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Abstract: Heavy oil will likely dominate the future energy market. Nevertheless, processing
heavy oils using conventional technologies has to face the problems of high hydrogen partial
pressure and catalyst deactivation. Our previous work reported a novel method to upgrade
heavy oil using hydrogen non-thermal plasma under atmospheric pressure without a catalyst.
However, the plasma-driven catalytic hydrogenation mechanism is still ambiguous. In this work,
we investigated the intrinsic mechanism of hydrogenating heavy oil in a plasma-driven catalytic
system based on density functional theory (DFT) calculations. Two model compounds, toluene and
4-ethyltoluene have been chosen to represent heavy oil, respectively; a hydrogen atom and ethyl
radical have been chosen to represent the high reactivity species generated by plasma, respectively.
DFT study results indicate that toluene is easily hydrogenated by hydrogen atoms, but hard to
hydrocrack into benzene and methane; small radicals, like ethyl radicals, are prone to attach to the
carbon atoms in aromatic rings, which is interpreted as the reason for the increased substitution
index of trap oil. The present work investigated the hydrogenation mechanism of heavy oil in a
plasma-driven catalytic system, both thermodynamically and kinetically.
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1. Introduction

Heavy oil, including heavy, extra heavy crude and refinery residue, will likely dominate the
future energy market because high-quality light crude is becoming depleted and more expensive.
Nevertheless, heavy oil has a low H/C atomic ratio and a high content of heteroatoms (e.g., nitrogen,
sulfur and trace metals) compared to light crude [1], which is a challenge for processing heavy oils
using conventional technologies.

Carbon rejection and hydrogenation are two general routes for upgrading heavy oil [2].
Carbon rejection processes extract the light products from heavy oil by thermal cracking, which
usually leads to the quality of light products being poor. The hydrogenation process could suppress
coke formation and improve the quality of light products, with the aid of a catalyst under a high
hydrogen partial pressure [3,4]. However, the hydrogenation process has to face two problems: (1)
The high cost of operating and reactor manufacturing due to high hydrogen partial pressure and (2)
catalyst deactivation because of carbon and metal deposition on the catalyst surface [5,6]. Therefore,
developing a novel technology to decrease high hydrogen partial pressure and solve the problem of
catalyst deactivation is necessary.

Catalysts 2018, 8, 381; doi:10.3390/catal8090381 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
http://www.mdpi.com/2073-4344/8/9/381?type=check_update&version=1
http://dx.doi.org/10.3390/catal8090381
http://www.mdpi.com/journal/catalysts


Catalysts 2018, 8, 381 2 of 9

Our previous work [7] reported a novel method to upgrade heavy oil using hydrogen non-thermal
plasma under atmospheric pressure without a catalyst. Plasma is an electroneutral mixture and
contains electroneutral gas molecules, as well as electrons, ions, atoms, radicals, photons and excited
molecules, which are chemically and physically active species [8]. Due to the high reactivity, plasma
has been used in many fields, such as gas cleaning, surface treatment and ozone production [9–18].

In our previous work [7], although it has been demonstrated that non-thermal plasma could
increase light oil yield significantly and add hydrogen to heavy oil under atmospheric pressure without
a catalyst, the plasma-driven catalytic hydrogenation mechanism is still ambiguous, especially the
reason for the increased substitution index of trap oil.

The density functional theory (DFT) has been used to study the thermodynamics associated
with steam reforming of small organic molecules (e.g., DiMethyl Ether and Ethanol) under cold
plasma conditions [19,20]. These studies focused on the dissociation of original reactants forming
radicals through the highly energetic electrons within cold plasmas and the following radical reactions.
The calculation results showed that the thermodynamic obstacle was easy to be overcome under cold
plasma conditions. A DFT study has also been used to study the interaction of plasma species with
the catalyst surface to reveal the effect of plasma and explain the reaction mechanism under plasma
conditions [21–23].

The hydrogenation mechanisms of heavy oil on traditional catalysts were also widely investigated
using DFT [24–26]. Due to the complex of reaction and reactants, model compounds, such as thiophene
pyridine, 2,6-dimethylpyridine and benzyl radical, were selected to represent the heavy oil.

Thus, there is a lack of theoretical studies about the hydrogenation mechanism of heavy oil
in a plasma-driven catalytic system. This study attempts to reveal the plasma-driven catalytic
hydrogenating mechanism of heavy oil using DFT calculation. Toluene and 4-ethyltoluene have
been chosen as the heavy oil model compounds, respectively; a hydrogen atom and ethyl radical have
been chosen as the high reactivity species generated in a plasma-driven catalytic reaction system.

DFT study results indicate that toluene is easily hydrogenated by hydrogen atoms, but hard
to hydrocrack into benzene and methane. Furthermore, it also shows that small radicals, like ethyl
radicals, are prone to attach to the carbon atoms in the 4-ethyltoluene ring, which is interpreted as the
reason for the increased substitution index of trap oil.

2. Results

Heavy oils mainly consist of aromatic-kind compounds, which account for more than 70% [7].
Most heavy oil molecules are condensed aromatic rings (with side chains) connected by bridge
bonds [1]. Heavy oils crack into small pieces under reaction conditions and the final products depend
on the type of fragments generated. According to the structure and composition of heavy oil, model
compounds of which has been represented by toluene and 4-ethyltoluene, respectively.

Plasma is an ionized gas which is generated by heating a gas to a high temperature or by applying
a strong electromagnetic field (or a high voltage electrical field) to a gas. Therefore, all kinds of gases
in a plasma system would be partially ionized into a plasma state. Gases, such as methane and ethane,
generated by the thermal cracking of heavy oil would be partially ionized into a plasma state inevitably
and some of them would become small radicals (e.g., methyl and ethyl). Hence, hydrogen atoms
and ethyl radicals have been chosen to represent the high reactivity species in our plasma-driven
catalytic system.

According to the selected reactants, two categories of reaction were designed to illuminate the
plasma-driven catalytic hydrogenation mechanisms: (1) Hydrogen atoms reacted with toluene and (2)
the ethyl radical reacted with 4-ethyltoluene.
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2.1. Hydrogen Atom Reacted with Toluene

To clearly understand and describe the hydrogenation/hydrocracking pathways of toluene,
the seven carbon atoms of toluene are labeled as C1–C7 (see Figure 1). Clearly, it can be seen that C2 is
equivalent to C6, and C3 is equivalent to C5.
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Figure 1. The naming rule for carbon atoms in toluene for this study.

Firstly, all the reaction routes of hydrogenating toluene (namely the original reactant) by the first
hydrogen atom have been calculated. In Figure 2a, the DFT results demonstrate that a hydrogen atom
is most easily added to C2 (or C6) of toluene with the lowest barrier of 10.5 kJ/mol, and its reaction
energy is −115.5 kJ/mol (blue line); while, hydrogenating C1 has the highest barrier of 18.4 kJ/mol,
and its reaction energy is −99.8 kJ/mol (pink line).
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atom; (b) hydrocracking of toluene (the original reactant) by the first hydrogen atom.

In Figure 2b, two reaction routes of hydrocracking toluene into benzene and methane were
calculated. In the first route (blue line), C7 was directly attacked by the H atom to generate a
phenyl group and methane, which was exothermic by 36.8 kJ/mol, with a very high barrier of
152.3 kJ/mol. In the second route (red line), C1 was attacked by the H atom producing a phenyl
group and methane. For the first step of the second route, the H atom is easily added to C1 forming
C6H6CH3 (first-generation hydrogenated products), its energy barrier is only 18.4 kJ/mol. However,
the consequent cracking of C6H6CH3 into benzene and methyl is difficult, which needs a higher
energy barrier of 84.0 kJ/mol, and is an endothermic reaction (34.1 kJ/mol). After that, although the
methyl captures the H atom of benzene, forming a phenyl group and methane with a lower barrier
of 49.9 kJ/mol and an endothermic energy of 28.9 kJ/mol, it is reasonably inferred that this step is
less likely, because the methyl is prone to capture the hydrogen atom generated by plasma in the
atmosphere with a limited barrier. Totally, the calculation results indicate that the hydrogenation
probability of toluene is higher than that of hydrocracking toluene, both thermodynamically (−115.5
vs. −36.8 kJ/mol) and kinetically (10.5 vs. 84.0 kJ/mol).

According to the above calculations of toluene hydrogenation by the first H atom, the further
hydrogenation of C6H6CH3 (first-generation hydrogenated product) into C6H7CH3 (second-generation
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hydrogenated product) by the second H atom was investigated in Figure 3. Here, it must be pointed
out that the first H atom is added on the C2 site of toluene, forming C6H6CH3 (first-generation
hydrogenated product). In Figure 3, the DFT calculation results show that, except for C5 (red dash
line, energy barrier is 97.1 kJ/mol), the other four carbon sites (C3, C4, C6 and C1) of C6H6CH3

(first-generation hydrogenated product) were easily hydrogenated by the second H atom with
barriers lower than 40 kJ/mol. However, the hydrogenation of C3 (red line) and C1 (pink line)
sites of first-generation hydrogenated products are more favorable (−322.9 and −307.2 kJ/mol)
thermodynamically, suggesting the C–C single bonds are easily formed in the aromatic ring.
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Consequently, in Figure 3, the breaking of one of these two C–C single bonds (C1–C2 and C2–C3)
of C6H7CH3 (second-generation hydrogenated product), as well as the hydrocracking of the single
bond (C1–C7) by the second H atom were calculated as well. Compared with the hydrogenations,
cracking single bonds (TS14–TS17) are endothermic reactions, their effective barriers are higher than
168 kJ/mol. The hydrocracking C1–C7 single bond of C6H7CH3 into benzene and methane (TS13) is an
exothermic reaction (−15.8 kJ/mol) but with a high barrier of 149.7 kJ/mol as well.

Similarly, the calculations of hydrogenation and hydrocracking by the third H atom for
second-generation hydrogenated products have also been carried out as displayed in Figure 4.
According to the above calculations, it must be declared that the first two H atoms were added
to the C2 and C3 sites of toluene. Compared with the previous hydrogenation reaction, the energy
barriers decreased for the hydrogenation of the second-generation hydrogenated product by the third
H atom. The hydrogenating C4 of the second-generation hydrogenated product by the third H atom
is even without barriers. Compared with hydrogenation, the hydrocracking of the single bond in
second-generation hydrogenated products is still difficult and needs high barriers (the effective barriers
are higher than 156 kJ/mol).
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Figure 4. Energy profiles of hydrogenation and hydrocracking by the third H atom for
second-generation hydrogenated products.

Further calculations (see Supplementary Materials) proved that the fourth, fifth and sixth
H atom generated by non-thermal plasma could easily be added into the aromatic ring, both
thermodynamically and kinetically. A reaction scheme along with the reaction energy of the toluene
hydrogenating sequence is given in Figure 5 which can be very helpful to understand the toluene
hydrogenation processes.
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Via the aforementioned theoretical studies, as well as our previous experimental results,
it is reasonably speculated that the H atoms generated by non-thermal plasma could easily be
continuously added into aromatic rings, but hydrocracking the aromatic rings of heavy oil is difficult
both thermodynamically and kinetically. The results of this DFT calculation well explained the
hydrogenation mechanism of heavy oil under a hydrogen plasma condition.

2.2. Ethyl Radical Reacted with 4-Ethyltoluene

As mentioned before, gases, such as methane and ethane, generated by thermal cracking of heavy
oil, would be partially ionized into a plasma state (small radicals, like methyl and ethyl) inevitably.
Therefore, ethyl radical was chosen as the high reactivity species of plasma in this section, to react with
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the heavy oil model compound of 4-ethyltoluene. In Figure 6, eight reaction routes were designed to
disclose the intrinsic mechanism of the plasma-driven catalytic hydrogenation of heavy oil. These eight
designed reaction routes were divided into two categories: (1) The ethyl radical reacted with the side
chain (e.g., –CH3 or –C2H5) of the benzene ring; and (2) the ethyl radical reacted with the carbon atoms
of the benzene ring.
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For the former, the ethyl radical either directly attacks the hydrogen atoms of the side chain
or attacks the carbon atoms of the side chain. In Figure 6, DFT calculations show that the ethyl
radical is prone to capture the hydrogen at the end position of the side chain in 4-ethyltoluene
(barriers < 70 kJ/mol) rather than attack the carbon atoms of the side chain forming into a bigger
alkane and a smaller alkyl-benzene (barrier > 220 kJ/mol). With regard to the later, the calculation
results indicate that the ethyl radical attacking the carbon atom of the benzene ring in 4-ethyltoluene is
exothermic and the barriers are between 52.5 and 63.8 kJ/mol.

Totally, for comparison, the ethyl radical favorably attacks the carbon atoms of the benzene ring
or the hydrogen atoms at the end position of the side chain both thermodynamically and kinetically.
In other words, the small radicals would increase (blue line) or sustain (green line) the substitution
index of the aromatic ring, but have difficulty decreasing (red line) the substitution index of the
aromatic ring, which is well in agreement with our previous work [7].

3. Discussion

In summary, the calculations in this study demonstrate that the benzene ring of toluene is easily
hydrogenated by H atoms generated by plasma with a lower barrier, while the side chain of aromatic
rings is hardly hydrocracked by the high reactivity species (e.g., the H atom and ethyl radical). That is to
say, our study indicates that it is not feasible to process heavy oil by non-thermal plasma alone, because
non-thermal plasma does not have enough energy to crack the C–C bonds of heavy oil molecules.
In our previous work [7], it has been proved that heavy oil can be upgraded only when non-thermal
plasma is coupled with traditional thermal cracking; in which the non-thermal plasma technology
mainly provides the high reactivity species, while the thermal cracking technology primarily provides
the energy to break C–C bonds in heavy oil molecules.

It has been reported that methane, ethane and even butane would be partially ionized into plasma
state (methyl, ethyl and butyl) in the plasma-driven catalytic system in our former study. These high
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reactivity radicals can promptly react with the aromatic rings of trap oil (gas state under reaction
conditions), which finally increase the substitution index of trap oil. In this work, the calculations
clearly disclose that small radicals are prone to increase the substitution index rather than decrease the
substitution index of aromatic rings, which explains our experimental phenomenon.

In the future, other high reactivity species (such as ions, excited molecules and even free electrons)
should be studied to discover the role of these reactivity species and the corresponding intrinsic
hydrogenation mechanism of heavy oil in a plasma-driven catalytic system.

4. Materials and Methods

All calculations were performed using Gaussian 09 program package [27]. The geometry of each
compound and the radical structure were optimized using the DFT method with B3LYP/6-311+G(d,p)
basis set was performed [28–30]. All Cartesian coordinates of the intervening species have been given
in Supplementary Materials. Except for the stable structures without single electron spin, all other
optimized structures are calculated used the unrestricted wave function. Frequency calculations
were carried out to check whether each stationary was an intermediate (no negative frequency) or
a transition state (exactly only one negative frequency, see Supplementary Materials). Furthermore,
for some suspicious transition states, the intrinsic reaction coordinate (IRC) calculations [31] were
performed for both forward and reverse directions to confirm that the optimized transition states
correctly connect the relevant reactants and products. For the reactions, the relative energy (∆E),
enthalpy (∆H) and Gibbs free energy (∆G) are calculated at 298.15 K.

The barrier (Ea) and reaction energy (∆G) were calculated according to Ea = ETS − EIS and
∆G = EFS − EIS, where EIS, EFS and ETS are the sum of electronic and thermal free energies of the
corresponding initial state (IS), final state (FS) and transition state (TS), respectively.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/9/381/s1,
Figure S1. Energy profiles of hydrogenation and hydrocracking by the fourth H atom for third-generation
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