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Abstract: This short review reports on spinel-type mixed oxides as catalysts for the transformation
of biomass-derived building blocks into chemicals and fuel additives. After an overview of the
various methods reported in the literature for the synthesis of mixed oxides with spinel structure,
the use of this class of materials for the chemical-loop reforming of bioalcohols is reviewed in detail.
This reaction is aimed at the production of H2 with intrinsic separation of C-containing products, but
also is a very versatile tool for investigating the solid-state chemistry of spinels.
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1. Introduction

Spinel oxides with the general formula AB2O4 are chemically and thermally stable materials
suitable for several applications, including catalysis.

The ideal stoichiometric spinel structure is assumed by oxides with average cation charge of 2.33,
like, for instance, magnetite Fe3O4, with one divalent and two trivalent Fe cations. The presence of
cations with different charges is at the basis of most catalytic properties of spinels, allowing internal
redox reactions which make easier reduction–reoxidation cycles of the catalyst. In the spinel structure,
the oxygen anions are distributed in an approximate cubic close-packing and the cations are distributed
in the interstices between the oxygen anions. Only a fraction of the interstices are occupied by cations,
namely eight tetrahedral interstices (A sites) and 16 octahedral interstices (B sites) in a cell containing
32 oxygen anions, each anion being located at the corner between two octahedra and one tetrahedron.
The occupied cation sites form rows of octahedra joined edge-to-edge and connected by tetrahedra
(Figure 1).

The distribution of different cations in the A and B sites essentially depends on their crystal field
stabilisation in coordination four or six. The effect of this distribution on catalytic properties is not
negligible. When the spinel structure is interrupted by a surface, octahedral B sites are more exposed
than tetrahedral A sites. As a consequence, B sites have been considered to represent the most effective
catalytic sites [1]. However, this assumption has somehow to be qualified, as the internal charge
transfers needed to close a catalytic cycle imply both site B and site A, and both sites are involved
in oxygen mobility. Moreover, the reduction of the surface implies a severe reorganisation which
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significantly modifies the distribution of the sites [2]. Reduction of the oxide can reach complete
destruction of the spinel phase when the material is used as oxygen carrier in a chemical-loop cycle.

The spinel structure is tolerant of significant deviations from the average cation valence 2.33, with
significant effects on catalytic activity. The incorporation of cations with higher positive charge is
possible if accompanied by the formation of cation vacancies, which allow the charge balance of the
solid to be kept. A typical example is γ-Fe2O3 (maghemite), a cation-defective spinel. The absence of
divalent Fe2+ cations in maghemite has been suggested to explain the lower effectiveness of maghemite
as Fenton catalyst by comparison with the isostructural not-defective magnetite Fe3O4 [3]. On the
contrary, partial oxidation of spinels has been reported to create oxygen defects, on which reactive
·OH radicals are easily formed [4].
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Overall, versatile catalytic properties are dependent on the chemical composition and nature of
substituted ions, charges and their distribution among the octahedral (Oh) and tetrahedral (Td)
sites, which in turn are affected by the synthesis method used [5–8]. Indeed, many methods
have been developed to synthesize spinel oxides, such as, amongst others, solid-state synthesis
(mechanical milling/alloying), and wet chemical routes: sol–gel, coprecipitation, reverse micelles,
hydrothermal/solvothermal synthesis, electrochemical synthesis, and others (Table 1).

Table 1. Methods reported in the literature for spinel synthesis.

Preparation Method Reference

Coprecipitation [9–23]
Sol–gel [24–46]
Hydrothermal [47–55]
Solvothermal [56–60]
Microemulsion/Reverse micelles [61–68]
Template [66–72]
Mechanical milling [73–81]
Plasma [82,83]
Flux growth [84–86]
Solid phase [87]
Combustion [88–90]
Microwave combustion [91–93]
Microwave hydrothermal [94–96]
Pechini method [97–100]
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Table 1. Cont.

Preparation Method Reference

Electrochemical [101]
Electrospinning [102]
Thermal treatment [103,104]
Ultrasonic wave-assisted ball milling [105]
Spray pyrolysis [106]
Aerosol [107]
Forced hydrolysis [108]
Glycol-thermal [109]
Refluxing [110]

The choice of the preparation method is generally driven by the stability of the specific spinel
composition targeted and by the requirement of specific textural, chemical or magnetic properties of
the final product. Obtaining particles smaller than 10 nm is usually possible by proper tuning of most
low-temperature methods. The temperature of post-treatment is the most important factor affecting
the size of the spinel particles. The formation of small particles at high temperature is possible by
reducing the time spent at the synthesis temperature, for instance in methods of solution combustion
or spray pyrolysis. The stability of these small particles in the temperature and redox conditions of the
catalytic application is, however, often questionable. The morphology of the spinel particles has been
controlled by combination of pH, temperature and flow conditions in several methods.

The preparation methods largely differ by their economics, their energy requirement and their
environmental impact. Classical precipitation methods can be hampered by the need of operating
in the high-pH field in which all the concerned cations are out of their solubility domain, with
consequent rejection of alkaline wastewaters. Methods aimed at a more precise control of particle size
by confinement of the precursors, as the emulsion or template methods, imply the use of relatively
costly organic additives. This is also the drawback of methods such as the sol–gel, Pechini or alginate
methods, in which the homogeneous dispersion of the precursor cations in a matrix favours the
formation of spinels with compositions difficult to form by coprecipitation. Some energy-intensive
methods, like flux growth, are not intended to form the high-surface-area materials preferred for
catalysis but aim for the formation of materials with specific solid-state properties.

Several uses of spinel-type mixed oxides as catalysts for a variety of reactions have been reported;
Table 2 summarizes the main ones.

Table 2. Applications of spinel mixed-metal oxides as catalysts.

Reaction References

Oxidative cleavage of styrene to benzaldehyde with H2O2 [5,49]
Oxidation of cyclohexane to cyclohexanol/cyclohexanone with O2 or H2O2 [6,7]
Hydroxylation of benzene/phenol to phenol/diphenols with H2O2 [111]
Oxidation of vanyllol to vanillin with air [112]
Oxidation of benzyl alcohol to benzaldehyde with H2O2 [113]
Oxidation of monoterpenic alkenes with O2 [114]
Oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (hmf to fdca) with H2O2 or O2 [115–117]
Oxidation of aniline to azoxybenzene with H2O2 [118]
Oxidation of toluene to benzaldehyde with H2O2 [119]
Oxidation of ethanol to acetaldehyde with O2 [120]
Oxidation of veratryl alcohol to veratryl aldehyde with O2 [121]
Ketonisation of butanol to heptanone [122]
Total oxidation of voc with air [123]
Friedel–crafts acylation [124]
Knoevenagel condensation [125]
Reduction of ketones [126]
Reduction of nitroarenes [127]
Methylation (alkylation) of phenolics, aniline, pyridine [128]
Methanol, ethanol reforming (by means of chemical-loop) [129–137]
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It is shown that most applications investigated are for the oxidation of organic substrates, for
example, for the synthesis of aldehydes or acids. In the field of biomass valorization, worthy of note
are the recent papers on the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic
acid (FDCA) with O2, and catalytic transformation involving bioalcohols, mainly bioethanol. Recently,
Jain et al. reported on the use of spinel catalysts with composition Li2CoMn3O8 as efficient catalysts
for the selective oxidation of HMF to FDCA with 80% isolated yield in a gram-scale reaction [116].
The nanocrystalline spinel was synthesized by a gel pyrolysis method using urea and citric acid as
complexing agent. Prompted by the activities of Co- and Mn-based homogeneous catalyst systems such
as Co(OAc)2/Mn(OAc)2/HBr used in HMF oxidation, spinel MnCo2O4-supported Ru nanoparticles
were synthesized and applied as heterogeneous nanocatalysts for HMF oxidation by Mishra et al. [117],
under base-free conditions. An important role was ascribed to the acidic sites on the spinel surface in
affording 99% yield to FDCA.

2. Spinels as Catalysts for the Chemical-Loop Reforming (CLR) of Bioethanol

The reforming of bioethanol, and in general of bioalcohols, to syngas, has been the object of several
investigations during the latest years. This reaction can be carried out in the chemical-loop mode, that
is, by alternating the bioalcohol and steam over an O-carrier [129–137], the so-called chemical-loop
reforming (CLR). Amongst the most promising materials, ferrospinels offer the advantage of a wide
flexibility of composition, structural stability and tunable redox properties. On the other hand, the
choice of ethanol as reducing agent has also several advantages: its renewable origin, availability in
large quantities at low cost, together with the possibility to decompose at a relatively lower temperature
with formation of a hydrogen-rich mixture. CLR is aimed at the production of “clean H2” with an
inherent COx separation. The main principle of the CLR process is that an oxygen-storage material is
first reduced by ethanol stream (T = 400–500 ◦C), and then reoxidized by water (T = 300–450 ◦C) to
produce hydrogen and to restore the original oxidation state of the looping material (Figure 2).
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Figure 2. The chemical-loop reforming of ethanol over modified ferrospinels.

Different M-modified MFe2O4 spinel-type mixed oxides were synthesized and tested as ionic
oxygen and electrons carriers to generate hydrogen by water reduction, after a reductive step of the
oxides carried out with ethanol. The aim was to develop materials showing the structural stability
needed to undergo complete reversible redox cycling upon chemical looping. Spinels containing Co,
Mn, Cu or Cu/Co, Cu/Mn, Co/Mn and alkaline earth metals Ca or Mg as divalent cations were
prepared, characterised and tested. The nature of the cations affected the reactivity of the spinels,
in regard to both the nature of the products formed during ethanol oxidation along with the purity of
the hydrogen produced during the water-reduction step.

Regarding the behaviour of bare Fe3O4, during the reduction step it formed Fe0 which then was
converted into Fe3C (cementite). However, the formed carbide decomposes into metallic iron and
carbon (Fe3C→3Fe0+C) and in consequence catalyses the growth of graphitic filaments. In order to
reduce the formation of coke, a short reduction time of 5 min only was used, since the formation of
cementite was slightly delayed at the beginning of the reduction step. The reducibility of magnetite
was improved by incorporation of several transition metals like Co, Cu and Ni into the spinel structure.
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The structure of MFe2O4 ferrospinels, prepared via a coprecipitation route, was identified by
means of XRD. A broadening of the diffraction patterns was observed for Mn ferrospinels, that is,
MnFe2O4, Cu0.5Mn0.5Fe2O4 and Co0.5Mn0.5Fe2O4, attributed to a decrease in particle size. Table 3
compiles the specific surface area (SSA), the crystallite size (calculated by Scherrer equation) and the
particle size of the fresh powders calcined at 450 ◦C for 8 h.

Table 3. Specific surface area (SSA) and crystallite/particle size of spinels with various compositions.

Sample Name SSA, m2/g Crystallite Size, nm Particle Size (dBET), nm

CuFe2O4 60 6.9 18.3
Cu0.5Co0.5Fe2O4 67 10.4 16.5

CoFe2O4 69 12 16.2
Co0.5Mn0.5Fe2O4 141 3.5 8
Cu0.5Mn0.5Fe2O4 112 - 10

MnFe2O4 165 - 6.9

Temperature-programmed reduction (TPR) was used to characterise the redox properties of
samples (Figure 3). The reduction of Fe strongly depends on the presence of another metal in the
ferrite. Two main steps of the reduction were shown: (i) the reduction of iron oxide to metallic iron and
(ii) the reduction of the incorporated metal oxide to its corresponding metal or sub-oxide. Despite the
overlapping of the two steps, based on the nature of the foreign metals and their reduction potentials,
combined with the experimental amount of consumed H2, it was possible to draw the reduction
scheme shown in Figure 4.
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As an example, in the TPR profile of CuFe2O4, a peak at 240 ◦C can be attributed to the reduction
of the copper oxide to the metallic copper, whereas a second peak at ~340 ◦C can be attributed to a
primary stepwise reduction of the spinel with a final formation of Cu0 and Fe3O4; the further reduction
of Fe3O4 to FeO and of the latter to Fe0 appears at higher temperatures. In the case of CoFe2O4,
primary spinel reduction started to occur at about 400 ◦C, with a stepwise formation of CoO and Fe3O4.
With the Mn-containing spinel, the reduction of MnO to metallic Mn turned out to be very difficult,
due to its highly negative reduction potential (−1.18 eV), and thus this step occurs only at very high
temperatures. In fact, the total reduction extent of CoFe2O4 (α = 86%) was much higher than that of
MnFe2O4 (α = 45%) samples, which can be explained by the formation of the hardly reducible MnO or
of MnxFeyO oxide.
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The reactivity of spinels has been tested in the CLR of bioethanol; the role of the first step,
that is, the reduction of the spinel with the alcohol at 450 ◦C, was aimed at maximizing the spinel
reduction extent along with minimizing deactivation, an effect of coke accumulation. In other words,
the reduction degree should be monitored as closely as possible, while both limiting the formation
of coke, and maintaining the reoxidizability of the material during the second step to regenerate the
starting spinel. This condition was essential, in order to allow the looping material to repeat the cycle
as many times as possible. Another important point is that during the reduction of the spinel with
ethanol, the latter is not only decomposed to light gases (that is, CO, CO2, CH4 and H2), but also is
oxidised to several compounds, ranging from C2 (acetaldehyde, acetic acid), to C3 (acetone), C4 and
higher homologues. These valuable compounds can be easily separated from the light gases and
could contribute to the overall process’s economic sustainability. The nature and amount of these
“by-products” turned out to be a function of spinel composition, as well as of conditions used for the
two steps of the chemical loop.

Figure 5 summarizes the integrated values for H2 produced during the second step, that is,
the reoxidation of the reduced MFe2O4 spinel (referred to as one complete cycle of 20 min for each one
of the two steps) carried out with steam. For a better understanding of the results, some important
values are provided in Table 4.
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450 ◦C and MFe2O4 ferrospinels (note: Listed data correspond to the values obtained after 1 complete
cycle of 20 min).

The following aspects are worthy of being mentioned:

(a) Mn incorporation into Fe3O4 with generation of the corresponding ferrites showed its positive
aspect on lowering the amount of coke that accumulated during the first step carried out with
ethanol, see C %w (CHNS) in Table 4;

(b) Mn incorporation also increased the H2/COx ratio, which follows from the previous statement.
It is important to notice that the higher the H2/COx ratio, the more ‘pure’ is the H2 generated
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during the second step. For comparison, Fe3O4 itself accounts for H2/COx = 3.5, whereas
MnFe2O4 (H2/COx = 15) and Co0.5Mn0.5Fe2O4 (H2/COx = 15) showed much higher values;

(c) the incorporation of Cu (alone, or together with either Co or Mn) has a beneficial effect on the
total amount of H2 produced from H2O, compared to Fe3O4. Hence, the best performance was
shown by CuFe2O4 (Y-52%), Cu0.5Co0.5Fe2O4 (Y-46%) and Cu0.5Mn0.5Fe2O4 (Y-37%);

(d) incorporation of Cu/Co led to the increase of the nH2/nEth ratio, as for CuFe2O4 (nH2/nEth = 1.2),
and Cu0.5Co0.5Fe2O4 (nH2/nEth = 1.0). This can be correlated to the feasibility of producing H2

starting from bioethanol being based on the H2 vs ethanol heating values (referred to as LHV
(Lower Heating Value), MJ/kg): 119, 96 and 28.86, respectively. In other words, the higher the
nH2/nEth, the higher is the potential efficiency of the CLR process. Of course, there are many
more aspects that have to be undertaken in order to calculate the actual cost of the CLR process,
and to estimate a final price of H2 produced via CLR technology and compare it to the existing
ones (not encompassed in this study).

Table 4. Chemical-loop process parameters calculated for MFe2O4 ferrites in bioethanol reforming
(note: Listed data correspond to the values obtained after 1 complete cycle of 20 min).

Sample Name C %W after 20 min Red.
with Ethanol H2/COX

Moles of H2/Moles of Ethanol
(nH2/nEth)

CoFe2O4 11.6 6 0.5
Cu0.5Co0.5Fe2O4 16.3 3 1.0

CuFe2O4 6.9 3 1.2
Cu0.5Mn0.5Fe2O4 6.1 3 0.8
Co0.5Mn0.5Fe2O4 1.5 15 0.1

MnFe2O4 1.7 15 0.09
Fe3O4 5.3 3.5 0.7

Table 5 summarizes the H2 produced during three consecutive cycles of 20 min. The following
statements can be made:

(a) Consecutive utilization of CoFe2O4, CuFe2O4 and Cu0.5Co0.5Fe2O4 ferrospinels as looping
materials resulted in higher amounts of produced hydrogen (given in moles) which surpass the
value obtained over the reference material—Fe3O4;

(b) increasing the total tos from 20 to 60 min (which accounts the total time for the
reduction/reoxidation step) leads to the decreasing of H2/COx ratio, which in its turn affects the
final purity of the target gas—H2. However, this problem can be overcome by implementation of
a three-step CLR process with the third step being carried out with air;

(c) CuFe2O4 showed the higher nH2/nEth ratio of 1 (referring to the total value for three consecutive
cycles) which was in fact twice as high as that obtained with Fe3O4 (nH2/nEth = 0.5);

(d) on the other hand, under different conditions (not shown here), CoFe2O4 underwent the greatest
extent of reduction during the first step, while being reoxidizable back to the spinel during the
second step, and was able to maintain it throughout several repeated cycles. However, it showed
the greater amount of accumulated coke, which formed CO when put in contact with steam
during the second step;

(e) coke formation remained an issue for M-modified ferrospinels, which means that avoiding
completely carbon deposition and its further accumulation is not possible.
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Table 5. Chemical-loop process parameters calculated for MFe2O4 ferrites in bioethanol reforming
(note: Listed data correspond to the values obtained after 3 complete cycles of 20 min).

Sample Name H2/COX Moles of H2/Moles of Ethanol

CoFe2O4 5 0.7
Cu0.5Co0.5Fe2O4 3 0.9

CuFe2O4 3 1.0
Fe3O4 3 0.5

Velasquez Ochoa et al. [138] studied the reduction mechanism of M-modified (Ni, Co and Fe)
spinel oxides, where ethanol was the reductant. It was concluded that the first step in ethanol
anaerobic decomposition appears to be the same for all samples and corresponds to acetaldehyde
formation via dehydrogenation of ethanol. Further reduction of the solid was strongly dependent
on the nature of incorporated M (Ni, Co or Fe), viz. acetaldehyde can be either oxidized to acetates
(NiFe2O4), decomposed to CO and CH4 (CoFe2O4) or completely oxidized (Fe3O4). As said above,
Mn incorporation significantly reduced the coke formation during the first reduction step, which was
attributed to the formation of a thermodynamically stable and hardly reducible layer of MnxFeyO solid
solution. Moreover, it predominantly favored dehydrogenation and condensation reactions leading
to the formation of acetaldehyde and acetone, whereas Co/Cu incorporation facilitated total/partial
oxidation of ethanol giving rise to high yields of H2, COx and H2O.

Recent study on CoFe2O4 and FeCo2O4 as oxygen carrier materials was performed by
Carraro et al. [129,130]. During the reduction step with ethanol, FeCo2O4 was reduced faster compared
to CoFe2O4. However, its performance during the reoxidation step was quite poor due to an inefficient
oxidation by water steam, which is able to oxidize only the outer shell of the nanoparticles, resulting
in small H2 yield. On the other hand, CoFe2O4 sample was a more efficient oxygen carrier, which
enabled the production of a larger amount of H2 due to the residual presence of a reducible wüstite,
which can be consecutively reoxidized/reduced in further looping cycles.

3. Other Materials as O-Carriers for Hydrogen Production via CLR

A comprehensive review on different oxygen carrier materials for the hydrogen production
via chemical-loop processes was recently published by Protasova et al. [139]. The review
encompasses information on the different perovskites and Ni/Fe/Cu/Ce-based oxygen carrier
materials. Perovskites showed good results for the partial oxidation of methane, while with Fe-based
materials, promising results also have been obtained. Several research groups have been exploring
modifications of simple iron oxide (Fe3O4 and Fe2O3) in order to prevent deactivation [140], to lower
the operating temperature [141] and to increase the structural stability and reducibility [142,143],
and to increase the reaction rate for oxidation and total efficiency of the process [144]. Several studies
were dedicated to different metal additives to iron oxide [145,146]. In addition, ternary metal systems
have also been considered in the search for a better synergetic effect [147,148]. Several research groups
have investigated the effect of various M-additives on the stability and redox behavior of iron oxide
for chemical hydrogen storage using Pd, Pt, Rh, Ru, Al, Ce, Ti, Zr [149] and Al, Cr, Zr, Ga, V, Mo [150].
It was found out that Pd, Pt, Rh and Ru additives have an effect on promoting the reduction and
lowering the reoxidation temperature of iron oxide. At the same time, Al, Ce, Ti, Zr, Cr, Ga and V
additives prevent deactivation and sintering of iron oxide during repeated redox cycles. Some recent
studies on developing of the novel and efficient oxygen carrier materials for chemical-loop applications
highlight the special interest in spinel oxides [151–160] which, first of all, were explained by their
ability to form thermodynamically stable spinel oxides which allow one to reobtain the initial spinel
phase upon cycling, and in turn, increase the stability of the looping material itself.
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4. Conclusions

Spinel-type mixed-metal oxides are extremely versatile systems useful as catalysts for a variety
of reactions. Because of their chemical–physical properties, they are now studied for redox reactions
involving biomass-derived building blocks aimed at the production of either chemicals or fuel
components. An example is the reforming of bioalcohols into COx/H2; this reaction can be carried
out in the chemical-loop mode, which in principle should allow the intrinsic separation of H2 from
COx. The reaction also allows the study of the chemical–physical properties of spinels in terms of
redox properties. Depending on the spinel composition, it is possible to obtain H2 along several cycles,
but during the spinel reduction step (with the bioalcohol) unfortunately also coke forms, which brings
about the formation of COx during the spinel reoxidation step; the latter, however, should be aimed
at the production of H2 only. Studies showed that a complete recovery of the initial cycling material
was possible, although a slow accumulation of coke takes place (1.0 wt % after 20 cycles or 100 min).
This problem could be solved by periodically adding a third step to burn this coke left over by air.

If the production of only H2 in the second chemical looping step is not a crippling issue, the process
can be envisaged to valorize bioethanol. In fact, quite interestingly, the reduction of the spinel with
ethanol also leads to the coproduction of several chemicals, from acetaldehyde to acetone and C4

compounds, the relative amount of which is greatly affected by the spinel composition. The valorization
of these compounds could help to render economically sustainable the industrial process.
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