [28], and multicomponent reaction [29].
To the far of our knowledge, the preparation of proline based solid-supported organocatalysts
commonly requires several reaction steps and non-environmentally friendly procedures [30]. Although
organocatalysis have been extensively explored, much remains to be accomplished, especially in
the context of a truly sustainable protocols. Herein, we have developed an innovative strategy to
produce a magnetic supported organocatalyst. This methodology includes the functionalization of
γ-Fe2O3@SiO2 with 3-aminopropyltriethoxysilane (APTES), aiming to obtain γ-Fe2O3@SiO2-NH2.
Subsequently, a proline analogue was synthetized using a one-step procedure by post-modifying the
γ-Fe2O3@SiO2-NH2 surface with penicillin G, which finally led to formation of an unprecedented
proline analogue organocatalyst (Prn/Fe2O3@SiO2). In particular, this work has focused on penicillin
G but it could be in principle extended to other proline derivatives. The obtained material was applied
to the catalytic oxidation of isoeugenol and vanillyl alcohol (Scheme 1).

Catalysts 2018, 8, x FOR PEER REVIEW  2 of 11 

 

oxidants including, H2O2 [4,5] and molecular oxygen [6]. In addition, the inherent arduous 
separation and recovery of homogeneous catalysts have led to the development of heterogeneous 
systems, as a priority of research activity in the green chemistry field. Thus, the use of clean oxidants 
and heterogeneous catalytic systems, open new possibilities to further develop environmentally 
friendly catalyzed processes [7,8]. In this regard, supported iron oxide nanoparticles has been 
reported to convert the isoeugenol to vanillin using H2O2 [9]. 

Moreover, the use of heterogeneous catalytic systems usually requires a filtration or 
centrifugation step to recover the catalyst. In this regard, magnetic nanoparticles (MNPs) has 
attracted a great interest since they can be easily separated from the reaction mixture by using a 
magnetic external field and reused for several cycles [10–12]. Nonetheless, maintaining the stability 
of these particles for a long time without agglomeration or precipitation is still a challenge [13,14]. 
Aiming to stabilize MNPs, several strategies have been proposed, such as coating or encapsulation 
in the form of core–shell structures or nanocomposites [15]. In particular, core–shell frameworks 
composed of γ-Fe2O3 and silica (γ-Fe2O3@SiO2) are one of the most stable and efficient reported 
nanostructure for catalysis. Silica surface can be easily post-modified with a wide variety of catalytic 
species by using different organosiloxane precursors [16,17]. 

Functionalization of γ-Fe2O3@SiO2 with organocatalysts could represent significant progress in 
the field of catalysis [18–20]. So far, many organocatalysts have been developed based on their 
carboxylic and amine functionalities, which could play a crucial role in the catalytic reaction [21–23]. 
Particularly, proline is an amino acid which contains α-amino and α-carboxylic acid groups [24,25]. 
Proline and its derivatives have been used as asymmetric catalysts in proline organocatalysis 
reactions [26], including aldol reaction [27], Knoevenagel [28], and multicomponent reaction [29]. To 
the far of our knowledge, the preparation of proline based solid-supported organocatalysts 
commonly requires several reaction steps and non-environmentally friendly procedures [30]. 
Although organocatalysis have been extensively explored, much remains to be accomplished, 
especially in the context of a truly sustainable protocols. Herein, we have developed an innovative 
strategy to produce a magnetic supported organocatalyst. This methodology includes the 
functionalization of γ-Fe2O3@SiO2 with 3-aminopropyltriethoxysilane (APTES), aiming to obtain 
γ-Fe2O3@SiO2-NH2. Subsequently, a proline analogue was synthetized using a one-step procedure by 
post-modifying the γ-Fe2O3@SiO2-NH2 surface with penicillin G, which finally led to formation of an 
unprecedented proline analogue organocatalyst (Prn/Fe2O3@SiO2). In particular, this work has 
focused on penicillin G but it could be in principle extended to other proline derivatives. The 
obtained material was applied to the catalytic oxidation of isoeugenol and vanillyl alcohol (Scheme 
1). 

 
Scheme 1. Schematic depiction of vanillin production from the different reactants in this work. Scheme 1. Schematic depiction of vanillin production from the different reactants in this work.



Catalysts 2018, 8, 167 3 of 11

2. Results and Discussion

A magnetic-separable proline-based heterogeneous organocatalyst was successfully prepared
following the protocol depicted in Figure 1. The unique properties of MNPs, which simplify the
recovery of the material, together with the outstanding functionalities provides by the proline
analogue, make Prn/Fe2O3@SiO2 a potential candidate as catalyst in a broad range of reactions.
An innovative protocol was designed for the in situ formation of a proline analogue on the surface
of the aminofunctionalized γ-Fe2O3@SiO2 by reaction with penicillin G. The latest molecule contains
a four-membered β-lactam ring which can react with the amine group of γ-Fe2O3@SiO2-NH2.
Consequently, a secondary amine adjacent to the carboxylate group was formed, corresponding
to the proline analogue. Furthermore, the carboxylic acid group is formed from carboxylate to by
proton exchange.
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Figure 1. Overview of the preparation of Prn/Fe2O3@SiO2 magnetic organocatalyst.

SEM image of Prn/Fe2O3@SiO2 exhibited a homogeneous distribution with the formation of
nanospherical particles (Figure 2a). This analysis displayed a certain tendency to form agglomerates,
mostly associated with the magnetic properties of the obtained nanostructures. SEM analysis revealed
a particle size average of 14.5 nm. As expected, EDS spectrum (Figure 2b) of Prn/Fe2O3@SiO2 showed
the presence of Si, O, N, C, S, and Fe, which is in accordance with SEM-mapping results (Figure 2e–j).
Both EDS and SEM-mapping techniques corroborates the effective functionalization of the iron oxide
MNPs and therefore confirmed that penicillin G successfully reacted with the amine group on the
γ-Fe2O3@SiO2-NH2 surface, giving rise to the desired proline analogue. TEM analysis also confirmed
the nanometric structure of Prn/Fe2O3@SiO2 γ (Figure 2c), in good agreement with SEM results.
Selected area electron diffraction (SAED) pattern of Prn/Fe2O3@SiO2 (Figure 2d) revealed clear rings
in accordance with the formation of crystalline gamma iron oxide [31].
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Thermal stability of Prn/Fe2O3@SiO2 was investigated by thermogravimetric analysis (Figure 3a).
A progressive weight loss of 5 wt % was observed from 100 ◦C to 420 ◦C owing to the presence of
unbounded/physisorbed water and solvents, and the possible dehydration of some silanol groups [32].
In addition, Figure 3a displayed a drastically drop of weight (12 wt %) at 420 ◦C. This decrease can
be attributed to the degradation of organic moieties in the Prn/Fe2O3@SiO2 material. Moreover,
DTA measurements displayed an exothermic band at 490 ◦C associated to the decomposition of the
proline analogue.

The magnetic properties of the synthesized materials were investigated by VSM analysis
(Figure 3b). The magnetization analysis of both, γ-Fe2O3 and Prn/Fe2O3@SiO2 samples confirmed
their remarkably magnetic properties. The saturation magnetizations of γ-Fe2O3 and Prn/Fe2O3@SiO2,
resulted in similar values, 65 and 40 emu/g, respectively [33]. The slightly lower magnetization of
the functionalized γ-Fe2O3 could be attributed to the proline analogue loading after functionalization.
In any case, without a considerably loss of magnetism after the preparation process, Prn/Fe2O3@SiO2

features interesting properties of magnetic separation and manipulation in view of their potential
catalytic applications.

X-ray diffraction analysis of γ-Fe2O3, γ-Fe2O3@SiO2-NH2, and Prn/Fe2O3@SiO2 materials was
carried out and is reported in Figure 3c. The X-ray diffraction patterns of the three samples exhibited
characteristic peaks, which matched well with standard γ-Fe2O3 reflections and revealed their highly
crystalline nature [34]. After introducing amorphous SiO2, a small and expectable intensity decrease
was observed. Nonetheless, these results suggest that after the functionalization process there is
not considerable loss of crystallinity. Moreover, BET analysis (Figure 3d) showed a surface area of
75.2 m2·g−1 and 53.1 m2·g−1 for the γ-Fe2O3 and Prn/Fe2O3@SiO2 materials, respectively. Both
products present a mesoporous structure, with a pore size of around 15 nm (Table 1).



Catalysts 2018, 8, 167 5 of 11
Catalysts 2018, 8, x FOR PEER REVIEW  5 of 11 

 

 
Figure 3. (a) Thermogravimetric (TG) and differential thermogravimetric (DTA) analyses of 
Prn/Fe2O3@SiO2, (b) VSM diagram of γ-Fe2O3 and Prn/Fe2O3@SiO2, (c) XRD pattern of γ-Fe2O3, 
γ-Fe2O3@SiO2-NH2 and Prn/ Fe2O3@SiO2, (d) N2 physisorption isotherms of γ-Fe2O3 and 
Prn/Fe2O3@SiO2. 

Table 1. Textural properties. 

Material SBET [a] (m2 g−1) DBJH [b] (nm) VBJH [c] (cm3 g−1) 
γ-Fe2O3 75 14.5 0.27 

Prn/Fe2O3@SiO2 53 15.2 0.2 
[a] SBET: specific surface area was calculated by the Brunauer–Emmett–Teller (BET) equation. [b] DBJH: 
mean pore size diameter was calculated by the Barret–Joyner–Halenda (BJH) equation. [c] VBJH: pore 
volumes were calculated by the Barret–Joyner–Halenda (BJH) equation. 

The effective functionalization of γ-Fe2O3@SiO2 surface with penicillin-derived proline 
analogue was corroborated by FT-IR (Figure 4). This conclusion can be inferred from the 
appearance of a peak at 1644 cm−1, related to the amide group formed by the reaction between 
penicillin G and amino groups on the γ-Fe2O3@SiO2 surface. In addition, the band associated with 
carbonyl group in the lactam ring of pure penicillin (1174 cm−1) [35] was absent in Prn/Fe2O3@SiO2 
spectrum, pointing to ring opening upon functionalization. Furthermore, a strong band at 1080 cm−1 

was observed for both γ-Fe2O3@SiO2 and Prn/Fe2O3@SiO2 materials, corresponding to Si-O-Si 
stretching vibration. FT-IR spectra also showed several peaks in the 2900–3000 cm−1 wavenumber 
range, which can be assigned to C-H bonds in the aliphatic chains. Besides, characteristic 
transmission bands at 625 cm−1 and 550 cm−1 were associated with iron oxide [36]. 

Figure 3. (a) Thermogravimetric (TG) and differential thermogravimetric (DTA) analyses of
Prn/Fe2O3@SiO2, (b) VSM diagram of γ-Fe2O3 and Prn/Fe2O3@SiO2, (c) XRD pattern of
γ-Fe2O3, γ-Fe2O3@SiO2-NH2 and Prn/Fe2O3@SiO2, (d) N2 physisorption isotherms of γ-Fe2O3 and
Prn/Fe2O3@SiO2.

Table 1. Textural properties.

Material SBET
[a] (m2 g−1) DBJH

[b] (nm) VBJH
[c] (cm3 g−1)

γ-Fe2O3 75 14.5 0.27
Prn/Fe2O3@SiO2 53 15.2 0.2
[a] SBET: specific surface area was calculated by the Brunauer–Emmett–Teller (BET) equation. [b] DBJH: mean pore
size diameter was calculated by the Barret–Joyner–Halenda (BJH) equation. [c] VBJH: pore volumes were calculated
by the Barret–Joyner–Halenda (BJH) equation.

The effective functionalization of γ-Fe2O3@SiO2 surface with penicillin-derived proline analogue
was corroborated by FT-IR (Figure 4). This conclusion can be inferred from the appearance of a peak
at 1644 cm−1, related to the amide group formed by the reaction between penicillin G and amino
groups on the γ-Fe2O3@SiO2 surface. In addition, the band associated with carbonyl group in the
lactam ring of pure penicillin (1174 cm−1) [35] was absent in Prn/Fe2O3@SiO2 spectrum, pointing
to ring opening upon functionalization. Furthermore, a strong band at 1080 cm−1 was observed for
both γ-Fe2O3@SiO2 and Prn/Fe2O3@SiO2 materials, corresponding to Si-O-Si stretching vibration.
FT-IR spectra also showed several peaks in the 2900–3000 cm−1 wavenumber range, which can be
assigned to C-H bonds in the aliphatic chains. Besides, characteristic transmission bands at 625 cm−1

and 550 cm−1 were associated with iron oxide [36].
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The catalytic activity of Prn/Fe2O3@SiO2 was investigated in two reactions: (1) oxidation of
isoeugenol and (2) vanillyl alcohol to vanillin. Firstly, the amount of catalyst was optimized to 20 mg
of catalyst per each mmol of starting material. Subsequently, both reactions were studied using four
oxidant agents: (a) hydrogen peroxide, (b) urea hydrogen peroxide (UHP), (c) tert-butyl hydroperoxide
(tBHP), and (d) molecular oxygen. Although, the latest did not displayed satisfactory results, the other
three oxidant agents resulted to be effective in this reaction, in particular, the best results were achieved
using hydrogen peroxide. Moreover, the influence of the solvent on the effectiveness of the catalytic
reaction was investigated using acetonitrile and toluene, the first one being the most appropriated.
On the other hand, the effect of temperature was settled by performing the reaction at 80, 90, and
100 ◦C, establishing 90 ◦C as the most suitable temperature for the catalytic reaction (Table 2).

Under the model conditions, we monitored the reaction progress every 30 min. After 4 h, the
reaction achieved the maximum conversion with a stable selectivity towards vanillin production.
Compared to γ-Fe2O3 and catalyst-free reaction, Prn/Fe2O3@SiO2 showed higher conversion and
selectivity under similar conditions (Tables 3 and 4). The catalyst was also compared with its
proton-unexchanged counterpart, for which a decrease in conversion for the latest material could
be observed. These results indicated that the acidic nature, provided by the carboxylic group seems
to have a crucial effect on the catalytic performance. In absence of the carboxylic acid, the amine
group itself could promote the reaction. However, the oxidation reaction of isoeugenol, using the
proton-unexchanged catalyst did not achieve a good catalytic activity towards vanillin production
(Table 3). The presence of acidic species may be decisive in the catalytic conversion of isoeugenol
to vanillin.
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Table 2. Oxidation of vanillyl alcohol (A) and isoeugenol (B) to vanillin. (In bold: conditions for the
best catalytic formance).
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Entry Catalyst Time (h) Conversion (mol %) Selectivity Vanillin (mol %)
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4 Prn/Fe2O3@SiO2 4 >99 92
[a] Reaction conditions: 5 mmol vanillyl alcohol, 1.2 mL H2O2, 8 mL acetonitrile, 0.1 g catalyst, 90 ◦C.

Reusability studies prove the high inherent stability and activity of Prn/Fe2O3@SiO2 catalyst
(Figure 5). For both reactions, the catalyst exhibited an excellent reusability for five consecutive cycles.
Particularly, a drop in the activity of the catalyst after the fifth cycle was observed for isoeugenol
conversion, which could be associated to the poisoning of the catalyst surface by side products of
isoeugenol oxidation, in good agreement with the moderate selectivity observed to other products
including lignin-like oligomers from vanillin oxidative polymerisation.
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3. Materials and Methods

All chemicals were purchased from Sigma-Aldrich and used as received without further
purification. Deionized (DI) water was used throughout this study. In order to characterize
the synthesized materials, several techniques have been employed, including scanning electronic
microscopy (SEM), electron dispersive spectroscopy (EDS) analysis, transmission electronic
nicroscopy (TEM), selected area (electron) diffraction (SAED), thermogravimetric analysis (TGA),
magnetization analysis, X-ray diffraction (XRD), N2 physisorption, and Fourier transform infrared
spectroscopy (FT-IR).

Electron dispersive spectra and SEM images were acquired using a Leo 1450vp scanning electron
microscope equipped with a SC7620 energy dispersive spectrometer (Carl Zeiss AG, Oberkochen,
Germany). TEM images were recorded in a Zeiss EM 900 microscope (Carl Zeiss AG, Oberkochen,
Germany). Previously, the sample was dispersed in ethanol and transferred to a copper grid.
Thermogravimetric analysis was accomplished using the System Setaram Setsys 12 TGA instrument
(Setaram Instrumentation, Caluire, France), by heating the sample up to 800 ◦C at a rate of 10 ◦C·min−1

under N2 flow. X-ray diffraction patterns were collected using the D8 Advanced Diffractometer (Bruker
AXS, Billerica, MA, USA) with the Lynxeye detector at room temperature. FT-IR spectra were recorded
on the ABB MB3000 infrared spectrophotometer (ABB, Zurich, Switzerland), equipped with an ATR
PIKE MIRacle™ sampler, a window of ZnSe, and 256 scans at a resolution of 8 cm−1.

The catalytic reactions were investigated by gas chromatography (GC) in an Agilent 6890N
gas chromatograph (60 mL min−1 N2 carrier flow, 20 psi column top head pressure) using a
flame ionization detector (FID) (Agilent, Santa Clara, California, USA). The capillary column HP-5
(30 m × 0.32 mm × 0.25 mm) was employed. The conversion and selectivity were calculated from the
chromatograms by

Conversion(%) =
[CInitial − CFinal ]

CInitial
× 100

Selectivity (%) =
CProduct

[CInitial − CFinal ]
× 100

where CInitial and CFinal are the concentrations of the reagents before and after the reaction, respectively.
CProduct is the concentration of the product.

3.1. Synthesis of γ-Fe2O3@SiO2

Synthesis of γ-Fe2O3 was carried out employing a reported chemical co-precipitation protocol
with a slight modification [37,38]. Accordingly, FeCl2·4H2O (0.495 g) and FeCl3·6H2O (1.35 g) were
first dissolved in acetic acid (3 wt %, 100 mL) and stirred at room temperature. Subsequently, a NH4OH
solution (0.7 M, 50 mL) was added to the mixture at room temperature to reach a pH value of 12.
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After 15 min, a black precipitated was observed. The obtained solid was collected by an external
magnet, washed three times with a mixture water/ethanol (1:1) and dried at 100 ◦C for 12 h. Finally,
the material was calcined at 300 ◦C for 3 h. The obtained γ-Fe2O3 (1 g) was dispersed in ethanol
(40 mL) and sonicated for 30 min at room temperature. Afterward, TEOS (5 mL) was added dropwise
and the mixture was stirred at 40 ◦C for 24 h. The final core–shell nanostructure was collected by an
external magnet, washed three times with ethanol and dried at 80 ◦C under vacuum for 6 h to obtain a
γ-Fe2O3@SiO2 nanomaterial.

3.2. Synthesis of Prn/γ-Fe2O3@SiO2

The obtained γ-Fe2O3@SiO2 (2.0 g) was dispersed in dry toluene (20 mL) and sonicated for 45 min.
Then, APTES (0.5 mL) was added to the dispersion and slowly heated up to 105 ◦C. The reaction
mixture was stirred for 24 h under reflux conditions. The resulted amino-functionalized material
(γ-Fe2O3@SiO2-NH2) was redispersed in 20 mL of distilled water and thereafter, a solution of penicillin
G potassium salt (1 g) in ethanol:water (1:1, 10 mL) was added to the dispersion. The reaction mixture
was stirred for 48 h at 60 ◦C. The obtained material was washed several times with ethanol and
oven-dried at 60 ◦C for 5 h. In addition, the product was redispersed in a dilute HCl solution (pH = 4.5)
and stirred for 6 h. Finally, the synthetized Prn/Fe2O3@SiO2 was washed with distilled water and
dried at 100 ◦C in a vacuum oven.

3.3. Catalytic Experiments

The oxidation of isoeugenol to vanillin was performed using 0.8 mL of isoeugenol, 1.2 mL of H2O2,
8 mL of acetonitrile (CH3CN), and 0.1 g of the previously synthetized organocatalyst (0.01 g/mL).
The reaction mixture was stirred at 90 ◦C for 24 h by using a multiple parallel synthesis system
(Carrusel Reaction Station, Radleys Discovery Technologies Ltd., Saffron Walden, UK). During the
reaction, samples were taken every 30 min and characterized by gas chromatography. The oxidation of
vanillyl alcohol was carried out employing the same procedure.

4. Conclusions

In summary, an unprecedent proline analogue was generated in situ from the reaction between
penicillin G and the amino-functionalized surface of γ-Fe2O3@SiO2. The magnetic γ-Fe2O3@SiO2 core
shell structure facilitated the recovery and reusability of the resulted organocatalyst. The obtained
material was applied to the conversion of vanillyl alcohol and isoeugenol to vanillin. The presence
of acidic functionalities in the catalyst was decisive for the isoeugenol oxidation. In both reactions,
the acidic and basic sites of the Prn/Fe2O3@SiO2, exhibiting a synergic effect, enhancing the catalytic
efficiency towards higher conversion and selectivity.
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