

Article

Synthesis of Vinyl Chloride Monomer over Carbon-Supported Tris-(Triphenylphosphine) Ruthenium Dichloride Catalysts

Xing Li ^{1,2}, Haiyang Zhang ^{1,2,*}, Baochang Man ^{1,2}, Chuanming Zhang ^{1,2}, Hui Dai ³, Bin Dai ^{1,2} and Jinli Zhang ^{1,3,*}

- ¹ School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P.R. China; lixing19901015@163.com (X.L); mbc13070097209@163.com (B.M.); zhchming163@163.com (C.Z); db_tea@shzu.edu.cn (B.D.)
- ² Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi, Xinjiang 832000, P.R. China
- ³ School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; daihui028@tju.edu.cn (H.D.)
- * Correspondence: zhy198722@163.com (H.Z.), zhangjinli@tju.edu.cn (J.Z.); Tel.: +86-993-2057-277 (H.Z.); Fax: +86-993-2057-210 (H.Z.); Tel.: +86-22-2789-0643 (J.Z.); Fax: +86-22-2740-3389 (J.Z.)

Received: 24 May 2018; Accepted: 05 July 2018; Published: date

Table S1. Ru content in the fresh and used Ru-based catalysts, based on the ICP analysis.

Catalysts	Nominal Loading	Results of	ICP (wt%)	Loss Ratio of Ru
	(wt%)	Fresh	Spent	(%)
Ru/AC	1.00	0.94	0.83	11.7
Φ-P-Ru/AC	1.00	0.96	0.91	5.2
Φ -P-Ru/AC-HCl	1.00	0.92	0.88	4.3
Φ -P-Ru/AC-HNO ₃	1.00	0.95	0.91	4.2

Table S2. The Ru species accounted for the percentage of total Ru loading in each fresh catalyst, determined by TPR profiles.

Catalyst	Ru species (%)		Reduction Temperature Center (°C)			
	RuOx ^a	RuO ₂	RuCl ₃	RuOx	RuO ₂	RuCl ₃
Ru/AC	4.5	6.3	6.9	150.3	257.0	324.8
Φ-P-Ru/AC	8.8	11.2	18.8	192.6	221.4	291.7
Φ -P-Ru/AC-HCl	13.0	16.9	34.5	155.2	224.3	311.0
Φ -P-Ru/AC-HNO ₃	18.0	26.4	45.2	210.6	253.9	388.4

^a RuO_x is approximately calculated as RuO₃.

Ref.	Catalyst	Reaction Conditions	^a Catalytic Activity
[1]	Ru1Co3/SAC (1.0 wt% Ru)	170 °C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.1	X _A ≥ 95.0% (48h)
[2]	Ru/SAC-C300 (1.0 wt% Ru)	170 °C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.1	X _A = 96.5% (48h)
[3]	Ru1Co(III)3Cu(II)1/SAC (0.1 wt% Ru)	170 °C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.1	X _A = 99.0% (48h)
[4]	Ru-in-CNT (1.0 wt% Ru)	170 °C, GHSV(C ₂ H ₂) = 90 h ⁻¹ , V(HCl)/V(C ₂ H ₂) = 1.1	X _A ≥ 95.0% (10h)
[5]	Ru@TPPB/AC (1.0 wt% Ru)	170 °C, GHSV(C2H2) = 360 h ⁻¹ , V(HCl)/V(C2H2) = 1.15	X _A = 99.7% (48h)
[6]	Ru-O/AC-O (1.0 wt% Ru)	180°C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.15	X _A ≥ 93.0% (24h)
[7]	Ru/AC-NHN (1.0 wt% Ru)	180 °C, GHSV(C2H2) = 360 h ⁻¹ , V(HCl)/V(C2H2) = 1.15	X _A ≥ 91.8% (48h)
[8]	Ru1K1/SAC (1.0 wt% Ru)	170 °C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.1	X _A ≥ 86.5% (48h)
[9]	Ru5Cl7/AC (1.0 wt% Ru)	180 °C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.15	X _A ≥ 80.0% (48h)
[10]	Ru[BMIM]BF4/AC (10 wt% Ru)	170 °C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.1	X _A = 98.9% (24h)
[11]	Ru/SAC-N700 (1.0 wt% Ru)	170 °C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.1	X _A = 99.8% (30h)
[12]	TPAP/AC-HCl (1.0 wt% Ru)	180 °C, GHSV(C2H2) = 180 h ⁻¹ , V(HCl)/V(C2H2) = 1.15	X _A = 91.0% (48h)
This work	Φ-P-Ru/AC-HNO3 (0.1 wt% Ru)	180 °C, GHSV(C ₂ H ₂) = 180 h ⁻¹ , V(HCl)/V(C ₂ H ₂) = 1.15	X _A = 99.2% (48h)

Table S3. Comparative study for the catalytic efficiency of this catalytic system over the literature reported ruthenium-based catalysts.

^a X_A represents the conversion of acetylene.

Figure S1. The acetylene conversion (a) and selectivity to VCM (b) over the supports.

Figure S2 The acetylene conversion of the Ru-P(Cy)₃/AC catalyst. Reaction conditions: temperature (T) = 180 °C, GHSV (C₂H₂) = 180 h⁻¹ and V_{HCI}/V_{C2H2} = 1.15.

Figure S3. FT-IR spectra of catalyst support: (a) AC, (b) AC-HNO₃, (c) AC-HCl. The characteristic peaks are centered at: 1091 cm⁻¹: C–OH; 1562 cm⁻¹: COOH; 2350 cm⁻¹: C=N; 3400 cm⁻¹: phenolic hydroxyl.

Figure S4. Nitrogen adsorption-desorption isotherms of the fresh (a) catalysts and spent (b) catalysts.

Figure S5. Thermogravimetric analysis (TGA) curves of fresh and spent catalysts recorded in air atmosphere. (a) Ru/AC, (b) Φ-P-Ru/AC, (c) Φ-P-Ru/AC-HCl.

Figure S6. Particle size distribution of Ru-based catalysts: (a) Fresh Ru/AC, (b) Spent Ru/AC, (c) Fresh Φ -P-Ru/AC, (d) Spent Φ -P-Ru/AC, (e) Fresh Φ -P-Ru/AC-HCl, (f) Spent Φ -P-Ru/AC-HCl, (g) Fresh Φ -P-Ru/AC-HNO₃.

Figure S7. The deconvoluted H₂-TPR profiles of the fresh catalysts: (a) Ru/AC, (b) Φ -P-Ru/AC, (c) Φ -P-Ru/AC-HCl, (d) Φ -P-Ru/AC-HNO₃.

Figure S8. High-resolution XPS spectra of Ru 3p for the fresh and spent catalysts: (**a**) Fresh Ru/AC, (**b**) Spent Ru/AC, (**c**) Fresh Φ-P-Ru/AC, (**d**) Spent Φ-P-Ru/AC, (**e**) Fresh Φ-P-Ru/AC-HCl, (**f**) Spent Φ-P-Ru/AC-HCl, (**g**) Fresh Φ-P-Ru/AC-HNO₃.

Figure S9. The activity of the catalyst regenerated by HCl and nitric acid. Reaction conditions: temperature (T) = 180 °C, GHSV (C₂H₂) = 180 h⁻¹ and V_{HCl}/V_{C2H2} = 1.15.

The regeneration was mainly aimed at the reversible deactivation caused by the coke deposition and the reduction of active components. The offline regeneration by HNO₃ solution and the online regeneration by HCl gas were conducted, and the results are shown in Figure S9.

The offline regeneration by HNO₃ solution refers to that the spent catalyst is soaked with 10 mL nitric acid (5 mol·L⁻¹), and the mixture was placed at room temperature for 6 h under stirring, then it was filtered and washed to pH = 7 with distilled water, followed by desiccation at 140 °C for 24 h. The online regeneration by HCl refers to that a HCl flow of 20 mL·min⁻¹ is passed through the catalyst bed at 180 °C for 12 h to reactivate the spent catalyst. The conversions of acetylene increase from 89.25% to 94.58% and 92.52%, respectively, over the catalysts regenerated by HNO₃ solution and HCl gas. The possible reason is that HNO₃ solution and HCl gas partially oxidize the reduced Ru species to high-valent active species, and the HNO₃ solution can also remove the coke deposition to some extent.

References

- 1. Zhang, J.; Sheng, W.; Guo, C.; Li, W. Acetylene hydrochlorination over bimetallic Ru-based catalysts. *RSC Adv.* **2013**, *3*, 21062–21069, doi:10.1039/c3ra42867b.
- Pu, Y.; Zhang, J.; Yu, L.; Jin, Y.; Li, W. Active ruthenium species in acetylene hydrochlorination. *Appl. Catal. A-Gen.* 2014, 488, 28–36, doi:10.1016/j.apcata.2014.09.037.
- 3. Zhang, H.; Li, W.; Jin, Y.; Sheng, W.; Hu, M.; Wang, X.; Zhang, J. Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. *Appl. Catal. B-Environ.* **2016**, *189*, 56–64, doi:10.1016/j.apcatb.2016.02.030.
- 4. Li, G.; Li, W.; Zhang, H.; Pu, Y.; Sun, M.; Zhang, J. Non-mercury catalytic acetylene hydrochlorination over Ru catalysts enhanced by carbon nanotubes. *RSC Adv.* **2015**, *5*, 9002–9008, doi:10.1039/c4ra12017e.
- Shang, S.; Zhao, W.; Wang, Y.; Li, X.; Zhang, J.; Han, Y.; Li, W. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination. *ACS Catal.* 2017, *7*, 3510–3520, doi:10.1021/acscatal.7b00057.
- 6. Man, B.; Zhang, H.; Zhang, J.; Li, X.; Xu, N.; Dai, H.; Zhu, M.; Dai, B. Oxidation modification of Ru-based catalyst for acetylene hydrochlorination. *RSC Adv.* **2017**, *7*, 23742–23750, doi:10.1039/c7ra01121k.
- 7. Xu, N.; Zhu, M.; Zhang, J.; Zhang, H. Nitrogen functional groups on an activated carbon surface to effect the ruthenium catalysts in acetylene hydrochlorination. *RSC Adv.* **2015**, *5*, 86172–86178, doi:10.1039/c5ra18851b.
- 8. Jin, Y.; Li, G.; Zhang, J.; Pu, Y.; Li, W. Effects of potassium additive on the activity of Ru catalyst for acetylene hydrochlorination. *RSC Adv.* **2015**, *5*, 37774–37779, doi:10.1039/c5ra03466c.
- 9. Man, B.; Zhang, H.; Zhang, C.; Li, X.; Dai, H.; Zhu, M.; Da, i B.; Zhang, J. Effect of Ru/Cl ratio on the reaction of acetylene hydrochlorination. *New J. Chem.* **2017**, *41*, 23–49, doi:10.1039/C7NJ03863A.

- 10. Li, Y.; Dong, Y.; Li, W.; Han, Y.; Zhang, J. Improvement of imidazolium-based ionic liquids on the activity of ruthenium catalyst for acetylene hydrochlorination. *J. Mol. Catal. A-Chem.* **2017**, *443*, 220–227, doi:10.1016/j.mcat.2017.09.021.
- 11. Hou, L.; Zhang, J.; Pu, Y.; Li, W. Effects of nitrogen-dopants on Ru-supported catalysts for acetylene hydrochlorination. *RSC Adv.* **2016**, *6*, 18026–18032, doi:10.1039/c5ra23112d.
- 12. Li, X.; Zhang, H.; Man, B.; Hou, L.; Zhang, C.; Dai, H.; Zhu, M.; Dai, B.; Dong, Y.; Zhang, J. Activated carbon-supported tetrapropylammonium perruthenate catalysts for acetylene hydrochlorination. *Catalysts* **2017**, *7*, 311–324, doi:10.3390/catal7100311.