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Abstract: The enantioselective α-amination of 1,3-dicarbonyl compounds has been performed
using deep eutectic solvents (DES) as a reaction media and chiral 2-amino benzimidazole-derived
compounds as a catalytic system. With this procedure, the use of toxic volatile organic compounds
(VOCs) as reaction media is avoided. Furthermore, highly functionalized chiral molecules, which
are important intermediates for the natural product synthesis, are synthetized by an efficient and
stereoselective protocol. Moreover, the reaction can be done on a preparative scale, with the recycling
of the catalytic system being possible for at least five consecutive reaction runs. This procedure
represents a cheap, simple, clean, and scalable method that meets most of the principles to be
considered a green and sustainable process.

Keywords: asymmetric organocatalysis; α-amination; benzimidazole; deep eutectic solvents; natural
products; green chemistry

1. Introduction

Asymmetric organocatalysis is an extremely attractive methodology for the preparation of
functionalized chiral molecules and natural products, since small organic compounds are used as
catalysts under very mild and simple reaction conditions [1–3]. Due to the lack of a metal element
in the catalyst, organocatalytic methods are often used to prepare compounds that do not tolerate
metal contamination such as pharmaceutical products. Asymmetric organocatalysis has become such
an effective method of maintaining sustainability in organic synthesis as it provides many advantages,
such as accessibility, low molecular weight, inexpensive catalysts and reduced toxicity.

Among the limited number of available green solvents, [4,5] deep eutectic solvents (DES) [6–12]
maintain consistency within different criteria, such as availability, non-toxicity, inexpensiveness, high
recyclability and low volatility. A deep eutectic solvent is a mixture between two or more components,
one acting as hydrogen bond acceptor and the other as donor, having a melting point lower than the
melting point of each one of the components. This behavior is due to hydrogen bond interactions
between the acceptor and donor species. The use of DES as a reaction media is considered a new and
expanding topic, which further assists and advances the importance of green chemistry. Recently,
the association of these reaction media with asymmetric organocatalyzed processes [13,14] has been
envisaged as a new and bright approach to advance sustainable processes.

Additionally, significant developments have been reached in the asymmetric electrophilic
α-amination of carbonyl compounds through metal- or organo-catalyzed processes during recent
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years [15–19]. In fact, chiral carbonyl derivatives bearing stereogenic α-amine substitution are widely
distributed among pharmaceutically active compounds. In particular, the organocatalyzed asymmetric
α-amination of prochiral 1,3-dicarbonyl compounds have received great interest, since the resulting
functionalized chiral molecules can be further elaborated allowing the synthesis of chiral biologically
active natural products. However, this process remains unexplored with DES as reaction media.

Our research group has established the practicality of bifunctional chiral 2-aminobenzimidazole
derivatives [20,21] 1 and 3 (Scheme 1) as efficient organocatalysts in the asymmetric conjugate
addition of 1,3-dicarbonyl compounds to nitroolefins [22] and maleimides [23,24] as well as in the
α-functionalization [25–28] of these interesting nucleophiles using volatile organic solvents (VOCs) as
a reaction medium. More fascinating, we have also demonstrated that the catalytic system based on
the deep eutectic solvent choline chloride/glycerol and chiral 2-aminobenzimidazole organocatalysts
2 efficiently promotes the enantioselective addition of 1,3-dicarbonyl compounds to β-nitrostyrenes,
avoiding the use of toxic VOC as reaction media [29].
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For asymmetric organocatalyzed processes, the use of DES as a reaction medium has been barely
studied, with the aldol reaction [30–34] and conjugated addition [13,29,35] being the main focus.
For these processes a rational design of the organocatalyst and the right choice of the DES has shown
to be critical to obtain good results and allow organocatalyst recycling.

Herein, the use of chiral benzimidazole derivatives as organocatalysts for the electrophilic
α-amination of 1,3-dicarbonyl compounds using DES as reaction media is presented.

2. Results and Discussion

Initially, the electrophilic α-amination of ethyl 2-oxocyclopentane-1-carboxylate with di-tert-butyl
azodicarboxylate (DBAB) in the presence of catalyst 1 (10 mol %) in different choline chloride-based
DES was investigated at 25 and 0 ◦C (Table 1). In general, good conversions and higher
enantioselectivities were obtained at 0 ◦C, especially when using ChCl/urea (94%, 78% ee) and
ChCl/glycerol (94%, 80% ee) as reaction media (Table 1, entries 2 and 6). The reaction time of the
reaction was initially 4–5 h, however it was reduced to 1 h using ultrasounds (360 W) at 25 ◦C.
The reduction in reaction time by the use of ultrasounds was previously observed in other related
systems (i.e., ionic liquids), being attributed to physical-chemical effects [36,37]. As shown in Table 1,
entries 12 and 13, under these conditions compound 4 was obtained with similar enantioselectivities
with only a small erosion of the reaction conversion.
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Table 1. Asymmetric α-amination of ethyl 2-oxocyclopentane-1-carboxylate with di-tert-butyl
azodicarboxylate (DBAB). Deep eutectic solvents (DES) study.
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4 AcChCl/Urea: 1/2 0 5 55 75
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8 ChCl/Ethyleneglycol: 1/2 0 5 84 70
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11 ChCl/Tartaric acid: 1/1 0 5 58 77
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1 Reaction conversion towards 4 determined by GC analysis. 2 Enantiomeric excess determined by chiral HPLC
analysis. 3 Reaction performed under ultrasounds irradiation (360 W).

The optimization of the reaction medium resulted in the understanding that choline
chloride/glycerol and choline chloride/urea were the best solvents to go forward with the conditions
study using ultrasound irradiation at 25 ◦C. Next, the influence of the catalyst structure in the reaction
results was studied: for this purpose, a series of several chiral benzimidazole-derived organocatalysts
(as well other type of organocatalysts such as thiourea or sulphonamide derivatives, see Figure S1
in Supplementary Material) were tested in the α-amination model reaction under the optimized
conditions using choline chloride/urea and choline chloride/glycerol as reaction media.

In both solvents, all chiral catalysts tested showed high performance achieving high reaction
conversions (70–95%). However, different results concerning the enantioselectivities were encountered
depending on the steric and/or electronic nature of the chiral organocatalyst. Chiral derivative 2,
containing two strong electron-withdrawing nitro groups lead to the best results, giving product 4 in
84% ee in ChCl/urea and 82% ee in ChCl/glycerol (Table 2, entries 3 and 4). The presence of two nitro
groups on the benzimidazole ring increases the hydrogen-bonding ability of 2 and as a consequence
the interaction with the DES structure, leading to an improvement of the selectivity of the electrophilic
amination. Conversely, a strong decrease in the enantioselectivity of the process was observed when
using the sterically congested C2-symmetric chiral benzimidazoles 3 and 6, which afforded compound
4 with enantiomeric excess ranging from 33 to 44% (Table 2, entries 7–10). It can be concluded that
in order to obtain good selectivity in the amination addition, it is crucial to have good correlation
between the steric and electronic properties within the organocatalyst [38].
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Table 2. Asymmetric α-amination of ethyl 2-oxocyclopentane-1-carboxylate with DBAB. Catalyst study.
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The recyclability of organocatalyst 2 and the eutectic liquid was performed in the model
reaction under the optimized reaction conditions (Scheme 2). Therefore, to separate the DES/chiral
organocatalyst mixture from the unreactive reagents and reaction products, hexane and cyclopentyl
methyl ether were tested as extractive media. As shown in Scheme 2, the product was extracted
and most of the catalyst remained in the DES, with the mixture being recovered and reused in
five consecutive reaction runs, maintaining high enantioselectivity but with a decreased activity.
Furthermore, vigorous stirring is mandatory when performing the extraction of the products to obtain
a good recyclability results. For instance, in the second cycle of the cyclopentyl methyl ether recovering
sequence (Scheme 2), a standard stirring was used and therefore a decrease in the conversion was
observed. However, for the third run, again a vigorous stirring was applied and the conversion of the
process was almost recovered.

The efficiency and synthetic utility of 2 in ChCl/glycerol was further evaluated by performing
a gram-scale experiment (4.3 mmol of ethyl 2-oxocyclopentane-1-carboxylate) for the synthesis of
compound 4 which was obtained in a 95% yield and 85% ee (Scheme 3).

Lastly, the influence of different electrophiles and nucleophiles were assessed during the scope
of the reaction. For this purpose, the different reactions were carried out under the optimized
conditions using ChCl/glycerol as solvent (Table 3). Regarding the electrophile, an important
steric effect was observed, being compound 4 obtained with the best enantioselectivity when using
di-tert-butyl azodicarboxylate (DBAB) as electrophile (Table 3, entry 3). This electrophile was used for
further studies.
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2 iPrO2CN=NCO2iPr 7 52 60 

3 EtO2CN=NCO2Et  8 76 65 

4 BnO2CN=NCO2Bn 9 0 nd 

Scheme 2. Recycling studies.

The α-amination of other β-ketoesters such as, ethyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate,
methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate, methyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-
carboxylate, and 3-acetyldihydrofuran-2(3H)-one was also assessed (Table 3, entries 5–7). In general,
good isolated yields were obtained with low enantioselectivites (13 to 36% ee). Better enantioselection
was observed in the α-amination with DBAB of 1,3-diketones, especially in the case of
2-acetylcyclopentan-1-one (Table 3, entry 9), which afforded compound 14 in a 75% isolated yield and
53% enantiomeric excess.

Due to accessibility, as well as green considerations, enantioselective organocatalysis has proved
to be one of the most efficient approach towards the synthesis of drugs and natural products [39–43].
In particular, the organocatalytic functionalization of indolin-3-one has been recently studied since
this type of heterocycles are commonly found in an ample range of biologically active natural
alkaloids [44–48]. As depicted in Scheme 4 (Equation (a)), the 2-catalyzed electrophilic α-amination
of methyl 1-acetyl-3-oxoindoline-2-carboxylate [49] in ChCl/glycerol (1/2) as solvent under the optimized
reaction conditions gave compound 15 in excellent yields and moderate enantioselectivities (15a: R = iPr,
30% ee; 15b: R = tBu, 45% ee).
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1 Isolated yield after flash chromatography. 2 Enantiomeric excess determined by chiral HPLC analysis.

On the other hand, 2,2-disubstituted oxindole 16, which is a precursor of biologically
active molecules containing indolin-3-ones with a quaternary stereocenter at the 2-position,
such as Brevianamide A, Austamide, among others, has been prepared with excellent yield
and diastereoselectivity and a 57% ee by the 2-catalyzed conjugate addition of methyl
1-acetyl-3-oxoindoline-2-carboxylate to β-nitrostyrene [50] (Scheme 4, Equation (b)). The use of
Takemoto´s thiourea type catalyst for this transformation led to compound 16 with similar results
(>95%, dr > 20:1, 63% ee).
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3. Materials and Methods

3.1. General

Unless otherwise noted, all commercial reagents and solvents were used without further
purification. Reactions under argon atmosphere were carried out in oven-dried glassware sealed
with a rubber septum using anhydrous solvents. Melting points were determined with a hot plate
apparatus and are uncorrected. 1H-NMR (300 or 400 MHz) and 13C-NMR (75 or 101 MHz) spectra
were obtained on a Bruker AC-300 or AC-400(Bruke Corporation, Villerica, MA., USA), using CDCl3
as solvent and tetramethyl silane (TMS) (0.003%) as reference, unless otherwise stated. Chemical shifts
(δ) are reported in ppm values relative to TMS and coupling constants (J) in Hz. Low-resolution mass
spectra (MS) were recorded in the electron impact mode (EI, 70 eV, He as carrier phase) using an Agilent
5973 Network Mass Selective Detector spectrometer (Agilent Technologies, Santa Clara, CA, USA),
being the samples introduced through a GC chromatograph Agilent 6890N (Agilent Technologies, Santa
Clara, CA, USA) equipped with a HP-5MS column [(5%-phenyl)-methylpolysiloxane; length 30 m;
ID 0.25 mm; film 0.25 mm]. IR spectra were obtained using a JASCO FT/IR 4100 spectrophotometer
(Jasco Analytical Spain, Madrid, Spain) equipped with an ATR component; wavenumbers are given in
cm−1. Analytical TLC was performed on Merck aluminium sheets with silica gel 60 F254. Analytical
TLC was visualized with UV light at 254 nm Silica gel 60 (0.04–0.06 mm) was employed for flash
chromatography whereas P/UV254 silica gel with CaSO4 (28–32%) supported on glass plates was
employed for preparative TLC. Chiral High-performance liquid chromatography (HPLC) analyses
were performed on an Agilent 1100 Series (Agilent Technologies, Santa Clara, CA, USA), (Quat Pump
G1311A, DAD G1315B detector and automatic injector) equipped with chiral columns using mixtures
of hexane/isopropanol as mobile phase, at 25 ◦C. The asymmetric reactions were sonicated in an
ultrasounds P-Selecta instrument at 360 W.
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3.2. Synthesis of Catalyst 2

Catalyst 1 [51] (50 mg, 0.2 mmol, 1 equiv.) was dissolved in concentrated H2SO4 (0.2 mL, 98%)
and stirred vigorously for 5 minutes; concentrated HNO3 (0.4 mL, 65%) was then carefully added
to the mixture at −20 ◦C. Then, the reaction was stirred at room temperature for 16 h. After this
period, the mixture was treated with cold water and basified until pH 8 with a 25% aqueous solution of
NH3. Finally, the aqueous phase was extracted with AcOEt (3 × 20 mL). The collected organic phases
were dried over anhydrous MgSO4. After filtration, the organic solvent was removed under reduced
pressure to give catalyst 2 without further purification as a red solid (74% yield, 52 mg, 0.15 mmol);
mp 110–115 ◦C (CH2Cl2, decomposes); δH (300 MHz, CDCl3) 1.19–1.49 (m, 4H, 2 × CH2), 1.63–1.98 (m,
4H, 2 × CH2), 2.37 (s, 6H, 2 × Me), 2.51 (m, 1H, CHNMe2), 3.66 (bs, 1H, CHNH),7.49 (s, 2H, ArH); δC

(75 MHz, CDCl3) 21.7, 24.4, 24.6, 33.2, 39.8, 53.8, 67.8, 108.3, 136.8, 142.0, 161.8; m/z 348 [M+, <1%] 128
(10), 126 (11), 125 (100), 124 (25), 84 (64), 71 (24), 58 (20), 44 (10).

3.3. Typical Procedure for the α-Amination Reaction

Catalyst 2 (5.22 mg, 0.015 mmol, 10 mol %) and ethyl 2-oxocyclopentane-1-carboxylate (23.4 mg,
0.15 mmol) were dissolved in a mixture of ChCl/Gly (1/2 molar ratio, 0.2 mL) and kept under stirring
for 10 minutes at rt., followed by the addition of di-tert-butylazodicarboxylate (36.8 mg, 0.16 mmol).
The reaction was vigorously stirred in ultrasounds for 1 h. After this period, water (3 mL) was
added to the mixture and the reaction product was extracted with EtOAc (3 × 5 mL). The collected
organic phases were dried over anhydrous MgSO4 and, after filtration, the solvent was evaporated
under reduced pressure to give crude 4. Purification by flash column chromatography on silica gel
(hexane/EtOAc: 7/3) afforded pure 4 (45.1 mg, 78% yield). δH (300 MHz, CDCl3) 1.28 (t, J = 7.1 Hz,
3H), 1.59–1.36 (m, 18H), 2.98–1.75 (m, 6H), 4.24 (m, 2H), 6.53 (br s, 1H) ppm). The enantiomeric excess
of 4 was determined by chiral HPLC analysis (Chiralpack IA, hexane/EtOH: 96/04, 0.7 mL/min).

3.4. Typical Procedure for the Recovery of the Catalyst in the α-Amination Reaction

A mixture of catalyst 2 (5.22 mg, 0.015 mmol, 10 mol %) and ethyl 2-oxocyclopentane-1-carboxylate
(23.4 mg, 0.15 mmol) in ChCl/Gly (1/2 molar ratio, 0.2 mL) was stirred for 10 minutes at rt. Then,
di-tert-butylazodicarboxylate (36.8 mg, 0.16 mmol) was added. The reaction was vigorously stirred
in ultrasounds for 1 h. After this period, the corresponding organic solvent was added (3 mL) and
the mixture was stirred for 10 minutes at rt. The stirring was then stopped to allow phase separation
and the upper organic layer was removed. This extractive procedure was repeated two more times
and the combined organic extracts were washed with water (3 × 5 mL), dried (MgSO4), filtered, and
evaporated under reduced pressure. Then, the next reaction cycle was performed with the obtained
DES/2 mixture, adding fresh ethyl 2-oxocyclopentane-1-carboxylate and di-tert-butylazodicarboxylate.
This reaction mixture was subjected again to the above-described procedure and further reaction cycles
were repeated using the recycled deep eutectic solvent phase.

4. Conclusions

The enantioselective electrophilic α-amination of 1,3-dicarbonyl compounds with
diazodicarboxylates catalyzed by the bifunctional chiral 2-aminobenzimidazole-derivative 2
has been carried out in choline chloride/glycerol or choline chloride/urea deep eutectic solvents.
The protocols presented are simple, cheap, clean and scalable. Moreover, the recovery and reuse of
the catalyst and reaction medium can be performed at least five times, achieving high and similar
enantioselectivities. The synthesis of two natural product precursors is possible by the application
of this procedure, as well as the conjugate addition to β-nitrostyrene. With these results, it has been
shown that the combination of organocatalyzed enantioselective organic processes in deep eutectic
solvents as a reaction media are a clear example of a green, bio-renewable and sustainable process.
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