Supplementary Materials: Enzymatic Synthesis of Thioesters from Thiols and Vinyl Esters in a Continuous-Flow Microreactor

Nani Zhou¹, Le Shen¹, Zhen Dong¹, Jiahong Shen¹, Lihua Du^{1,*} and Xiping Luo^{2,*}

3. Materials and Methods

3.2. Thioester Synthesis Operating Conditions

3.2.1. General Procedure for Thioesters Synthesis under Shaker Conditions

Method A: Benzyl mercaptan (1 mmol) and vinyl laurate (3 mmol) were added to 5 mL DMSO. The biocatalyst lipozyme TL IM (0.22 g, 44 mg mL⁻¹) was then added and the suspension maintained at 50 °C for 24 h under Shaker Conditions. The mixture was cooled and filtered. Then evaporated under reduced pressure and the residue was submitted to column chromatography on silica gel (200-300 mesh). The products were eluted with a gradient of normal petroleum ether: ethyl acetate (20: 1, by vol). The purification was monitored by TLC. The fractions containing the main products were pooled, the solvent evaporated, and the residue analyzed by ¹H NMR, ¹³C NMR and ESI-MS.

3.2.2. General Procedure for Thioester Synthesis in Continuous Flow Microreactors

Method B: 4 mmol of the benzyl mercaptan was dissolved in 10 mL DMSO (feed 1) and 8 mmol vinyl laurate were dissolved in 10 mL DMSO (feed 2). Lipozyme TL IM (0.87 g, 44 mg mL⁻¹) was weighed, then filled the MVQ reactor coil (inner diameter ID: 2.0 mm, length: 1 m). Feeds 1 and 2 were mixed together at a flow rate of 10.4 μ L min⁻¹ in a Y-mixer at 50 °C and the resulting stream (20.8 μ L min⁻¹) was connected to a sample vial which was used to collect the final mixture. The final mixture was then evaporated, and the residue was submitted to column chromatography on silica gel (200-300 mesh). The products were eluted with a gradient of normal petroleum ether: ethyl acetate (20: 1, by vol). The purification was monitored by TLC. The fractions containing the main products were pooled, the solvent evaporated, and the residue analyzed by ¹H NMR, ¹³C NMR and ESI-MS.

In order to examine the reproducibility of the method, we repeated the reaction five times, the result are illustrate in Figure S1.

Figure S1. The reproducibility of the reaction on the conversion of S-Benzyl thiododecanoate catalysed by Lipozyme TL IM in a continuous flow microreactor.

Nuclear magnetic resonance (NMR) analysis

S-benzyl thioacetate (3a): Light yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.32 - 7.26 (m, 5H), 4.15 (s, 2H), 2.37 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 195.0, 137.6, 128.8, 128.6, 127.2, 33.4, 30.2. ESI-MS: *m*/*z* = 189.1 [M+Na]⁺.

S-benzyl thiododecanoate (3b): White crystals; ¹H NMR (500 MHz, CDCl₃): δ 7.36 - 7.27 (m, 5H), 4.17 (s, 2H), 2.61 (t, *J* = 7.5 Hz, 2H), 1.73 (m, 2H), 1.35 (m, 16H), 0.98 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 198.2, 137.7, 128.6, 128.4, 127.0, 43.6, 32.9, 31.8, 29.5, 29.4 - 29.1, 28.8, 25.5, 22.6, 14.0. ESI-MS: *m*/*z* = 329.2 [M+Na]⁺.

S-benzyl thiohexadecanoate (3c): White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.34 - 7.25 (m, 5H), 4.14 (s, 2H), 2.58 (t, *J* = 7.5 Hz, 2H), 1.66 (m, 2H), 1.47 - 1.23 (m, 24H), 0.91 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 198.9, 137.8, 129.3, 129.0, 128.8, 128.6, 127.2, 43.9, 33.1, 31.9, 29.7, 29.6 - 29.1, 29.0, 25.6, 22.7, 14.1. ESI-MS: *m/z* = 385.2 [M+Na]⁺.

6-oxo.-6-((benzyl)thio)-hexanoate vinyl ester (3d): Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.35 - 7.24 (m, 6H), 4.89 (ddd, *J* = 14.0, 3.4, 1.6 Hz, 1H), 4.59 (ddd, *J* = 6.3, 2.4, 1.7 Hz, 1H), 4.14 (s, 2H), 2.59 (m, 2H), 2.43 (m, 2H), 1.72 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 198.1, 170.1, 141.1, 137.5, 128.7, 128.6, 127.2, 97.6, 43.2, 33.4, 33.1, 24.7, 23.8. ESI-MS: *m*/*z* = 301.1 [M+Na]⁺.

S-(4-*methylbenzyl*) *ethanethioate* (3*e*): Light yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.19 (d, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 4.10 (s, 2H), 2.35 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 195.0, 137.9, 134.2, 129.8, 129.7, 33.4, 30.2, 21.1. ESI-MS: *m/z* = 203.1 [M+Na]⁺.

S-(4-*methylbenzyl*) *thiododecanoate (3f):* Yellow liquid oil; ¹H NMR (500 MHz, CDCl₃): δ 7.18 (d, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 4.10 (s, 2H), 2.57 (t, *J* = 7.5 Hz, 2H), 2.33 (s, 3H), 1.64 (m, 2H), 1.31 (m, 16H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 199.1, 137.0, 134.7, 129.4, 128.8, 43.9, 32.9, 32.0, 29.7, 29.6 - 29.3, 29.0, 25.7, 22.8, 21.1, 14.2. ESI-MS: *m*/*z* = 343.2 [M+Na]⁺.

S-(4-methylbenzyl) thiohexadecanoate (3g): Light yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.19 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 4.10 (s, 2H), 2.56 (t, *J* = 7.5 Hz, 2H), 2.34 (s, 3H), 1.68 (m, 2H), 1.32 - 1.27 (m, 24H), 0.90 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 199.0, 136.9, 134.7, 129.3, 128.7, 43.9, 32.9, 32.0, 29.7, 29.6 - 29.3, 29.0, 25.6, 22.7, 21.1, 14.1. ESI-MS: *m/z* = 399.3 [M+Na]⁺.

6-oxo.-6-((4-methylbenzyl)thio)-hexanoate vinyl ester (3h): Light yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.31 - 7.20 (m, 5H), 4.87 (ddd, *J* = 14.0, 3.3, 1.7 Hz, 1H), 4.56 (ddd, *J* = 6.2, 2.0, 1.7 Hz, 1H), 4.11 (s, 2H), 2.59 (m, 2H), 2.41 (m, 2H), 2.39 (s, 3H), 1.71 (m, 4H).¹³C NMR (125 MHz, CDCl₃): δ 198.0, 170.1, 141.0, 137.5, 128.7, 128.5, 127.2, 97.6, 43.1, 33.4, 33.1, 24.7, 23.8, 23.7. ESI-MS: *m*/*z* = 315.1 [M+Na]⁺.

S-(*4*-*chlorobenzyl*) *ethanethioate* (*3i*): Light yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.27 (dd, *J* = 8.6, 6.6 Hz, 2H), 7.23 (dd, *J* = 8.5, 6.1 Hz, 2H), 4.08 (s, 2H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 195.0, 135.7, 132.7, 130.8, 128.8, 33.1, 30.5. ESI-MS: *m/z* = 223.0 [M+Na]⁺.

S-(4-*chlorobenzyl*) *thiododecanoate* (*3j*): Yellow liquid oil; ¹H NMR (500 MHz, CDCl₃): δ 7.27 (dd, *J* = 8.5, 6.5 Hz, 2H), 7.23 (dd, *J* = 8.5, 6.0 Hz, 2H), 4.08 (s, 2H), 2.57 (t, *J* = 7.2 Hz, 2H), 1.66 (m, 2H), 1.29 (m, 16H), 0.90 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 198.7, 141.2, 136.5, 133.0, 130.2, 128.7, 43.8, 34.0, 32.4, 31.9, 29.6 - 29.0, 28.9, 25.6, 24.6, 22.7, 14.1. ESI-MS: *m*/*z* = 363.2 [M+Na]⁺.

S-(4-*chlorobenzyl*) *thiohexadecanoate* (3*k*): Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.27 (dd, *J* = 8.4, 6.3 Hz, 2H), 7.23 (dd, *J* = 8.3, 6.0 Hz, 2H), 4.23 (s, 2H), 2.58 (t, *J* = 7.5 Hz, 2H), 1.78 (d, *J* = 7.1 Hz, 2H), 1.58 - 1.32 (m, 24H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 199.0, 135.9, 132.8,

Catalysts 2018, 8, 249

131.9, 131.7, 129.2, 128.8, 44.2, 33.6, 32.9, 30.1, 29.8 - 29.2, 28.0, 26.5, 23.4, 14.9. ESI-MS: m/z = 419.2 [M+Na]⁺.

6-oxo.-6-((4-chlorobenzyl)thio)-hexanoate vinyl ester(3l): Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.32 - 7.20 (m, 5H), 4.89 (ddd, *J* = 14.0, 3.4, 1.6 Hz, 1H), 4.59 (ddd, *J* = 6.3, 2.4, 1.6 Hz, 1H), 4.08 (s, 2H), 2.61 (m, 2H), 2.41 (m, 2H), 1.72 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 198.0, 170.2, 141.1, 136.3, 133.1, 130.2, 128.8, 97.7, 43.2, 33.4, 32.5, 24.8, 23.8. ESI-MS: *m*/*z* = 335.1 [M+Na]⁺.

Copy of ¹H NMR and ¹³C Spectra of Products

¹H-NMR of compound **3a**

¹³C-NMR of compound **3a**

¹H-NMR of compound **3b**

¹³C-NMR of compound **3b**

¹H-NMR of compound **3c**

¹³C-NMR of compound **3**c

¹H-NMR of compound **3d**

¹H-NMR of compound **3f**

¹³C-NMR of compound **3f**

¹H-NMR of compound **3g**

¹³C-NMR of compound **3g**

¹H-NMR of compound **3h**

Catalysts 2018, 8, 249

¹³C-NMR of compound **3h**

¹H-NMR of compound **3**j

¹H-NMR of compound **3**l

¹³C-NMR of compound **3**l

Catalysts 2018, 8, 249

The Mass spectrum of compound

compound 3b

compound 3c

Catalysts **2018**, *8*, 249

$\text{compound} \ \mathbf{3d}$

