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Abstract: Covalent organic frameworks (COFs) are defined as highly porous and crystalline polymers,
constructed and connected via covalent bonds, extending in two- or three-dimension. Compared
with other porous materials such as zeolite and active carbon, the versatile and alternative constituent
elements, chemical bonding types and characteristics of ordered skeleton and pore, enable the rising
large family of COFs more available to diverse applications including gas separation and storage,
optoelectronics, proton conduction, energy storage and in particular, catalysis. As the representative
candidate of next-generation catalysis materials, because of their large surface area, accessible and
size-tunable open nano-pores, COFs materials are suitable for incorporating external useful active
ingredients such as ligands, complexes, even metal nanoparticles deposition and substrate diffusion.
These advantages make it capable to catalyze a variety of useful organic reactions such as important
C-C bond formations. By appropriate pore-engineering in COFs materials, even enantioselective
asymmetric C-C bond formations could be realized with excellent yield and ee value in much shorter
reaction time compared with their monomer and oligomer analogues. This review will mainly
introduce and discuss the paragon examples of COFs materials for application in C-C bond formation
reactions for the organic synthetic purpose.
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1. Introduction

Nanoporous materials possess extremely large surface areas, ordered pore channel structure,
tunable active sites and functional groups [1–20]. These properties rendered them as pivotal
nano-platforms for various applications such as adsorption and separation [21–29], energy
storage [30–49], proton conduction [47,48,50–52] and catalysis [6,53–61]. In particular, as the
workhorse of current synthetic chemistry, catalytic reactions as well as catalysts are faced with
the challenge of updating the use of more green, earth-rich and high-efficient materials and
advanced assembles to win the sustainable development. These new-type artificial nano-porous
materials have been constantly developed and applied as pivotal catalysts for both fine-chemical
and petrochemical industry for several decades [62–66]. After these 70 years exploration,
the domain of nanoporous material has been greatly extended from traditional inorganic mesoporous
materials zeolites [4,67–69] to organic-inorganic hybrid materials coordination polymer [70–76]
and metal-organic-frameworks (MOFs) [2,77–85]. Although a number of highly porous organic
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polymers with considerably large surface area have been designed and synthesized such as
hyper-crosslinked polymers [86–91], polymers with intrinsic microporosity [92–100], conjugated
microporous polymers [101–105], the linking chemistry totally relied on kinetically controlled
irreversible coupling reactions. The irreversibility brought about the poor self-healing ability of
these porous materials, which leaded to disordered pore and skeleton structure, and the formation
of non-separable oligomers. The presence of structure disorders and oligomers severely limited
their applications in catalysis. Organic porous materials which were conformed of long-range order
structure and showed good crystallinity were severely desired.

Since the first seminal work by Omar Yaghi in 2005 [106], covalent organic frameworks (COFs)
materials have been focused as a hot research field, explored and developed rapidly with great
progress [22,23,107–110]. Compared with inorganic zeolites and silica porous materials, COFs materials
possess higher porosity, tunable and larger pore size. These properties would facilitate the diffusion
of the reactants and the desorption of the products. In this way, higher selectivity and yield can
be obtained. Moreover, COFs materials usually own ultrahigh theoretical specific surface area and
high chemical stability. These advantages render them very ideal heterogeneous catalyst for organic
synthetic transformations. However, COFs materials are not perfect. They have some intrinsic
disadvantages. Commonly, COFs materials show poorer crystallinity with more disordered and
impure structures in comparison with zeolites and MOFs materials. And it is very difficult to obtain
COF single crystal. The poor crystallinity and the difficulty in obtaining single crystalline COF
all lead to the difficulty in confirming the accurate COF structure and the limitation in synthetic
applications. Although COFs have ultrahigh theoretical specific surface area, it is very difficult to
get high experimental specific surface area as MOFs due to the poorer crystallinity. And since the
main skeleton structure of COFs materials is conformed of organic unit, the thermal stability could not
be as high as inorganic crystalline zeolites materials. The major difference between COFs and other
porous organic polymer materials is (i) that the key synthesizing reactions in the preparation of COFs
materials are reversible. This endowed COFs forming process with high self-healing ability. And due
to the self-healing and error-checking mechanism of the reversible and thermodynamically-controlled
dynamic covalent chemistry, COFs material can form definitively long-range ordered crystalline
structure [110]. The connection manner of organic building blocks in COFs is atomically precise 2D
or 3D [107] extended polymeric structure with sufficient long-range order and retained crystallinity
without compromising porosity; (ii) since the elements constitute COFs materials are all light elements
(C, H, B, N, O, Si), the density of COFs are usually lower than other ordered micro- and mesoporous
frameworks such as MOFs. Owing to the relative heavy metal ions as well their powerful hydrolysis
nature, most MOFs materials lose their ordered structure and diffraction peaks in X-ray diffraction
characterization experiments simply after contacting aqueous condition or even humid air. However,
compared with its MOFs counterpart, many kinds of COFs display excellent stability in water, organic
solvents and even extremely basic, acidic, reductive and oxidative condition [111–117]. Even long-time
immersing in these harsh conditions does not deteriorate its long-ordered structure and crystallinity.
This extraordinary stability is mainly attributed to that the skeleton structure was metal-free and
constructed from strong covalent bonds, which possess much greater bond-dissociation-energy
than coordinative bond in MOFs structure; (iii) moreover, the hydrogen bonding and π-π stacking
interaction in COFs further strengthen the COFs skeleton and pore structure and prevent them from
destruction by collective solvation, hydrolysis and redox presses in most catalytic cases; (iv) finally, and
more important, intrinsic COFs materials themselves in fact have seldom active sites and/or catalytic
activity as general regular catalysts to trigger C-H or C-X (X = Cl, Br, I, O, S, etc.) transformation
for synthetic purpose. Therefore, appropriate active components such as Pd, Ir, Ru, etc. are often
incorporated into the special pore or channel of COFs as catalytic active sites or groups [118]. In order
to keep either the activity towards substrates and entire selectivity of reactions or COFs structure
long-rang order, such an integrating of other active components with COFs pore structure through
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binding or coordination has raised a lot of interesting impregnation model and topological structures,
which greatly broadens the range of transition- metal catalysis application [115].

According to the organic building block’s extending dimension, COFs are divided into two
categories, 2D and 3D COFs. In 2D COFs, the covalent bond connects the organic building block
in sheets, while the interlayer connection interaction can be π-π stacking and Van-der-Waals force
(see Figure 1a). 3D COFs stretch and extend the framework in space with sp3 tetrahedral carbon or
silane building blocks with covalent bond connection in every dimension (see Figure 1b). Due to
the interlayer π-π stacking and intralayer rigid aromatic motifs, 2D COFs commonly form columnar
structure with linear 1D nano-pores channel penetrating the whole COF materials. The ordered
column and direct penetrating open-pores permit the precise assembly of donor-acceptor structure
in a highly ordered manner. This property renders 2D COFs much potential applications in
functional optoelectronics such as sensing [119,120], luminescent [121,122], photoconductive [123–125],
photovoltaic [124,126–128] and photocatalytic materials [129–133]. In comparison, 3D COFs possess
highly developed porous structure in space and with their long-range order, i.e., crystallinity [107,134].
Moreover, 3D COFs enjoy the present record highest surface area (larger than 4000 m2/g) and
lowest density (0.17 g/cm3) among all COF materials, which is especially attractive as catalyst
candidates [21,22,135–137].
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Copyright 2005, Science and [107] Copyright 2007, Science.

There appeared several detailed excellent reviews covering COFs materials’ applications in
CO2 capture [108,138–140], electrocatalysis [141,142], photocatalytic visible-light hydrogen evolution
etc., [132,133,143]. As one important branch of catalysis, 2D and 3D COFs materials are stepping
into the catalyzed organic synthesis chemistry area. Some important organic reactions including
oxidation [144–158], reduction [117,159,160], C-C and C-heteroatom coupling reactions have been
successfully realized by COFs catalysis for a diversity of synthetic purpose [161,162]. Even very
challenging asymmetric organic synthesis have been accomplished by COFs materials modified
with enantioselective organocatalysts [163]. Compared with common heterogeneous transition
metal-catalyzed organic synthesis [164–168], COFs catalysis has displayed great flexibility and freedom
to fit the various difficult organic synthesis task with high standard and high demand. Despite the fact
that there are a few reviews on the application of COFs materials as heterogeneous catalysts in the
organic synthesis, [163,169,170] there has remained not yet review focused on selective C-C formation
reaction catalyzed by COF materials. In this article, we review recent advances in the utilization of COFs
as catalysts to realize the most meaningful organic transformations, namely, C-C coupling reaction
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for C-C bond formation reactions. A series of important C-C coupling examples mediated by COFs
catalysts are summarized for the synthesis purpose in analogues to Heck, Suzuki-Miyaura, Sonogashira
cross-coupling, carbon-centered nucleophilic addition and cross-dehydrogenative couplings (CDC)
with an emphasis on understanding the conversion mechanism. Especially we provide an outlook
on the current challenges and promising opportunities in this burgeoning COFs application area.
We believe that the advanced catalytic transformation strategies based on COFs catalysts will open
up a new avenue to supplement the shortages of other transition-metal catalysis in C-C bond
synthesis applications.

2. COFs Application as Heterogeneous Catalysis for C-C Bonds Coupling Reactions

Catalytic C-C coupling strategy is always the core of current organic synthesis chemistry field.
~85% synthesis projects in fine chemical production, pharmaceutical synthesis, agricultural chemicals
and household chemicals etc. are involved in catalyzed C-C coupling movements. Now the catalytic
C-C bond formation reactions often resort to homogeneous transition-metal complexes catalysis system
such as the famous Pd-catalyzed Suzuki-Miyaura and Heck cross-coupling reactions [171]. The key
of these success systems is that these d-block transition-metal complexes commonly have empty
π* anti-bonding orbital for π back-bonding and electron pair for coordination to sp2 or sp hybrid
carbon-carbon multiple bond [172]. Moreover, these transition-metal centers are very adapted to the
oxidative addition and reductive elimination. The low-valent transition-metals are stabilized by a
variety of ligands bearing lone-pair electrons and π* anti-bonding orbit. Thus, it is very facile to choose
a number of different chiral ligand to render the transition-metal complex asymmetric activity [173].
These chiral organometallic compounds are often very powerful catalyst for asymmetric C-C coupling
reactions. The realization of these asymmetric cross-coupling has greatly enlarged the application
scopes of transition-metal catalyzed reactions [174]. Although COFs are very novel materials with short
history, the researches on COFs materials are evolving extremely rapid. More and more research articles
have revealed that COFs materials possessed many unique properties, significantly differentiating
from organic-inorganic hybrid materials such as MOFs [6]. Why chemists favor COFs materials
for the specific catalytic C-C coupling reactions? The reasons can be summarized as the following
three points. (i) From the prospect of industrial applications, Pd-based homogeneous catalyst has
the intrinsic limitation. Especially for drug synthesis, the bio-toxicity of the noble-metal residue
has long-time been worried and criticized by the public. And the efficiency of metal separation is
unsatisfactory. Moreover, the cost for separation comprises a large portion of the total cost in drug
production. Thus, developing heterogeneous catalysis, especially encapsulating the catalytically active
species such as Pd, etc. into the pore space of porous materials like COFs with uncompromising
catalytic efficiency will solve the issue of separating the toxic metal residues. (ii) From the prospect of
catalytic efficiency, which is the core issue in catalysis, after binding metal active species, the metal
catalytic center is confined by COFs pore. On one hand, this will increase the difficulty of substrate
diffusing and approaching the catalytic sites and the products leaving the catalytic center, which
would decrease the TOF (turn-over-frequency). However, on another hand, by the fine-tuning of COFs
constituents and pore structures, the COFs will repulse solvent molecules and accelerate substrate
adsorption and products desorption. Compared with homogeneous catalyst, this acceleration will
greatly increase the efficiency and selectivity. Certainly, realizing this point is very challenging.
However, this is just the most attractive property of COFs materials, that is, to search the optimal COFs
constituent and pore structure. On one hand, this optimized COFs constituent and pore structure
will settle and accommodate metal catalytic center to exert its catalytic ability of oxidative addition
and reductive elimination to the maximum. On the other hand, this will fine-tune the selectivity of
substrate adsorption and product desorption rate. Most of the following examples in this review are the
breakthroughs and proceedings in these prospects. (iii) Compared with other 2D or 3D pore-structure
materials, such as the most similar MOFs counterparts, the advantage of COFs in catalyzing C-C
coupling reactions is the absence of another external transition-metal center (metal in MOF) to influence
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the encapsulated Pd catalysis, which avoids as-induced side-reactions. (iv) As the above-mentioned,
the stability to aqueous, acidic, basic and organic solvents renders COFs very inert to be solvated and
decomposed. Certainly, due to the short history of COFs materials, its applications and adaptions
for C-C coupling reactions require further development and improvement. Even so, the currently
reported examples, i.e., the following recommended paragon ones, have already displayed the bright
prospects for significant application and development.

We would divide the following examples and discussion according to the C-C coupling reaction
types and recommend the following several typical COFs catalyst synthesis and catalytic performance.

2.1. Suzuki-Miyaura Reaction

In 2011, Wang et al. reported the first example of COF material for catalysis application [118].
They synthesized a imine-linked 2D COF material (COF-LZU1) by heating 1,3,5-triformylbenzene
and 1,4-diaminobenzene in 1,4-dioxane/aqueous acetic acid solution in anaerobic condition after
liquid nitrogen flash-frozen, evacuation and flame-sealing treatment (See Figure 2). The as-synthesized
COF materials displayed a two-dimensional layered-sheet structure, with eclipsed nitrogen atoms
in adjacent layers a distance of ~3.7 Å. This imine-linked COF-LZU1 material demonstrated high
coordination affinity to Pd(OAc)2 due to nitrogen-palladium strong interaction. Only by simple
impregnation, Pd(OAc)2 was effectively incorporated into COF-LZU1 channels and pores. This metal
incorporation did not greatly eliminate COF material’s long-ordered structure although reduced the
intensity of powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) surface area in a
certain degree. The Pd-incorporated COF material demonstrated much enhanced catalytic activity,
shorter reaction time and lower catalyst load than Pd(OAc)2 and its Pd-MOF analogues in typical
Suzuki-Miyaura cross-coupling reaction. Moreover, this COF material did not lose its catalytic activity
at all even after four cycles reuse. This superior catalytic activity and stability after reutilization
rendered it very promising catalyst for classical Suzuki-Miyaura reactions.

In 2015, Jiang et al. reported that a porphyrin-based H2P-Bph-COF material could incorporate
Pd(OAc)2 species to efficiently catalyze a Suzuki reaction with excellent yields ranging from
97.1–98.5% [175]. This COF material was synthesized via the condensation reaction between
5,10,15,20-tetra(p-amino-phenyl) porphyrin and 4,4′-biphenyldialdehyde in a EtOH/mesitylene/acetic
acid aqueous solution at 120 ◦C for 3 days in vacuum (See Figure 3.) The as-formed COF
material was nitrogen-rich due to the porphyrin unit’s tetrapyrrole group and imine C=N bonds.
These excess nitrogen groups aced as effective docking sites for Pd(OAc)2 complexation. Solid State
(SS)-13C-NMR (nuclear-magnetic-resonance), FT-IR (Fourier Transform infrared spectroscopy),
XPS (X-ray photoelectron spectroscopy) and ICP-AES (Inductively Coupled Plasma-Atomic Emission
Spectroscopy) characterizations all confirmed the inclusion of Pd(OAc)2. The porosity and crystallinity
decreased in a certain degree after Pd incorporation. This Pd-H2P-COF showed superior catalytic
activity for Suzuki cross-coupling reactions for a variety of bromoarenes and phenylboronic acid,
forming biphenyl derivatives with yields ranging from 97.1–98.5% surpassing its Pd-MOF and Pd/C
counterparts (the yield of 4-methoxybiphenyl product was 65.0%, while the yield for Pd/MOF was
84.1% [176]). This report was inspiring and encouraging since the authors showed that porphyrin-based
catalyst could not only promote the radical or carbene-based oxidation, but also accelerate the
cross-coupling reaction by incorporating Pd complex in to a COF support.
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Apart from imine and porphyrin COF materials, a triazine-COF could also serve as efficient
amphiphilic support for Pd(0) nanoparticles deposition [177]. The triazine-COF was prepared
by condensing 4,4′,4”-(1,3,5-triazine-2,4,6-triyl)tris(oxy)tribenzaldehyde and benzene-1,4-diamine
in 1,4-dioxane/mesitylene/aqueous acetic acid by heating at 120 ◦C for 72 h. The as-prepared
triazine COF contained both a long and flexible appendage and a nitrogen- and oxygen-rich skeleton.
The nitrogen-rich moiety was responsible for the facile in-situ reduction of Pd2+ to Pd(0) without
any external oxidants. The ether and imine units had strong interaction with Pd(0) nanoparticles by
stabilizing and dispersing them on the COF material. This triazine-COF was very effective to catalyze
the multi-fold Heck and Suzuki-Miyaura cross-couplings. The catalyst provided unprecedented high
TON (turn-over number) and TOF (turn-over frequency) values for multi-fold Heck reactions compared
with its homogeneous Pd, Pd-MOF and Pd/C counterparts. Extremely short reaction times 1.5 h and
excellent isolated yield up to 99% was obtained. The recyclability test showed that after 3 cycles, the
catalyst did not show apparent loss in activity. This report provided viable strategy to dock noble-metal
nanoparticles into COF material without external reducing agents applying triazine monomer itself
as reductant for efficient Heck and Suzuki-Miyaura cross-coupling reactions by appending long and
flexible groups, forming an amphiphilic structure and incorporating more nitrogen and oxygen atoms.

Two different kinds of triazine-based imine and β-ketoenamine linked COFs TAT-DHBD
and TAT-TFP could be synthesized from 1,3,5-tris-(4-aminophenyl)triazine (TAT) and
2,5-dihydroxybenzene-1,4-dicarboxaldehyde (DHBD) or 1,3,5-triformylphloroglucinol (TFP)
under solvothermal conditions in dioxane/mesitylene mixture [178]. Upon Pd(OAc)2 inclusion
into the pore space and between interlayer region of the 2D sheets, Pd(II)-loaded TAT-DHBD and
TAT-TFP COF materials were prepared. Sequentially, by the NaBH4 reduction of Pd(II) to Pd(0)
nanoparticles, the Pd(0)-loaded COFs were synthesized. Four Pd-loaded COF materials illustrated
very good catalytic activity in Suzuki-Miyaura cross-coupling reaction between bromobenzene and
phenylboronic acid. The best performance was obtained with Pd(0)-TAT-TFP COF catalyst which
provided excellent conversion and yield for either electron-rich and electron-deficient bromobenzenes.
The most appropriate substrate was 4-cyanobromobezne with phenylboronic acid which showed
almost quantitative formation of 4-cyanobiphenyl only after 4 h by this Pd(0)-TAT-TFP COF catalyst.
These four Pd-COF catalysts all displayed very good stability and reusability without apparent
leaching of Pd and loss of activity.

Very recently, thioether-containing COF was reported that it could be an excellent support for
ultra-fine Pt and Pd nanoparticles providing very narrow size distribution and superior stability [179].
Inspired by their own designed shape-persistent thioether-containing organic cage which hosted
ultra-fine Pt and Pd nanoparticles with very narrow size-distribution, the authors elaborately
designed and synthesized the PtNPs@COF and PdNPs@COF by condensing a trialdehyde and a
thioether-containing diamine in a dioxane/mesitylene/aqueous acetic acid solution at 120 ◦C for
3 days (See Figure 4). The as-formed Thio-COF material was further complexed with K2PtCl4 and
K2PdCl4 in aqueous solution, and then reduced by a methanolic NaBH4 solution to PtNPs@COF
and PdNPs@COF. From a series of structural, morphological and compositional characterization,
the authors demonstrated that ultra-fine Pd and Pt nanoparticles were uniformly incorporated into the
pore space of the Thio-COF. The thioether functional group provided strong metal-sulfur interaction
to stabilize the ultrafine noble-metal nanoparticles to prevent them from aggregation. Moreover,
the long-range ordered pore-channel structure also provided assist for the stabilization of the residing
external nanoparticles. The as-formed PtNPs@COF and PdNPs@COF illustrated very good catalytic
activity towards 4-nitrophenol reduction and Suzuki-Miyaura cross-coupling between a variety of
arylhalides and phenylboronic acid. PdNPs@COF provided excellent NMR yields up to 99% for
cross-coupling of 4-methyl-iodobenzene and phenylboronic acid to form 4-methylbiphenyl. Moreover,
these two COF-based catalysts showed excellent stability and recyclability after simple centrifugation or
natural settling for cycling test and almost no decrease in conversion and yield in catalytic performance
after 5th cycle tests, and no noticeable leaching of metal nanoparticles occurred. This example was
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very significant because it was the first to use thioether functional group to stabilize the narrowly
distributed ultrafine noble-metal nanoparticles for effective cross-coupling reactions in a COF support.
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Figure 4. (a) Synthesis of Thio-COF and (b) schematic representation of the synthesis of Thio-COF
supported PtNPs@COF and PdNPs@COF. Top and side views of the energy-minimized models of
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From these successful COFs heterogeneous catalysts for Suzuki-Miyaura cross-couplings, we can
deduce that suitable heteroatoms and their fine-tuned positions, COFs pore geometrical and chemical
properties, and the binding modes of Pd transition-metal center, will all determine whether COFs
catalysts can surpass their homogeneous analogues in catalytic efficiency and selectivity. Optimization
and combination of robust COFs catalysts for efficient Suzuki-Miyaura reactions would still have much
space for further development.

2.2. Heck, Sonogashira and Silane-Based Cross-Coupling Reaction

Heck cross-coupling reaction is the Pd-catalyzed coupling of aromatic or vinylic halides with
unsaturated olefinic C=C bond (See Figure 5). The catalytic cycle comprise oxidative addition of
aromatic halides, coordination with olefinic C=C bond, cis-insertion, cis-β-hydride elimination and
reductive elimination. This reaction require Pd(0) active species. The advantages of Heck reaction is
its high regio- and stereoselectivity. And the disadvantage is the costly Pd catalyst. The Sonogashira
cross-coupling is the Pd/Cu co-catalyzed coupling of terminal alkyne with aryl or vinylic halide.
It comprises three basic reactions. The first step is the oxidative addition of aryl halides to Pd(0)
center. Then a Cu-amine complex mediates the transmetallation reaction. The last step is the reductive
elimination, releasing the coupling product and regenerating the Pd(0) catalyst. Cu-amine complex
acts as cocatalyst to assist deprotonating the alkyne substrate.
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Banerjee showed that introduction of a large number of nitrogen and oxygen atoms to the skeleton
of COF material would reinforce its stability when metal nanoparticles or complexes were deposited.
They showed that by the condensation of 1,3,5-triformylphloroglucinol and paraphenylenediamine
in mesitylene/dioxane/aqueous acetic acid solution at 120 ◦C for 3 days in inert atmosphere would
generate a nitrogen- and oxygen-rich COF material (See Figure 6) [180]. The as-synthesized imine
COF material was further deposited with Pd(II) complexes by immersing in a methanol solution
containing Pd(OAc)2. The Pd(0) nanoparticles were generated from in-situ reduction of Pd (II)-COF
with NaBH4. The authors demonstrated that Pd(0) and Pd(II) inclusion did not greatly change the
crystallinity and flower-like morphology of the COF material. Moreover, the Pd(0)-COF showed
superior catalytic activity towards Heck and Sonogashira-type reaction. The Pd(II)-COF demonstrated
considerably robust catalytic ability for an intramolecular C-H activation and further C-C coupling
reaction synthesizing 9H-carbazole from diphenylaniline. This report manifested its significance in
incorporating Pd(0) and Pd(II) into the same COF material and applied the metal-COF composite in
highly selective C-C coupling and C-H activation transformations. Moreover, the fact that this COF
material demonstrated greatly enhanced stability towards aqueous, acidic and alkaline environment
was very inspiring, which illustrated nitrogen and oxygen atoms would considerably increase
interactions with metal nanoparticles or metal complexes.
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Figure 6. Synthesis of Pd(II) and Pd(0)-doped COFs (i.e., Pd(II)@TpPa-1, Pd(0)@TpPa-1) and summary
of their catalytic activity towards Sonogashira, Heck and oxidative biaryl couplings. The doped Pd(0)
nanoparticles are probably situated on TpPa-1 surface. (The scheme is to represent the synthesis and
the organization of the Pd nanoparticles on COF (TpPa-1) and it is not exactly fit to scale). Reprinted
with permission [180], Copyright 2014, Royal Society of Chemistry.

Chai et al. reported that two different nitrogen ligands bipyridine and imine could be incorporated
into a single COF skeleton to provide differentiated Pd coordinating sites [181]. They designed
and synthesized X% bpy-COF by condensing X% 2,2-bipyridine-5,5′-dicarbaldehyde, 100-X%
4,4′-biphenyl dialdehyde and 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline (PyTTA) building blocks in
a mesitylene/dioxane/3M acetic acid solution at 120 ◦C for 3 days (See Figure 7). The as-formed X%
bpy-COF contained two different kinds of nitrogen ligands, namely, bipyridine and imine. The further
Pd(OAc)2 complexation was furnished by a simple solution-infiltration procedure. From a variety
of characterization experiments results, the authors demonstrated that Pd(OAc)2 coordinated with
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both bipyridine and imine unit, but in different region. Pd(OAc)2 combining with bipyridine mainly
dwelled in the pore space, while Pd(OAc)2 jointing with imine resided between adjacent layer of the 2D
COF. Furthermore, the authors demonstrated that these Pd@bpy-COF displayed very good catalytic
performance towards classical Pd-catalyzed Heck reaction between a series of arylhalides and styrene.
Pd(II)@75% bpy COF showed the best catalytic ability providing >90% yield after four consecutive
runs. The superior activity for Heck reaction of these Pd@bpy-COF catalysts was attributed to the
uniform dispersion and the ultra-high loading of Pd(OAc)2.
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imine-type COFs. (b) Scheme for the regulated Pd(OAc)2 coordination on bipyridine and imine groups.
Reprinted with permission from [181], Copyright 2016, Elsevier.

In other occasions, Pd(0) nanoparticles could be generated in-situ by choosing a
predesigned metal-anchored building block. Initially, a 2,2-bipyridine-5,5′-diamine palladium
chloride(bpy-PdCl2) complex was formed by the coordination reaction between PdCl2 and
2,2′-bipyridine-5,5′-diamine [182]. Then, via the Schiff-base condensation between Bpy-PdCl2 and
1,3,5-triformylphloroglucinol (Tp), a Pd@TpBpy COF was synthesized. This in-situ generated
Pd@Tp-bpy COF did not require any external reducing agents for Pd(II) reduction to Pd(0)
nanoparticles. The as-formed Pd@Tp-bpy COF showed excellent catalytic performance towards
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a tandem C-C and C-O bond formation reaction between 2-bromophenol and phenylacetylene.
The Pd@Tp-bpy COF heterogeneous catalyst promoted tandem cyclization provided various
2-arylbenzofurans in good to excellent yields not regarding electron-rich or electron-deficient
substituents on phenylacetylene or 2-bromophenol. Moreover, this keto-enamine and bipyridine
anchored Pd@TpBpy COF showed very good stability and recyclability.

A triazine-based COF-SDU1-palladium hybrid could be an active catalyst for the cross-coupling
between silanes and aryliodides [183]. The COF-SDU1 material was synthesized via the imine
condensation reaction from tri-(4-formacylphenoxy)-1,3,5-triazine (trif) and p-phenylenediamine in
o-dichlorobenzene/n-butanol/6M AcOH heating at 85 ◦C for 7 days (See Figure 8). The as-obtained
COF solid contained two kinds nitrogen ligand azine and imine which are both suitable coordinating
sites for Pd(II). After a simple solution-infiltration, mono-dispersing Pd(II) ion was docked in the
2D COF material. This Pd(II)-COF-SDU1 material showed excellent catalytic activity towards a
one-pot silane oxidation-cross-coupling reaction. The transformation of phenylsilanes with aryliodides
to biphenyls was effectively catalyzed in methanolic solution. A variety of electron-rich and
electron-deficient aryliodides were cross-coupled with phenylsilanes in good to excellent yields.
This COF material also displayed good recyclability and reusability without detectable Pd leaching
and loss of activity.
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cross-coupling of silanes and aryl iodides. C: blue, N: orange, O: purple and red spheres represent the
incorporated Pd(II). H atoms are omitted for clarity. Reprinted with permission from [183], Copyright
2015, Royal Society of Chemistry.

The key points of COFs successful application in Heck, Sonogashira cross-couplings are
summarized as follows: (i) very low Pd-loading (ii) very high catalytic efficiency (iii) very facile
desorption of halide ions.

2.3. Cross-Dehydrogenative-Coupling Reactions

In 2016, a hydrazone-based COF material was reported to be used as an outstanding photocatalyst
for a series of cross-dehydrogenative-coupling reaction (CDC) under visible-light illumination [184].
The hydrazone-based TFB-COF was synthesized from the Schiff-base condensation reaction of
2,5-dimethoxyterephthalohydrazide (DMTH) and 1,3,5-triformylbenzene (TFB) under solvothermal
conditions (See Figure 9). The as-formed TFB-COF showed good catalytic activity towards a variety
of CDC reactions between N-phenyltetrahydroisoquinoline and nucleophilic reagents CH3NO2,
CH3COCH3 and PhCOCH3 in O2 atmosphere under visible-light illumination. Good to excellent yields
up to 87% were obtained by this hydrazone-based TFB-COF photocatalyst. Moreover, the conversion
and selectivity did not show apparent loss after three runs of recycling test. The morphology and XRD
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peaks did not display great change. To our best knowledge, this example was the first recorded COF
material without transition metal for CDC applications.Catalysts 2018, 8, x FOR PEER REVIEW  12 of 34 
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Figure 9. (a) Schematic representation for the synthesis of TFB-COF. (b) Reaction substrate extension
of photocatalytic coupling reactions of N-aryltetrahydroisoquinolines and nucleophilic reagents using
TFB-COF catalyst. Reprinted and adapted with permission from [184], Copyright 2017, Wiley.

Likewise, Liu et al. reported that another hydrazone-based 2D COF material COF-JLU5 could
promote the photocatalytic oxidative transformation of N-phenyltetrahydroisoquinoline with a variety
of C-centered or P-centered nucleophiles [185]. This 2D COF-JLU5 was synthesized via the Schiff-base
condensation reaction of 1,3,5-tris-(4-aminophenyl) triazine and 2,5-dimethoxyterephthaldehyde in
the presence of 6 M aqueous acetic acid using mesitylene/1,4-dioxane as the solvent at 120 ◦C
for 3 days (See Figure 10). The as-synthesized COF-JLU5 demonstrated good crystallinity and
porosity. Moreover, this hydrazone-based COF showed excellent catalytic performance towards
the CDC oxidative transformation of N-phenyltetrahydraisoquinoline with various nucleophiles.
The aza-Henry, Mannich-type and C-P bond formation reactions were effectively catalyzed by
this COF-JLU5 under visible-light illumination in an O2 atmosphere. Moreover, from the
results of the electron-paramagnetic-resonance (EPR) characterization of singlet oxygen 1O2 and
superoxide anion in different conditions, the authors proposed a plausible mechanism for this
COF photocatalytic CDC reaction. Initially, the visible-light activated COF-JLU5 abstracted an
electron from N-phenyltetrahydroisoquinoline forming the corresponding radical cation. The radical
cation was further transformed to the radical via deprotonation by superoxide anion. The further
single-electron-transfer (SET) oxidation of N-phenyltetrahydroisoquinoline radical to its cation was
facilitated by superoxide anion or activated-state COF-JLU5. The finally nucleophilic attack between
nitroalkane, ketones, malonates and dialkylphosphates with tetrahydroisoquinoline cation yielded the
final C-C or C-P bond formation products.
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Figure 10. (a) Synthesis of COF-JLU5 by imine condensation reaction. (b) Photocatalytic C-C/C-P
coupling reaction of N-phenyltetrahydroisoquinonlines with various nucleophiles using COF-JLU5 as
photocatalyst. (c) Schematics of plausible mechanism of the COF-JLU5 photocatalyzed CDC reactions.
Reprinted and adapted with permission from [185], Copyright 2017, Royal Society of Chemistry.
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Despite quite rare examples yet, these COFs catalyzed cross-dehydrogenative-coupling reactions
clearly show the most valuable feature of COF materials as C-C coupling catalysts, that is, without
transition metal participation, their pore and channel render the formation of carbocation formation and
stable enough to allow another nucleophilic reagent attacking effectively. These examples significantly
differentiate homogeneous dye-sensitized singlet O2 reaction. The dye molecules cannot provide
such a pore structure and catalytic platform to realize the cross-coupling reactions. The unique
skeleton and independence of transition-metal catalytic center is the most attractive trait of COFs for
cross-coupling reactions.

2.4. Chiral Asymmetric C-C Bond. Formation Reaction

In 2014, Jiang et al. described an example of a chiral-organocatalytic COF material synthesized
through pore surface engineering [186]. This organocatalytic COF material was prepared by integrating
a chiral pyrrolidine unit into the main-chain of porphyrin-imine COF material (See Figure 11).
They first introduced ethynyl group into the imine moiety. And by the facie alkyne-azide click reaction,
they grafted the triazole-substituted pyrrolidine ring to imine by a post-treatment catalyzed by CuI
catalyst. The as-prepared COF demonstrated its activity for organocatalysis and displayed a variety
of advantages in catalyzing an enantioselective asymmetric Michael-addition reaction. Although
moderate diastereoselectivity (d.r.) and ee values were obtained, the conversion of the reactants was
much accelerated by this organocatalytic COF material (See Figure 12). And the most important was
that this COF material the first time COFs materials realized enantioselectivity control in catalytic
organic synthetic reaction.
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Figure 11. (a) The general strategy for the pore surface engineering of imine-linked COFs via a
condensation reaction and click chemistries (the case for X = 50 was exemplified). (b) A graphical
representation of [Pyr]X-H2P-COF with different densities of catalytic sites on the pore walls (gray:
carbon, red: nitrogen, green: oxygen, purple: carbon atoms of the pyrrolidine unit; hydrogen is omitted
for clarity). Reprinted with permission from [186], Copyright 2014, Royal Society of Chemistry.
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In 2015, Jiang et al. reported the design and synthesis of another organocatalytic COF
material on Nature Chemistry [187]. This was the milestone event for COF materials applied for
organic synthetic purpose. The authors discovered that introduction of methoxy group in edge
unit would greatly increase the stability of COF material against humidity, acidity and basicity
since the methoxy group reinforced the interlayer interaction. The COF material was synthesized
by condensing triphenylbenzenetriamine (TPB), 2,5-bis(2-propynyloxy)terephthalaldehyde (BPTA)
and 2,5-dimethoxyterephthalaldehyde (DMTA) (See Figure 13). The alkynyl-containing
[HC≡C]x-TPB-DMTA-COFs were further transformed to [(S)-Py]x-TPB-DMTP-COFs by a
post-synthetic click reaction with (S)-2-(azidomethyl)pyrrolidine catalyzed by CuI catalyst.
The as-formed [(S)-Py]x-TPB-DMTA-COFs demonstrated extremely strong stability against boiling
water, 12 M HCl and 14 M NaOH solution soaking. The COF material displayed very little reduction
in crystallinity and porosity after these harsh condition treatments. The XRD diffraction peaks
intensities show no apparent decrease and the Brunauer-Emmett-Teller (BET) and Langmuir surface
area almost remained unchanged. Besides extraordinary stability and uncompromised crystallinity
and porosity, the most significant point of this COF material was its functionality to catalyze chiral
asymmetric organic reactions. For a typical organocatalytic asymmetric Michael-addition between
unactivated cyclohexanones and nitrostyrenes, this COF material displayed superior catalytic activity
compared with its homogeneous counterpart. The COF material required only half the time to
complete the transformation with similar excellent ee and d.r. values in contrast with the homogeneous
organocatalyst. After 5-cycle reusability test, this COF material did not show any apparent loss in
catalytic activity. The shining point of this COF material was its combination of unprecedented stability,
good crystallinity, and highly developed mesoporous structure with very powerful catalytic ability,
accelerated reaction kinetics, excellent yields, d.r. and ee value for chiral asymmetric Michael addition
in aqueous solution (See Figure 13d.)

Apart from above-mentioned chiral organocatalyst incorporated COF materials for asymmetric
organic transformations and noble-metal incorporated COF materials for achiral organic
transformations, homochiral organocatalytic COF skeleton could also be a perfect support for Pd
nanoparticle to catalyze asymmetric reductive Heck reaction which was conventionally catalyzed by
organometallic Pd species with chiral ligands [188]. The Pd nanoparticle dispersed in a chiral COF
(CCOF) skeleton could effectively be a heterogeneous catalyst for asymmetric Henry and reductive
Heck reaction providing excellent isolated yields and ee values. The CCOF was synthesized by
a condensing reaction between cyanuric chloride and S-(+)-2-methylpiperazine with K2CO3 in a
dioxane solution, Furthermore, Pd(0) nanoparticles were included into the CCOF material by in-situ
reduction of Pd(NO3)2 methanolic solution with NaBH4 in CCOF aqueous suspending solution (see
Figure 14). The as-formed Pd@CCOF was uniformly dispersed between CCOF 2D layer, not residing
in the pore space due to PdNPs large size (2–5 nm) compared with the CCOF micropore (1.5 nm).
The incorporation of Pd nanoparticles greatly influenced the porous structure of CCOF, enlarging
its BET surface area and pore size in certain amount. Furthermore, the authors demonstrated the
synergistic catalytic activity by subjecting the Pd@CCOF catalyst in typical Henry and reductive Heck
reaction conditions. To the authors delight, the Pd@CCOF catalyst displayed extremely superior
catalytic ability towards these two reactions providing excellent yield up to 99% and perfect ee value
up to 97%. To our best knowledge, this was the first example of a heterogeneous Pd-catalyzed chiral
asymmetric reductive Heck reaction. The Pd@CCOF material illustrated satisfactory recyclability and
reusability after 5 cycles reuse almost without apparent loss of catalytic activity providing isolated
yield up to 93% and ee value 91% for the 5th cycle test. This report of Pd@CCOF material manifested
its importance due to that it was the first COF material combining noble-metal catalyst with chiral
organocatalyst in a single COF carrier to fulfill asymmetric transformations previously catalyzed by
homogeneous organometallic compounds with complex and elaborately designed chiral ligands.
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in the COF. (b) Graphic view of TPB-DMTP-COF (red, O; blue, N; grey, C; hydrogen is omitted for 
clarity). (c) Synthesis of chiral COFs ([(S)-Py]x-TPB-DMTP-COFs, x = 0.17, 0.34 and 0.50; blue, DMTA; 
black, TAPB; red, BPTA; green, (S)-Py sites) via channel-wall engineering using a three-component 
condensation followed by a click reaction. (d) Scope of reactants. Different β-nitrostyrene 
derivatives investigated for the Michael reactions catalyzed with chiral COFs, their products, e.e. 
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Figure 13. Synthesis and structure of stable crystalline porous COFs. (a) Synthesis of TPB-DMTP-COF
through the condensation of 2,5-dimethoxyterephthalaldehyde (DMTA, blue) and TPB (black). Inset:
The structure of the edge units of TPB-DMTP-COF and the resonance effect of the oxygen lone pairs that
weaken the polarization of the C=N bonds and soften the interlayer repulsion in the COF. (b) Graphic
view of TPB-DMTP-COF (red, O; blue, N; grey, C; hydrogen is omitted for clarity). (c) Synthesis of
chiral COFs ([(S)-Py]x-TPB-DMTP-COFs, x = 0.17, 0.34 and 0.50; blue, DMTA; black, TAPB; red, BPTA;
green, (S)-Py sites) via channel-wall engineering using a three-component condensation followed by a
click reaction. (d) Scope of reactants. Different β-nitrostyrene derivatives investigated for the Michael
reactions catalyzed with chiral COFs, their products, e.e. yields and d.r. values (red, cyclohexanone;
green, newly formed C–C bond; blue, nitrostyrene derivatives). R, substituent H, Cl, Br, Me or OMe.
Reprinted with permission from Reference [187], Copyright 2015, Springer.
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Recently Cui et al. adopted a multivariate strategy to design and synthesize a family of
two-component and three-component 2D CCOF for the purpose of asymmetric catalytic organic
synthesis [189]. Three binary and four tertiary 2D CCOFs were prepared via the imine condensation
reaction between 2,5-dimethoxy-1,4-terephthalaldehyde (DMTA), 1,3,5-tris(4-aminophenyl) benzene
(TPB1) and four L-proline- and L-imidazolidine-based TPB derivatives. The crystalline CCOFs were
prepared via two-step condensation and deprotection procedure (see Figure 15). The as-prepared
CCOFs demonstrated very high catalytic activity towards three kinds of meaningful asymmetric
organic transformations, namely, α-aminooxylation, aldol and Diels-Alder reactions. The CCOF
materials provided excellent yields, diastereoselectivity and enantioselectivity. The catalytic
performance of the CCOF surpassed the homogeneous chiral proline and imidazolidinone catalyst
and other heterogeneous support catalyst such as imidazolidinone-grafted mesoporous silica and
proline-MOFs in both diastereoselectivity and enantioselectivity. This report manifested its importance
in that it built a toolbox of CCOFs for asymmetric organic transformations by a multivariate strategy.

Cui et al. reported two imine-based chiral TADDOL (2,2-dimethyl-α,α,α1, α1-tetraaryl-1,3-dioxolane
-4,5-dimethanol) COF materials CCOF-1 and CCOF-2, which could catalyze the asymmetric addition
reaction between Et2Zn and a variety of aromatic aldehyde providing excellent conversions
and ee values [190]. These two CCOFs were synthesized via the imine condensation reaction
between tetraaryl-1,3-dioxolane-4,5-dimethanols (TADDOLs) derivatives TTA and TTPA with
4,4′-diaminodiphenylmethane (4,4′-DADPM) (Figure 16). The as-formed TADDOL CCOF-1 and CCOF-2
acted as excellent heterogeneous catalysts for the asymmetric addition reaction between Et2Zn and
aromatic aldehydes after treatment with Ti(OiPr)4. Up to 99% conversion and >90% ee value was
realized when the heterogeneous catalytic reaction was conducted at −30 ◦C. The CCOF-1/CCOF-2
chiral catalyst also displayed very good recyclability and reusability after consecutive four runs providing
comparable conversion and ee value with the fresh one. This example was a milestone discovery in COF
application to catalysis due to that it was among the first main-chain chiral COFs to fulfill asymmetric
organic transformations.
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Figure 15. (a) Synthesis of the CCOFs. Blue and red color represents TPB units, and black color
represents DMTA units (b) Multivariate chiral COFs with controlled crystallinity and stability for
asymmetric catalysis. Blue represents TPB units, grey represents imine units and yellow represents
R and R’ units in subfigure a. Reprinted with permission from [189], Copyright 2017, American
Chemical Society.
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Figure 16. (a) Synthesis of the CCOFs. (b) Addition of diethylzinc to aromatic aldehydes catalyzed
by CCOF/Ti. Reprinted and adapted with permission from [190], Copyright 2016, American
Chemical Society.

Cui et al. reported that two Zn(salen)-based 2D CCOFs were synthesized by condensation of
chiral 1,2-diaminocyclohexane and trisalicylaldehyde or tributyltrisalicylaldehyde (Figure 17) [191].
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Figure 17. (a) Synthesis of the CCOF. (b) Chiral COFs with high chemical stability for
heterogeneous asymmetric catalysis. Reprinted with permission from [191], Copyright 2017, American
Chemical Society.

They found that the bulky tributyltrisalicylaldehyde containing CCOF possessed superior
stability. And these two CCOFs were further complexed with a variety of metal ion such as Zn,
Fe, Mn, Cr, V and Co. The M(salen)-based CCOFs demonstrated very good catalytic activity to a
variety of chiral asymmetric organic synthetic reactions, such as V-salen CCOF catalyzed cyanation
reaction of aldehydes, Diels-Alder cycloaddition reaction catalyzed by Co-salen CCOF, epoxidation
catalyzed by Fe-salen CCOF and Mn-salen CCOF, aminolysis opening of epoxides catalyzed by
Cr-salen CCOF and the tandem one-pot epoxidation and aminolysis opening of alkene catalyzed
by a bimetallic Cr(salen)-Mn(salen)-CCOF heterogeneous catalyst. These M(salen)-CCOF catalyzed
reactions not only provided satisfactory yields, but also realized excellent controls of enantioselectivity
and diastereoselectivity. Moreover, the good recyclability and reusability was proved in the case of
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V-salen CCOF catalyzed cyanation of aldehydes, which showed almost no loss of enantioselectivity,
and conversion after 5 runs of cycle tests.

Two chiral COFs LZU-72 and LZU-76 acted as efficient heterogeneous organocatalyst
and effectively catalyzed the asymmetric aldol reaction providing excellent yield
and enantioselectivity [192]. The chiral COFs were synthesized by the bottom-up
approach from condensing the chiral block units other than a post-synthesis procedure.
The authors discovered that the linear-structured 4,4′-diamino-p-terphenyl could act as the
modifying sites for chiral blocks due to its structural rigidity. The chiral building block
(S)-4,4′-(2-(pyrrolidin-2-yl)-1H-benzimidazole-4,7-diyl)dianiline was incorporated into the
achiral skeleton. The further condensation reaction between 1,3,5-triformylbenzene and
1,3,5-triformylphloroglucinol with the chiral diamine formed the final chiral COFs LZU-72
and LZU-76 (see Figure 18). These two organocatalytic COFs showed outstanding catalytic
performance towards a value-added C-C bond forming reaction, asymmetric aldol reaction. LZU-76
displayed the best performance providing 94.0: 6.0 e.r. value, which was comparable with the
benchmark homogeneous analogue (S)-4,7-diphenyl-2-(pyrrolidin-2-yl)-1H-benzimidazole (DPBIP)
catalyst for the asymmetric aldol reaction. The authors proposed that the direct construction of chiral
COFs from chiral building blocks provided a promising pathway to design and synthesize novel chiral
COF structures which could accommodate a large amount of uniform chiral catalyst moiety for more
meaningful value-added organic transformations.
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dimethylacetamide (DMAc) with a catalytic amount of 6.0 M acetic acid. The as-synthesized COF 
material displayed unprecedented stability in water and acidic solution due to the catechol group, 
the presence of trans conformation of imine bonds and intramolecular hydrogen bonding 
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Figure 18. (a) Schematic representation for the direct construction of chiral COFs, LZU-72 and LZU-76.
(b) Catalytic activity test of LZU-76 in asymmetric aldol reaction. Reprinted and adapted with
permission from [192], Copyright 2016, American Chemical Society.

From the above-mentioned examples, it is feasible to incorporate chiral units or moieties into
COFs structure for asymmetric enantioselective catalysis. COFs pore and tunnel structure would be
further self-assembled into helical structure to fulfill more challenging chiral synthesis.

2.5. Bimetallic or Bifunctional COF-Catalyzed C-C Bonds Formations

The first bifunctional organocatalytic COF material was designed and realized by Banerjee et
al., which was stable in aqueous and acidic condition [193]. This COF material was prepared via the
Schiff-base condensation between 2,3-dihydroxyterephthalaldehyde (2,3-Dha) and 5,10,15,20-tetrakis
(4-aminophenyl)-21H,23H-porphine unit (Tph) in dichlorobenzene (o-DCB,) and dimethylacetamide
(DMAc) with a catalytic amount of 6.0 M acetic acid. The as-synthesized COF material displayed
unprecedented stability in water and acidic solution due to the catechol group, the presence of trans
conformation of imine bonds and intramolecular hydrogen bonding [–OH·N=C; D = 2.579, d = 1.858 Å,
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and y = 146.11], which have been confirmed from the monomer crystal structure (see Figure 19).
Moreover, since the COF material was consisted from the Dha unit which contains weak acidic catechol
groups and Tph group containing basic pyrrole groups and imine C=N bonds, this COF possessed
acidic and basic sites providing it as a promising bifunctional heterogeneous catalyst. In a model
cascade deacetalization-Knoevenagel reaction, this COF material demonstrated excellent isolated yield
up to 96%. The deacetalization of benzaldehydedimethylacetal was catalyzed by the acidic sites of
this COF catalyst, while the further Knoevenagel reaction between benzaldehyde and malonitrile
was effectively accelerated by the basic sites of the Dha-Tph-COFs. This discovery manifested its
significance in that it was the first stable bifunctional COF catalyst in water and acidic solution.
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Figure 19. (a) The synthesis of 2,3-DhaTph and 2,3-DmaTph by the condensation of Tph and
2,3-Dha/2,3-Dma. The catalytically active porphyrin and catecholic –OH groups are shown in coral
and cyan colors, respectively. An ORTEP diagram of 2,3-DhaTph and 2,3-DmaTph monomer units.
(b) The catalytic activity towards acid–base catalyzed reaction with various reactants. Reprinted with
permission from [193], Copyright 2015, Royal Society of Chemistry.

Apart from single metal deposited COF materials, bimetallic docked COF materials was designed,
synthesized and applied as effective catalysts for a Heck-epoxidation tandem reaction. Mn and
Pd bimetallic docking to a bipyridine-imine COF could be realized by a programmed synthetic
procedure [194] (see Figure 20). Firstly, a Py-2,2′-BPyPh COF skeleton was constructed via the
Schiff-base condensation reaction between 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline (PyTTA)
and 2,2-bipyridyl-5,5-dialdehyde (2,2′-BPyDCA). The as-formed COF contained two differentiated
nitrogen-complexing sites, the bipyridyl and imine units. MnCl2 was docked with bipyridine ligands
first, and then Pd(OAc)2 was combined with both bipyridine and imine units. The as-synthesized
bimetallic docked COF material acted as effective bifunctional catalyst for two different types of
organic transformations, i.e., Pd-catalyzed Heck cross-coupling reaction and Mn-catalyzed epoxidation
reaction. The COF material transformed iodobenzene and styrene to trans-stilbene oxide in a
tandem reaction. Initially, Pd(OAc) incorporated in COF transformed iodobenzene and styrene
into trans-stilbene with excellent yield up to 95%, while the Mn in COF catalyzed the epoxidation
reaction of trans-stilbene to trans-stilbene oxide in almost quantitative yield (99%). The control group
experiments proved that Mn@Py-2,2′-BPyPh COF and Pd@Py-2,2′-BPyPh COF alone could only
catalyze the separate epoxidation and Heck reaction. This finding was important since it demonstrated
that by elaborately design and choose the ligands, different metal species could be incorporated into a
single COF skeleton to fulfill different genres of organic transformation by the certain metal.

Besides Mn and Pd co-docking for bimetallic COF catalyst, Rh and Pd bimetallic
docking could also be realized through this 2D BPy COF (see Figure 21) [195].
By condensing 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline (PyTTA) and various ratio of X%
2,2-bipyridyl-5,5-dialdehyde and 100-X% 4,4′-biphenyldialdehyde in a three-component solvent,
a series of structurally tunable 2D COF were prepared. And the authors demonstrated that by a
further solution-infiltration method, Pd(OAc)2 and Rh(COD)Cl was sequentially incorporated into
the COF structure in a programmed synthetic procedure. Pd(OAc)2 dispersed in the interlayer space
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coordinated with both imine units and bipyridine ligands, while the more structurally rigid Rh(COD)Cl
deposited in the pore space and complexed with the bipyridine ligands. This Rh/Pd bimetallic docked
BPh COF demonstrated superior catalytic activity towards a tandem addition-oxidation reaction
between phenylboronic acid and benzaldehyde to form initially the intermediate diphenylmethanol
and further be oxidized to the final product benzophenone. The authors demonstrated that
Rh(COD)Cl moiety in COF was accountable for the addition reaction between phenylboronic acid
and benzaldehyde surpassing its homogeneous Rh(COD)Cl analogue in catalytic activity. Pd(OAc)2

was responsible for the oxidation from diphenylmethanol to benzophenone. The as-synthesized
Rh/Pd-BPh COF showed excellent recyclability and reusability providing isolated benzophenone
products up to 85% yield even after 5 cycles reuse without noticeable leaching of the metal and
apparent loss of activity. This report manifested its significance in that it illustrated that two different
kind of organometallic compounds could be docked in a structurally tunable COF material by different
coordinating groups to render the COF material different catalytic ability towards totally differentiated
reaction types in the first time.
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Wang et al. described that an interpenetrating dynamic 3D COF LZU-301 could be a 
Lewis-base catalyst for the Knoevenagel condensation between malonitrile and three aromatic 

Figure 20. Left, (a) Schematic representation of Mn/Pd bimetallic docked COFs prepared via
a programmed synthetic procedure; (b) top view and (c) side view of Mn/Pd@py-2,2′-bpy-Ph
COF; (d) appearances and (e) PXRD (powder X-ray diffraction) patterns of the COFs before and
after metallic loading treatment. Right, Schematic illustration of the tandem reaction catalyzed by
Mn/Pd@py-2,2′-bpy-Ph COF.
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Figure 21. Left, (a) Use of a three-component condensation system to modulate the nitrogen content of
the 2D imine-type COFs. (b) Designed strategies for the monometallic (Route 1) and bimetallic docking
(Route 2). (c) Open channels of the COFs. (d) Open channels of the metal loaded COFs. Right, One-pot
cascade reactions using different homogeneous/heterogeneous catalysts. Reprinted and adapted with
permission from [195], Copyright 2016, Wiley.
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2.6. 3D COF-Catalyzed C-C Bonds Formations

Wang et al. described that an interpenetrating dynamic 3D COF LZU-301 could be a Lewis-base
catalyst for the Knoevenagel condensation between malonitrile and three aromatic aldehydes [196]
(see Figure 22). The authors discovered that for the small size benzaldehyde, the 3D COF
LZU-301 provided excellent yield up to 72% in 4 h and 99% in 10 h. However, for the larger
2-naphthalenealdehyde and 9-anthracenealdehyde, the yield notably decreased to 21% and 5% due to
a size-effect. The larger fuse-ring aromatic aldehyde could not be accommodated into the pore space
of LZU-301, thus did not have enough interaction with its pyridine Lewis-base catalytic site, leading to
inferior catalytic performance. This example manifested its significance in that it was the only few 3D
COFs which demonstrated considerable catalytic activities in meaningful organic synthesis.
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Figure 22. Left, (a) Solvothermal synthesis of a three-dimensional (3D) COF material, LZU-301,
via imine condensation. For clarity, only the single framework of LZU-301 is shown. (b) Side and top
views of porous crystalline structure of LZU-301, which features with a 9-fold interpenetration of the
underlying diamond net. Different color represents different penetrating frameworks from a side-view.
Right, Knoevenagel condensation catalytic experiments. a Only Ph-CHO reacted with malonitrile
under the reaction conditions. Reprinted and adapted with permission from [196], Copyright 2017,
American Chemical Society.

Another 3D COF DL-COF-1 and DL-COF-2 was synthesized via the dual linking
reaction between 1,3,5,7-tetraaminoadamantane (TAA) and 4-formylphenylboronic acid (FPBA) or
2-fluoro-4-formylphenylboronic acid (FFPBA) forming two kinds of linkage in COF skeleton, namely,
boroxine and imine bonds (see Figure 23) [197]. The as-synthesized 3D COFs displayed large specific
surface area and incorporated both acidic boroxine sites and basic imine site. These two different
sites rendered these 3D COFs as versatile bifunctional heterogeneous catalyst. To demonstrate its
catalytic activity, a one-pot deacetalization-Knoevenagel reaction was applied. DL-COF-1 exhibited
excellent yields towards both the acid-catalyzed deacetalization (yield up to 100%) and base-catalyzed
Knoevenagel condensation reaction (yield up to 98%). The COF crystals can be recycled and reused
for three times with almost no loss of activity and no identical change in PXRD and N2 uptake
characterization. This example was very encouraging since it was the first bifunctional 3D COF with
large specific surface area to fulfill heterogeneous catalytic applications.

Qiu et al. reported that 3D imine COF BF-COF-1 and BF-COF-2 could act as effective basic catalyst
for C-C formation Knoevenagel reaction (see Figure 24) [135]. These 3D BF-COF-1 and BF-COF-2
materials were synthesized via the imine condensation between 1,3,5,7-tetraaminoadamantane (TAA)
and 1,3,5-triformylbenzene (TFB) or triformylphloroglucinol (TFP). The as-formed 3D BF-COF-1 and
BF-COF-2 demonstrated excellent size-selection catalytic activity. For small-size reactants, such as
benzaldehyde and malonitrile, these 3D COFs exhibited very good conversion up to 99%. However,
for the large reactants, which could not be accommodated into the pore space for efficient catalytic
interaction, the reaction proceeded much sluggishly with poor yield. To our best knowledge, this was
the first catalytic 3D COF materials, which showed excellent size-selection catalytic mode towards
base-promoted Knoevenagel condensation.
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Figure 23. Left, Strategy for preparing 3D COFs with dual linkages (DL-COFs), (a) Model reaction of
1-adamantanamine (AA) with 4-formylphenylboronic acid (FPBA) to form the triangular molecule
with dual linkages. (b) Condensation of tetrahedral 1,3,5,7-tetraaminoadamantane (TAA) and FPBA
or 2-fluoro-4-formylphenylboronic acid FFPBA) to give 3D COFs with dual linkages, DL-COF-1 or
DLCOF-2. (c) On the basis of triangular and tetrahedral building units, both DL-COFs show 3D
networks with ctn topology. Right, Three-dimensional COFs with dual linkages for bifunctional
cascade catalysis. Reprinted with permission from [197], Copyright 2017, American Chemical Society.
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Figure 24. Left, schematic representation of the strategy for preparing 3D microporous
base-functionalized COFs. (a) Model reaction of 1-adamantanamine with benzaldehyde to form
the molecular N-(1-adamantyl) benzaldehyde imine. (b) Structure of 1,3,5,7-tetraaminoadamantane
(TAA) as a tetrahedral building unit. (c) Structure of 1,3,5-triformylbenzene (R=H, TFB) or
triformylphloroglucinol (R=OH, TFP) as a triangular building unit. (d) Condensation of tetrahedral
and triangular building units to give a 3D network with the symbol ctn (BF-COF-1 or BF-COF-2). Right,
Catalytic activity of BF-COFs in the size-selective Knoevenagel condensation reaction. Reprinted with
permission from [135], Copyright 2014, Wiley.



Catalysts 2018, 8, 404 25 of 35

In several C-C coupling reaction such as Knoevenagel condensation, 3D COFs displayed similar
high catalytic efficiency as 2D COFs. However, they still differentiate greatly in that 3D COFs catalysis
is more sensitive to substrate steric factor. This renders specific 3D COFs the ideal heterogeneous
catalyst for size- and shape-dependent catalytic applications.

3. Conclusions

We have overviewed the paragon examples of covalent organic frameworks (COFs) applied as
heterogeneous catalyst for C-C bonds formation reactions. Although in its infancy stage compared
with other common catalysts used for C-C bonds formation, such as homogeneous transition-metal
catalysts, organocatalysts and enzyme catalysts, COF materials still displayed its multi-faceted
advantages. First, metal-loaded COF materials showed parallel or even superior catalytic activity in a
series of C-C bond formation reactions in contrast with their homogeneous analogues including
Heck, Suzuki-Miyaura, Sonogashira cross-coupling, carbon-centered nucleophilic addition and
cross-dehydrogenative couplings (CDC). Moreover, COF materials usually demonstrated excellent
recyclability and reusability for consecutive runs of catalytic transformations without apparent loss of
activity and selectivity. The last but not the least, there appeared some chiral COF (CCOF) materials
which showcased powerful control on enantioselectivity in asymmetric organic C-C formation events
such as asymmetric Michael addition, Henry reaction, Diels-Alder cyclo-addition, α-aminooxylation,
epoxidation and opening of epoxides. Apart from continuously emerging novel COF structures
acting as effective heterogeneous catalysts for C-C bond formation reaction in organic synthesis, the
new strategy to apply bimetallic and bifunctional COF in catalysis broadens the application fields of
COF-based catalysis in more organic reaction types. The new approaches to in-situ loading noble-metal
nanoparticles on COF skeleton without requiring external reductants realized the minimal influence
and impacts on metal-loading avoiding the decrease of crystallinity and porosity to the least limit.
Comparing to homogeneous catalysts, COF-based heterogeneous catalysts still have great space to
improve for more challenging reaction types and wider substrate scope for C-C bond formation in
organic synthesis. The main current limitations and challenges for COFs materials for C-C bond
formation reaction concentrate on the direct activation of inert C-H bonds especially sp3 C-H bonds
to construct sp3C-sp2C or sp3C-sp3C bonds. And the activation of energetically important and inert
small molecules such as methane, methanol and carbon dioxide for C-C bond formation in highly
value-added chemicals such as first-line drugs, natural products and organic functional compounds
is another developing direction for COFs materials as heterogeneous catalysts. The third one is to
developing more metal-free COFs materials acting as highly efficient versatile heterogeneous catalysts
for a number of organic synthetic transformations. Comparing to current common homogeneous
catalyst, COFs materials demonstrated better recyclability and reusability and lower cost in separating
catalyst and the products. However, COFs materials still need to improve their efficiency, selectivity
and substrate scopes. Especially, the current catalytic reaction pathways and mechanisms by COFs
materials are not clear in comparison with their homogenous analogue. More extensive and deep
mechanistic study in COFs materials catalyzed C-C formation reaction need to be conducted in order
to further design more efficient and selective catalytic process and more effective COFs catalyst. As the
focus frontier of current materials and catalysts research, COF materials would have brighter prospects
for more challenging, meaningful C-C bond formation reaction and more novel principles on COF
catalysis would be uncovered along with this promising application field.
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