
catalysts

Editorial

Biocatalysis and Biotransformations

Manuel Ferrer ID

Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; mferrer@icp.csic.es;
Tel.: +34-91-5854872

Received: 14 May 2018; Accepted: 17 May 2018; Published: 17 May 2018
����������
�������

1. Background

The complexity and chemical diversity of industrial substrates make their transformation
challenging [1]. Chemists mostly use pure solvents for chemical conversions, and they cannot
imagine water as the best solvent. We cannot expect that an enzyme exists that can work in pure
solvents and that a natural limit will exist. For this reason, chemists mostly use inorganic catalysts
for chemical conversions, and they commonly cannot imagine using enzymes as a first choice, if it
was not because, sometimes, chemistry does not find a solution or because there is an environmental
concern around the chemical process [2]. Only in those cases are enzymatic conversions considered.
Life sciences and biotechnology are, thus, promising frontiers for industrial biotransformations.
The vast breadth of biotechnology used in modern economies opens new routes to sustainable
developments. Enzymes generate approximately $5 billion/year with $7 billion/year forecasted
for the end of 2018 (www.luxresearchinc.com). Each industrial process is different and the correct
enzyme needs to be identified and/or optimized for the industrial application. Over 500 industrial
products are being made using enzymes and about 150 industrial processes use enzymes or whole
microbial cell catalysts [3,4]. The constant search for new enzymatic catalysts comes from the demand
of constantly evolving industrial processes and the bio-economy, in which enzyme properties are
appreciated. Indeed, enzymes fold into exquisite three-dimensional structures which catalyze
kinetically challenging reactions, achieving high rate enhancements with excellent control over the
mechanism, chemochemistry, regiochemistry, and stereochemistry of their substrates [5,6].

Most industrially relevant enzymes are of microbial origin and their discovery, purification,
and manufacture are key steps in industrial bioprocesses. Nature and modern microbiology permits
unprecedented accessibility to highly diverse enzymes. However, we can only cultivate <1% of
environmental bacteria [7], and this number significantly drops when considering strains requiring
extreme conditions for cultivation. Metagenomics overcomes this limitation by isolating microbial
community genomic DNA. Metagenomics gave us access to the vast natural enzyme variation [8].
These enzymes, which may have been adapted to so-called “standard” conditions for growth (room
temperature, neutral pH, and no pressure) as well as to extreme environments, may haveacquired
biochemical characteristics that can benefit biotechnological, industrial, and environmental processes
in many cases. It has become increasingly clear that a significant stumbling block to novel enzyme
discovery in current genomics and metagenomics may come not only from sample richness, which can
be solved by sampling thousands of sites across the planet including extreme niches, but also from
our ability to deeply mine environmental genomes and metagenomes in a time-efficient manner in
connection to industrial needs [6]. Researchers have partially solved these shortcomings by technical
innovations, which include screening a large number of genomes and metagenomes to increase the
success rate, designing new screening methods including microfluidics, using multiple tandem vector
and host systems for screening and expression, designing advanced bioinformatics applied to enzyme
discovery for sequence information, and etc.
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With the discovery of the mechanisms by which proteins fold and the development of protein
engineering and computational tools, the engineering and re-design of natural enzymes or even the
design of enzymes from scratch became possible [9–11]. Whatever the capacity to identify or engineer
new and better performing enzymes, it is increasingly recognized that biocatalysts are delicate materials
that need to be stabilized to survive a range of challenging conditions typically used in industrial
processes and any conversion in general. Thus, in order to construct efficient enzymes, they need to be
stabilized. Distinct combinatorial and rational methods to generate such stabilized biocatalysts are
required, regardless of the apparent relative improvements at the end of the process [12].

Whatever the utilization of free or immobilized enzymes (in the form of native or engineered
proteins or whole cells), the production of chemicals by enzyme catalysts offers a promising
opportunity to improve overall economics and sustainability. Indeed, the overall bio-based products
currently displace about 300 million gallons of petroleum per year, which is equivalent to taking 200,000
cars off the road [1]. Also, a reduction in greenhouse gas emissions for bio-derived products relative to
their petroleum counterparts was demonstrated [1]. The market for bio-based chemicals reached more
than $20 billion in 2018 and is expected to continue growing. Identifying enzymatic catalysts capable
of transforming an ample set of chemicals, including those present in different feed-stocks, may be
of interest to broaden enzyme applicability and process developments. This will contribute to reach
the ambitious objectives of biotechnology programs such as the Bio-based Industry (BBI) program
(http://biconsortium.eu), whose objective is to promote the production of new bio-based products.

2. The Present Issue

I am honored to be the Guest Editor of a thematic issue published in the Catalysts journal for the
first time. I would especially like to thank Jiuyu Guo, Senior Assistant Editor, and the entire staff of the
Catalysts Editorial Office, who productively collaborated with me. Furthermore, I would like to thank
all of the authors contributing their papers to this issue for their excellent work. It is comprised of
twenty-five research articles. As pointed out in the background, the meaning of this issue is to underline
new trends in Biocatalysis and Biotransformations. With this aim, special attention has been paid to
identifying, engineering, and immobilizing known or new enzymes so as to increase the progress and
diversity of enzyme conversions, as well as describing recent advances in the applications of enzymes
(free or immobilized) and whole cell transformations for the synthesis of valuable chemicals.

Among the research articles presented in this issue, an ample set of enzymes have been
investigated for biocatalytic processes. They include hydrolases (esterases, lipases, hydantoinase,
and beta-galactosidases), transferases (2′-deoxyribosyltransferases, hypoxanthine-guanine-xanthine
phosphoribosyltransferases, and methionine adenosyltransferases), and oxidoreductases (CYP153A
monooxygenase, carboxylic acid reductase, aldehyde reductases, 3β-hydroxysteroid dehydrogenases,
Baeyer–Villiger monooxygenases, polycyclic ketone monooxygenases, nicotine hydroxylase,
pyrroloquinoline quinone-dependent alcohol dehydrogenase, glutathione peroxidase, laccase,
amine dehydrogenases, and NADH oxidases), as well as racemases and 3β-hydroxysteroid isomerases.
Most studies reported the use of free or immobilized enzyme preparations, but whole cells
transformations using cells expressing desired enzymes or new strains containing enzyme activities of
interest have been also presented. Note that oxidoreductases, transferases, and hydrolases are among
the three types of enzymes most used at an industrial level [1,4].

The biotransformations covered in this issue include those involved in the synthesis of many
value-added chemicals, such as nucleoside, purine, pyridine, steroid, α,ω-diols (C8–C16) and furan
derivatives, 2-ethylhexyl salicylate (which is an organic compound used as an ingredient in sunscreens
and cosmetics to absorb UVB (ultraviolet) rays from the sun), optically active sulfoxides and amines,
L-amino acids, molecules with probiotic properties (such as lactulose esters and oligosaccharides),
and other molecules with a wide application in the field of medicine (such as S-adenosylmethionine).
In all cases, the enzymatic syntheses were shown to represent an attractive alternative to chemical
synthesis because of their high specificity, high efficiency, and low production of pollutants.
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In more detail, Fresco-Taboada and coworkers investigated the synthesis of modified nucleosides
by using novel 2′-deoxyribosyltransferases [13]. Acosta and coworkers reported the synthesis of purine
derivatives by the sequential action of 2′-deoxyribosyltransferases and hypoxanthine-guanine-xanthine
phosphoribosyltransferases [14]. The utilization of renewable free fatty acids as a source of α,ω-diols
(C8–C16) by the action of CYP153A monooxygenase, carboxylic acid reductase, and aldehyde
reductases was demonstrated by Ahsan and coworkers [15]. Huang and coworkers investigated the
synthesis of 2-ethylhexyl salicylate using lipases [16]. García-Fernández and coworkers investigated
the synthesis of 4-ene-3-ketosteroids by using 3β-hydroxysteroid dehydrogenases/isomerases [17].
De Gonzalo and coworkers successfully reported the synthesis of optically active sulfoxides using
Baeyer–Villiger monooxygenases and polycyclic ketone monooxygenases [18]. The conversion of
6-hydroxy-3-succinoylpyridine into 2,5-dihydroxypyridine by nicotine hydroxylases was investigated
by Wei and coworkers [19]. The synthesis of S-adenosylmethionine was investigated by Niu and
coworkers using methionine adenosyltransferases [20]. L-amino acid production was investigated
by Rodríguez-Alonso and coworkers who used double enzymatic systems based on the application
of racemases and hydantoinases to produce norvaline, norleucine, and homophenylalanine [21].
The conversion of furans, including 5-(hydroxymethyl) furfural (HMF) and furfural, by Bayer–Villiger
monooxygenases was investigated by Kumar and Fraaije [22]. Chávez-Flores investigated the
application of lipases for the synthesis of lactulose esters [23]. Whole cells biocatalysts containing
amine dehydrogenases and NADH oxidases were also employed for kinetic resolutions of racemic
amines by Jeon and coworkers [24]. Whole cells of new isolates were also employed by Yañez-Ñeco
and coworkers, and they reported the production of galactooligosaccharides [25].

Besides the above conversions, those of complex molecules such as sugar maple bark,
cellulose-based materials, and wastewater were also covered in this issue, as well as the decolorization
of dyes and energy generation. In particular, the conversion of complex molecules such as sugar
maple bark and cellulose-based materials into several chemical backbones was investigated by
Koumba-Yoya and coworkers [26] and Haske-Cornelius and coworkers [27], exemplifying the capacity
of bioocatalysis as source of chemicals from complex biomasses and feedstocks. Conversion of other
complex molecule-containing systems, such as wastewater, was investigated by Li and coworkers
using new Mn-containing catalases [28]. Site-directed mutagenesis as a tool to improve catalytic
performance was investigated by Wang and coworkers; authors introduced mutations into a bacterial
laccase to improve indigo decolorization [29].

Several investigations in this issue focused on investigating the effect of different immobilization
methods on biocatalyst performance. Thus, Tu and coworkers focused on improving the catalytic
performance of immobilized lipase on clay/chitosan composites [30]. Sakurada and coworkers
increased the long-term stability and catalytic current density of pyrroloquinoline quinone-dependent
alcohol dehydrogenase when immobilized on a redox polymer, aminoferrocene, which was attached
on an electrode [31]. Finally, several aminated-agarose beads were employed to increase the catalytic
efficiency of beta-galactosidases via glutaraldehyde chemistry using different strategies by Zaak and
coworkers [32].

Another important aspect which, in my opinion, additionally deserved research, concerns the
application of methods other than protein engineering and immobilization, which could lead to
more efficient biocatalysis. Two important examples are herein reported by Wang and coworkers,
who designed and synthesized cyclodextrin derivatives which could serve as stable glutathione
peroxidase mimics for the removal of H2O2 and other hydroperoxides [33]. Similarly, Huang and
coworkers design selenium-containing trypsin mimics that increase the substrate binding capacity and
stability of glutathione peroxidases [34]. Maslova and coworkers investigated how lactonase activity
of organophosphorus hydrolases can be increased by producing enzyme-polyelectrolyte complexes
with poly-L-glutamic acid or poly-L-aspartic acid and adding small concentrations of antibiotics [35].

Finally, in the present issue, Coscolín and coworkers [36] and Nguyen and coworkers [37]
investigated the properties and catalytic performance of biocatalysts newly isolated from genomes
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and metagenomes. In particular, Coscolín and coworkers investigated an ample set of metagenomics-
derived esterases and lipases to reveal the extent by which promiscuity and selectivity co-exist in these
catalytically-important biocatalysts, so as to identify chiral selective and promiscuous esterases and
lipases. Nguyen and coworkers presented the complete genome sequence of Methylomonas sp. DH-1 to
investigate the application of this strain for the production of succinate from methane. This is because
of the presence in its genome of a set of required enzymes.

In conclusion, the present issue, “Biocatalysis and Biotransformations”, is of great interest and
relevance as it covers all aspects, from enzyme and microbe discovery and the investigation of their
enzymatic properties, to enzyme immobilization and engineering, and to applications of important
chemical scaffolds and applications related to health and energy.
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