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Abstract: In the last ten years, the combination of Lewis acid with N-heterocyclic carbene (NHC)
catalysis has emerged as a powerful strategy in a variety of important asymmetric synthesis, due to
the ready availability of starting materials, operational simplicity and mild reaction conditions.
Recent findings illustrate that Lewis acid could largely enhance the efficiency and enantioselectivity,
reverse the diastereoselectivity, and even influence the pathway of the same reaction partners.
Herein, this review aims to reveal the recent advances in NHC-Lewis acid synergistically promoted
enantioselective reactions for the expeditious assembly of versatile biologically important chiral
pharmaceuticals and natural products.

Keywords: N-heterocyclic carbenes (NHC); Lewis acid; cooperative catalysis; asymmetric
synthesis; umpolung

1. Introduction

N-heterocyclic carbenes (NHCs) are roughly categorized into three sections in accordance with
their properties and applications: (i) excellent ligands for transition metals; (ii) coordination to p-block
elements and (iii) organocatalysts [1–7]. The first N-heterocyclic carbene stabilized by two bulky
adamantyl substituents was isolated and characterized by the Arduengo group in 1991 [8], which
opened up an intriguing class of organic compounds for investigation. So far, a variety of novel
carbenes have been revealed and synthesized, for instance, the dominant thiazolium-, imidazolium-
and triazolium-based carbenes [9–12]. As powerful and efficient organocatalysts, they have been
employed successfully for the synthesis of highly complex molecular architectures [13–18]. However,
the stereoselectivities and/or regioselectivities of assembled products were limited for the single mode
of activation during NHC catalyzed processes. Inspired by the importance and advantages of the
cooperative catalysis strategy [19–25], which could activate the starting materials simultaneously with
satisfying enantio- and stereoselectivities, N-heterocyclic carbenes as an important class of Lewis bases
can cooperate with various Lewis acids to enhance yield and reverse selectivity or regioselectivity [26].
This strategy has emerged as a powerful approach for the direct access to various carbocyclic and
heterocyclic compounds [27–32].

The recent developments in NHC/Lewis acid cooperative catalysis for the synthesis of some
important enantioenriched molecules will be discussed in this review. They are categorized into
several sections according to the species of the Lewis acid, including LiCl, Mg(Ot-Bu)2, Sc(OTf)3,
La(OTf)3, Ti(Oi-Pr)4, etc. Due to the unique umpolung capacity, NHCs are widely applied in a
variety of asymmetric transformations, resulting in the construction of versatile active acyl anions,
enolates, homoenolates and α,β-unsaturated acylazolium equivalents from the corresponding carbonyl
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compounds (Scheme 1) [33–41], while Lewis acids as co-catalysts improve the reactivities or activate
inactive electrophiles. The related exciting discoveries involving NHCs/Lewis acid cooperative catalysis
are presented herein.
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Scheme 1. Carbonyl compounds and corresponding N-heterocyclic carbene
(NHC)-bound intermediates.

2. Cooperative NHC/Mg Catalysis

Though NHCs have been proved to be good ligands for many transition metals on account of their
strong donor properties, the Scheidt group reported a pioneering investigation and made an important
breakthrough, which defies conventional wisdom with respect to the potential incompatibility of Lewis
acids and bases. γ-lactam derivatives 2 with high enantioselectivities and diastereoselectivities were
obtained by a formal [3 + 2] cycloaddition of N-acyl hydrazones 1 and cinnamaldehyde (Scheme 2).
The results indicated that the employment of Mg(Ot-Bu)2 could increase the yield of γ-lactam distinctly
from 31% to 78% and enhance the enantioselectivity slightly in the presence of 5 mol% of NHC
catalyst. Subsequently, the substrates scope was surveyed and a broad range of functionalities turned
out to be well accommodated. In these processes, carbene precursor A was deprotonated by the
base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) followed by addition to α,β-unsaturated aldehyde to
produce homoenolate equivalent 4 by raising the HOMO energy. Simultaneously, magnesium (II)
di-tert-butoxide was selected as the optimal Lewis acid to activate N-acyl hydrazones by lowering
the LUMO energy. Further kinetic studies indicated that the reaction initial-rate emerged an inverse
first-order relation for Mg (II) concentration [42].

The Zhao group reported the pioneering work on the kinetic resolution of tertiary alcohols 6 by
NHC-catalyzed esterification under oxidative conditions (Scheme 3). The presence of Mg(OTf)2 and
NaBF4 in this catalytic system turned out to be efficient to improve both selectivity and reaction rate.
A broad range of substrates was investigated and displayed the practicability of this protocol. In most
cases, the unreacted starting tertiary alcohols 8 were recovered in high to excellent enantioselectivities.
The proposed mechanism revealed that the Lewis acid Mg(OTf)2 may activate the substrate in a
cooperative way to benefit the presumable attack of tertiary alcohol on acyl azolium intermediate from
the opposite side of the catalyst’s chiral backbone. However, the oxindole structure was proved to be
critical for this system to work smoothly [43].
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In 2018, Wang and co-workers disclosed a [3 + 3] atroposelective annulation of alkynyl acyl
azoliums 15 with 1,3-dicarbonyls 12 (Scheme 4). 3,3′,5,5′-tetratert-butyldiphenoquinone (DQ) as an
external oxidant, acted as a two-electron acceptor to deliver the Breslow intermediate 14 to alkynyl acyl
azolium 15. This approach accessed an array of axially chiral pyranones 13 in a good to excellent level
of enantioselectivities. The Lewis acid Mg(OTf)2 was proved to be critical to promote the ketoenolate’s
‘C’ attack to alkynyl acyl azolium instead of the direct ‘O’ attack. Further transformation of the
axially chiral pyranone-aryls successfully afforded the commonly used axial biaryls via Diels-Alder
reaction. It is worth mentioning that the key intermediate alkynyl acyl azoliums 15 derived from
ynals were discovered for the first time in NHC catalysis [44]. Encouraged by the initial exploration
of the alkynyl acylazolium intermediates, they reported another formal [3 + 3] annulation of ynals
with amidines to afford a series of functionalized 1,2,6-trisubstituted pyrimidin-4-ones under mild
reaction conditions. Notably, the chemical yields of pyrimidin-4-ones were increased significantly
with the addition of Mg(OTf)2, which activated the N-substituted amidines and alkynyl acyl azolium
intermediates simultaneously [45].
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3. Cooperative NHC/Ti Catalysis

The Scheidt group found that an appropriate Lewis acid could reverse the diastereoselectivity
in NHC-catalyzed enals with chalcones 20 through preorganization of the reactants (Scheme 5) [46].
Though the Bode group previously reported that NHC-catalyzed reactions of chalcone derivatives
and enals provided trans-cyclopentene products, cis-cyclopentenes 21 were also obtained only using
(E)-ethyl 4-oxo-2-butenoate as the partner of substrates. Optically active cis 1,3,4-trisubstituted
cyclopentenes were observed when employing titanium tetraisopropoxide as the Lewis acid and
involving homoenolates 22 generated by NHC catalysis. While other Lewis acids such as magnesium,
zinc or scandium triflate completely inhibited homoenolate addition, the usage of Mg(Ot-Bu)2 afforded
predominately the trans cyclopentenes in moderate yield. It is noteworthy that the catalytic amounts
of isopropyl alcohol could improve both the yield and the rate by separating the titanium catalyst from
the intermediate easily. In the exploration of mechanism, Scheidt proposed that the titanium Lewis acid
promotes the generation of homoenolate equivalents 22, and then activates the chalcone to coordinate
with the homoenolate-titanium intermediate 23. Subsequently, two successive C–C bond formation,
acylation and decarboxylation provides the cyclopentene. Density functional theory (DFT) studies by
Domingo illustrated that the titanium complex could not only accelerate the annulation reaction by
lowing the Gibbs free energy, but also favor pre-organizing the spatial alignment of homoenolate and
chalcone, in line with the proposed reaction pathway [47].
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To extend the scope of substrates, Scheidt et al. developed the enantioselective dimerization of
enals using cooperative catalysis NHC/Ti(Oi-Pr)4 (Scheme 6). The NHC/titanium-mediated 1,4-addition
of homoenolate equivalents to enals was favored over the traditional 1,2-addition, resulting in the
formation of γ-lactones [48].



Catalysts 2019, 9, 863 6 of 23
Catalysts 2019, 9, x FOR PEER REVIEW 6 of 23 

 

 

 

Scheme 6. NHC-catalyzed enantioselective enal dimerization. 

Meanwhile, the Scheidt group uncovered the β,γ-unsaturated α-ketoesters 28 as a suitable class 

of homoenolate acceptors with enals to give the highly functionalized cyclopentanes 29 (Scheme 7) 

[49]. Importantly, the Lewis acid Ti(Oi-Pr)4 played a crucial role in the initial coordination to the 

enals, which promoted the formation of extended Breslow intermediate 30 and subsequent 

coordination to another enal or the β,γ-unsaturated α-ketoester. The high enantiopure products 

were received through the C–C bond formation, protonation/tautomerization, intramolecular aldol 

reaction and then acylation/elimination or transesterification. In addition, no reaction happened 

drastically without the titanium (IV) iso-propoxide, which confirmed the significance of the Lewis 

acid during the process. 

 

Scheme 6. NHC-catalyzed enantioselective enal dimerization.

Meanwhile, the Scheidt group uncovered the β,γ-unsaturated α-ketoesters 28 as a suitable class
of homoenolate acceptors with enals to give the highly functionalized cyclopentanes 29 (Scheme 7) [49].
Importantly, the Lewis acid Ti(Oi-Pr)4 played a crucial role in the initial coordination to the enals,
which promoted the formation of extended Breslow intermediate 30 and subsequent coordination
to another enal or the β,γ-unsaturated α-ketoester. The high enantiopure products were received
through the C–C bond formation, protonation/tautomerization, intramolecular aldol reaction and then
acylation/elimination or transesterification. In addition, no reaction happened drastically without the
titanium (IV) iso-propoxide, which confirmed the significance of the Lewis acid during the process.
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In 2013, Snyder group disclosed a one-step cooperative NHC/Lewis acid catalysis to forge the
entire tricyclic butenolide cores, which belong to securinega alkaloids and exhibit various intriguing
biological activities (Scheme 8). A linear enynal 35 was selected as the appropriate precursor for the
in-situ generated homoenolate equivalent, which underwent an intramolecular addition to ketone and
followed by lactonization to afford the desired product. The reaction conditions were optimized by
investigating different NHC catalyst structures, species of Lewis acid or the concentration of solutions.
Eventually, the tricyclic butenolide 36 product was isolated by slowly adding starting material into
a suspension of catalyst and Ti(Oi-Pr)4 in toluene with the concentration of 0.03 M. Surprisingly,
an exogenous base was not necessary, probably due to the Ti(Oi-Pr)4 was basic enough to facilitate
the generation of the active carbene. In this dual catalysis strategy, ynals were used as nucleophilic
homoenolate precursors to synthesize securinega alkaloids in only nine steps from commercial
materials, which could provide opportunities for the further development of NHC-catalyzed reactions
in total synthesis of fused bicyclic butenolide domains [50].
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Later on, Cheng group reported the NHC/Ti(Oi-Pr)4 co-catalyzed dimerization
of 2-formylcinnamates 37 for the access to isochromenone derivatives 38 via an
unexpected pathway. However, a mixture of two diastereoisomers with cis- and
trans-isochromeno[4,3-c]isochromene-6,12-diacetates were isolated in the absence of Ti(Oi-Pr)4

(Scheme 9). The combination of NHC and Ti(Oi-Pr)4 changed the reaction pathway of the dimerization
completely [51]. The proposed mechanism revealed that the Breslow intermediate 39 was firstly
generated via the deprotonation, nucleophilic addition and proton transfer. It then underwent the
second nucleophilic addition to 2-formylcinnamates to generate α-hydroxyl ketones 40, which
was activated by titanium(IV) and underwent the aerobic oxidation to afford the 1,2-diketone
42. Intriguingly, the nucleophilic addition of NHC to the carbonyl of 1,2-diketone, the following
intramolecular rearrangement and copy rearrangement produced the peroxide intermediates 45.
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) as a powerful nucleophile attacked the peroxide intermediate
to facilitate the cleavage of O–O bond and elimination of the acetate moiety resulting in the formation
of the enolates 46. At last, the intramolecular lactonization and release of the NHC delivered the
isochromenone derivatives 38. In this case, the Lewis acid changed the reaction pathway and provided
opportunities for the application of NHC/Lewis acid cooperative catalysis.
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Scheme 9. Dimerization of 2-formylcinnamates by NHC/Lewis acid cooperative catalysis.

Moreover, the Cheng group has systematically studied the chiral N-heterocyclic
carbene/Lewis acid co-catalyzed intermolecular dimerization of 2-aroylvinylcinnamaldehydes,
2-aroylvinylcinnamaldehydes 47 with aromatic aldehydes 48 and 2-(aroylvinyl)benzaldehydes 51 with
enals (Scheme 10). A variety of synthetically unavailable functionalized chiral indeno[1,2-c]furan-1-ones
49, tetrahydroindeno[1,2-c]furan-1-ones 50, 4,5-dihydro-1,4-methanobenzo[c]oxepin-3-ones 52 and
2,8-dihydrocyclopenta[a]indenes 53 were synthesized with good yields, excellent enantioselectivities
and high diastereoselectivities. The Lewis acid Ti(Oi-Pr)4 as a co-catalyst has been exemplified
by activating the reaction partners simultaneously and then inducing the stereoselectivities
preferentially [52–54].
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Zhao and co-workers developed a divergent annulation reaction of heterocyclic enones 64 with
enals to synthesis ε-lactones 65 or spiro-heterocycles (Scheme 11). Ti(Oi-Pr)4 as the optimal Lewis acid
was surveyed to enhance the conversion of the catalytic system and deliver the [3 + 4] annulation
product ε-lactones 65 in good yield and excellent chemo- and stereo-selectivities [55]. Surprisingly, the
indole-based enones afforded the indole-fused ε-lactones as a single diastereomer, potentially due to
the control of chiral catalyst. This work displayed the catalyst-controlled chemoselective process in
NHC catalysis and extended the capability of NHC/Lewis acid cooperative catalysis.
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Scheme 11. Stereoselective synthesis of ε-lactones by NHC-catalyzed annulation.

4. Cooperative NHC/Li Catalysis

Since the combination of NHC catalysis with Lewis acids demonstrated high efficiency to facilitate
synthetic transformations, the Scheidt group has made a number of pioneer works and reported the
first cooperative catalytic system consisting of achiral NHC and LiCl to promote an intermolecular
conjugate addition of primary and secondary alcohols with activated alkenes (Scheme 12). The impact
of lithium cation was probed that the addition of 1.0 equivalent of 12-crown-4 leaded a decreased yield.
Therefore, LiCl was added to generate the desired β-alkoxy ketone 68 in 95% yield. Unfortunately,
the enantioselective versions with the chiral NHC/LiCl co-catalysis were carried out resulting in
racemic products or low ee values even if high yields. The mechanism investigation illustrated
that the free N-heterocyclic carbene derived from IMes acted as a Brønsted base and accessed the
NHC-alcohol complex 69 as a crucial intermediate. Remarkably, no oligomerization products were
observed presumably because the lithium chloride as a Lewis acid activated the enones toward the
1,4-additon of the alcohols. Ultimately, the overall yield was improved [56].

Subsequently, Scheidt and coworkers reported an enantioselective annulation of isatins 71 with
enals for accessing spirooxindole lactones 72 in good yields and high enantioselectivities (Scheme 13) [57].
Soon later, Sunoj and coworkers focused on the mechanism and origin of stereoselectivity in the chiral
NHC/Lewis acid co-catalyzed synthesis of spirooxindole lactones. The addition of chiral NHC to
α, β-unsaturated aldehydes generates the homoenolate equivalent as nucleophilic species and then
inducts the enantioselectivity of the annulation process. On the other hand, the lithium counterion
interacts with both the 1,2-dicarbonyl of the isatin and the NHC-bound homoenolate, resulting in
an enantioselective addition of the re face with the enhancement on the level of enantioselectivity, in
line with the experimental observations [58]. At last, this approach was successfully applied into the
concise synthesis of maremycin B, which contains a 3-hydroxy indole structure scaffold and exhibits
the excellent anticancer activity [57].
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Scheme 13. NHC/LiCl strategy for the stereoselective synthesis of spirooxindole lactones.

The appropriate Lewis acid has a significant influence on the NHC-catalyzed umpolung reactions.
In 2013, the She group reported an elegant work that the NHC/Lewis acid catalytic system mediated the
[3 + 2] annulation of alkynyl aldehydes 73 withβ,γ-unsaturated α-ketoester 74 (Scheme 14). No desired
product was observed in initial studies employing only NHC-catalyst in the absence of the Lewis acid.
Notably, the yields of butenolides were enhanced and the starting materials were consumed completely
in a short time in the presence of LiCl. In addition, the enantioselective studies of this methodology
were carried out by screening several available chiral carbenes to realize the asymmetric version of this
formal [3 + 2] cyclization. Although a moderate enantioselectivity was observed, this result prompted
further exploration on the NHC/Lewis acid mediated enantioselective reactions [59]. Shortly thereafter,
Scheidt and co-workers further explored a chiral NHC-catalyzed cascade reaction of α,β-alkynals
with α-ketoesters by using the same cooperative catalysis strategy. The enantioselectivity of this
formal [3 + 2] annulation reaction was induced by a saturated imidazolium J (SImes·Cl) and chiral
phosphoric acid. Remarkably, the introduction of lithium cation organized the transition state by means
of activating the phosphate and α-ketoesters simultaneously [60]. Du and Lu group reported another
formal [3 + 2] annulations of alkynyl aldehydes with isatins. A variety of spirooxindole butenolides
and spirooxindole furan-3(2H)-ones were formed by the NHC/LiCl co-catalyzed transformation via
the a3-d3 umpolung of alkynyl aldehydes and a1-d1 umpolung process respectively. The asymmetric
version of this formal [3 + 2] cyclization reaction has also been realized using the chiral carbene
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precursor I as catalyst, and the spirooxindole butenolide as a single regioisomer was afforded in 78%
yield and 73% ee value [61]. In short, the common nature of these elegant studies is the umpolung of the
β-position of alkynyl aldehydes by N-heterocyclic carbenes to afford a unique “allenolate” nucleophile,
whilst LiCl as the optimal Lewis acid activates the carbonyl of various electrophilic reagents.
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Scheme 14. NHC-catalyzed/Lewis acid mediated conjugate umpolung of alkynyl aldehydes.

Studer et al. reported the cooperative NHC/LiCl catalyzed the conjugate additions of tertiary
prochiral C-nucleophiles to α,β-unsaturated acyl azolium in situ generated from the oxidation of the
Breslow intermediate (Scheme 15). β-diketones, β-ketoesters, and malonates 76 bearing a β-oxyalkyl
substituent at the α position reacted smoothly with enals to afford highly substituted cyclopentanes 77
in high yields and excellent diastereo- and enantioselectivities. The proposed mechanism revealed that
this organic cascade process consisted of the deprotonation of NHC precursor K, Michael addition and
subsequent asynchronous formal [2 + 2] aldol lactonization with the regeneration of the NHC catalyst
to give the desired highly substituted β-lactones [62].
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Scheme 15. Asymmetric synthesis of highly substituted β-lactones through oxidative carbene catalysis
with LiCl as cooperative Lewis acid.

In 2015, Studer and Ye reported the similar results that the cooperative oxidative NHC/Lewis acid
enantioselective catalysis gave highly substituted δ-lactones 79 through the reactions of enals with
ε-oxo-γ,δ-malonates 78 containing two Michael acceptors (Scheme 16). The suggested mechanism of
these two cascade reaction demonstrated that the oxidation of vinyl Breslow intermediate afforded the
α,β-unsaturated acyl azolium intermediate, which was then attacked by the deprotonated malonates
to give the enolate intermediate. Subsequently, the second intramolecular Michael-type cyclization
and lactonization afforded the cyclopentane- and cyclohexane-fused δ-lactones with the release of the
catalyst. Meanwhile, the LiCl was likely to coordinate with the enolate of malonates and the oxygen
atom of the α,β-unsaturated acylazolium intermediate by lowering the LUMO energy. Therefore,
LiCl turned out to be essential for facilitating the formation of new C–C bond and the outcome of high
yields and excellent stereoselectivities [63,64].
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Scheme 16. Enantioselective synthesis of bicyclic δ-lactones via NHC-catalyzed cascade reaction.

In 2016, Zhong reported an enantioselective annulation of α,β-unsaturated aldehydes with
1,3-dicarbonyl compounds 80 by cooperative N-heterocyclic carbene/Lewis acid catalysis strategy
(Scheme 17). LiCl and 4Å molecular sieves were found to be the best in the optimization studies. The
ee value of the desired dihydropyranone 81 was improved distinctly from 60% to 87% in the presence
of LiCl. It was noteworthy that the ambient air acted as the sole oxidant in this asymmetric annulation
reaction. Some control experiments were carried out to illustrate that the molecular O2 indeed could
promote the oxidation of homoenolate equivalent to theα,β-unsaturated acyl triazolium. In this regards,
the aerobic oxidative NHC/Lewis acid catalyzed enantioselective annulations provided an efficient,
concise and green version in asymmetric synthesis [65]. Then, Du and Zheng independently reported the
formal NHC/Lewis acid catalyzed [3 + 3] annulation of 1,3-dicarbonyl compounds with isatin-derived
2-bromoenals and β-cyano-substituted α,β-unsaturated aldehydes, respectively [66]. Compared with
the isatin-derived enals, which was unstable under air and always difficult to separate from the Z/E
mixtures, the isatin-derived 2-bromoenals were proved to be more stable under air and reacted well
with 1,3-dicarbonyl compounds under NHC/base conditions. However, it was still ambiguous that
whether the β-cyano-substituted α,β-unsaturated aldehydes could be attacked by the NHC catalyst
or not. The enantioselective annulations of β-cyano-substituted α,β-unsaturated aldehydes with
malonates were investigated under NHC-catalyzed oxidative conditions. In these two reactions, the
addition of LiCl enhanced the reaction yields and stereoselectivities significantly to give the desired
spirooxindole δ-lactones and dihydropyran-4-carbonitrile compounds [67]. Then, Dong, Du and
colleagues reported the first application of esters as alkynyl acyl azolium precursors that have been
utilized to undergo a formal [2 + 3] annulation with amidomalonates through dimethylaminopyridine
(DMAP)/LiCl and NHC/LiCl cooperative catalysis. A wide range of (Z)-5-amino-3-furanones was
synthesized with moderate to high yields (41%–99% yield) and high regioselectivities [68].
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Scheme 17. NHC/Lewis acid catalyzed enantioselective aerobic annulation of α,β-unsaturated
aldehydes with 1,3-dicarbonyl compounds.

Compared with enals, the carboxylic acids are more readily available and stable.
They could be easily activated and in situ converted to the key NHC-bound
intermediates with the assist of an array of coupling reagents, such as carbonyldiimidazole
(CDI), 2-(7-aza-1H-benhexafluorophoszotriazole-1-yl)-1,1,3,3-tetramethyluroniumphate (HATU), and
pivaloyl chloride. Yao and co-workers reported that α,β-unsaturated carboxylic acids could
be transformed into α,β-unsaturated acyl azolium in the presence of HATU via the in situ
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activation strategy. Moreover, the introduction of LiCl could improve the enantioselectivities of
dihydropyranone products [69]. In 2017, the Biju group demonstrated an intramolecular NHC-catalyzed
aldol-lactonization of ketoacids 82 using the dynamic kinetic resolution (DKR) strategy (Scheme 18).
The kinetics study indicated that the reaction proceeded via DKR process because more than 50%
β-lactones were obtained in 6 h. Further transformation of the cyclopentane-fused β-lactone products
83 with primary amines resulted in succinimide derivatives containing four contiguous stereocenters
in excellent yields and diastereoselectivities and good enantiopurities [70].
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Scheme 18. NHC-catalyzed aldol-lactonization of ketoacids via dynamic kinetic resolution.

In 2017, Huang and Fu Group reported an oxidative amidation of aldimine 84 by NHC catalysis
with LiCl as cooperative Lewis acid under ambient air (Scheme 19). The proposed reaction pathway
indicated that the NHC-bounded aldimine intermediate was produced firstly by the umpolung of
aldimine under NHC catalysis with the assistance of the LiCl, and the structure of the intermediate
was confirmed by X-ray diffraction analysis. Then the intermediate underwent dearomatization and
deprotonation process to form an imine-derived Breslow intermediate, which then added to dioxygen
from the air and cleaved the O–O bond under basic condition to afford amides 85 with the expulsion of
the free carbene. Overall, an economical and efficient methodology was developed for the synthesis of
some biological molecules by the cooperative catalysis with ambient air or O2 as the sole oxidant [71].
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Scheme 19. Access to amide from aldimine via aerobic oxidative carbene catalysis and LiCl as
cooperative Lewis acid.

Later, the same authors employed potassium 2-oxo-3-enoates 86 as outstanding and practical
surrogates for α,β-unsaturated aldehydes in NHC-catalyzed asymmetric reactions. These salts
could be prepared at scale and purified to undergo NHC-catalyzed reactions with enones 87, isatins
89, and 1,3-dicarbonyl compounds 91 respectively, affording various corresponding cyclopentenes
88, spirooxindole lactones 90 and lactones 92 with broad substrate scopes and good to excellent
enantioselectivities [72]. In 2019, this group further developed a novel NHC-catalyzed [3 + 3]
annulation of potassium 2-oxo-3-enoates 86 with 2-ethylidene 1,3-indandione 93 to give 2,2-diacyl
spirocyclohexanones 94 in good to excellent yields. Lewis acid LiCl was added in these reactions to
activate the potassium 2-oxo-3-enoates via the collaborative strategy (Scheme 20) [73].
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aldehydes in NHC-catalyzed asymmetric reactions.

In 2018, the Enders group reported a new NHC-catalyzed domino process of enals with reactive
malonates 98 (Scheme 21). The huge challenge of this cascade reaction was how to control the
reactivities of multifold nucleophilic and electrophilic of the substrates [74]. Hence the malonates
bearing an ortho-hydroxy phenyl group and enals were selected as starting materials to validate the
feasibility of the domino processes. Gratifyingly, the desired cyclopenta[c]-fused chromenones 99
were isolated in an acceptable yields and high enantioselectivities with the assistance of LiCl as a
cooperative Lewis acid. Since there are two possible mechanisms to illuminate the reaction pathway,
DFT calculations and control experiments were carried out to verify that the reaction has been subjected
to the domino Michael/aldol/lactonization/dehydration process. Notably, low chemical yields and
ee values were obtained in the absence of LiCl. This domino reaction clearly showed the power of
NHC/Lewis acid cooperative catalysis involving reactive reagents.
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Scheme 21. NHC-catalyzed quadruple domino reactions: asymmetric synthesis of
cyclopenta[c]chromenones.

Recently, Naumann, Buchmeiser and co-workers established an NHC/LiCl cooperative catalysis for
the synthesis of linear poly(oxazolidin-2-one)s (POxa) 102 (Scheme 22). Diepoxides 101, aromatic as well
as aliphatic diisocyanates 100, and NHC-CO2 adducts were employed in the polymerization reaction.
More importantly, the Lewis acid LiCl was selected as cocatalyst to secure high-molecular-weight
POxa and control the polymerization in a reasonable degree [75].
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5. Cooperative NHC/Sc Catalysis

In 2012, the scandium-based Lewis acid was first applied in the cooperative NHC catalysis by
the Chi group [76]. The authors successfully circumvented the difficulties in improving the reactivity
and enantioselectivity of the remote γ-carbon of enals (Scheme 23). β-phenyl substituted butenal was
chosen as the starting material to avoid the competing pathway of the NHC-mediated enal reactions.
The combination of Sc(OTf)3 and Mg(OTf)2 offered a small but consistent additional ee enhancement.
Remarkably, only 5%–23% ee were observed in all cases when the reactions were conducted without
Sc(OTf)3, which demonstrated that the potential coordination of Sc(OTf)3 played a critical role in the
chiral induction.
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cooperative catalysis.

Inspired by these results, Wang and co-workers reported an enantioselective intermolecular
dynamic kinetic resolution (DKR) catalyzed by an N-heterocyclic carbene and a Lewis acid cooperatively
(Scheme 24) [77]. The enantiomerically pure DKR products σ-lactones 106 were isolated from the
reaction of β-phenyl substituted butenal and β-halo-α-ketoesters 105 under oxidative conditions with
excellent enantio- and diastereocontrol. The postulated reaction pathway was illustrated that the key
intermediate vinyl enolate 109 arose from the γ-deprotonation of the oxidatively generated unsaturated
acyl azolium intermediate 108. Then, this intermediate underwent the nucleophilic addition to activate
ketones, resulting in the regioselective γ-addition and construction of the cyclization products. The
Lewis acid Sc(OTf)3 or Mg(OTf)2 were known to exhibit good affinities for carbonyl oxygen and
carboxylates, and potentially involved in the multisite coordination to bring the ketone electrophile
into close proximity with vinyl enolate intermediate. In general, the effect of this coordination may
amplify the otherwise weak chiral induction by the chiral NHC catalyst.
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Scheme 24. Intermolecular dynamic kinetic resolution cooperatively catalyzed by an N-heterocyclic
carbene and a Lewis acid.

6. Miscellaneous

In 2014, Yao and coworkers reported a novel Lewis acid La(OTf)3 as a co-catalyst in the
NHC-catalyzed [4 + 2] annulation of 2-bromo-2-enals with isatin derivatives 112 (Scheme 25). This dual
catalysis process was initiated by the addition of the NHC to 2-bromo-2-enals to give the Breslow
intermediate, which then underwent a3 to d3 umpolung and debromination to generateα,β-unsaturated
acyl azolium intermediate without the addition of external oxidant. The α,β-unsaturated acyl azolium
was then deprotonated at the γ-position to provide the vinyl enolate intermediate. Subsequently,
the nucleophilic addition and intramolecular lactonization occurred between the vinyl enolate and
isatin 112. Spirocyclic oxindole-dihydropyranones 113 were prepared in good yields and with excellent
enantioselectivities. Similar to Chi’s and Wang’s report (vide supra), only 19–41% ee were observed in
all cases in the absence of Lewis acid La(OTf)3 as a co-catalyst [78].
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Scheme 25. NHC/La(OTf)3 strategy for the stereoselective synthesis of
spirocyclic oxindole-dihydropyranones.

Ye and colleagues investigated the reactions ofα,β-unsaturated carboxylic acids with isatin-derived
ketamines under NHC catalysis. Initially, the desired spirocyclic oxindolodihydropyridinone product
was isolated in low yield with only 7% ee in the absence of Lewis acid. Notably, the Lewis acid
La(OTf)3 performed well to improve the yield and enantioselectivity [79]. In 2017, Huang and
co-workers presented an enantioselective β-protonation of enals via a shuttling strategy (Scheme 26).
A variety of Lewis acids have been screened and displayed a strong impact on the enantioselectivity.
Finally, Cu(OTf)2 resulted in the highest yield and ee value. The Lewis acid could coordinate
with enals and mercaptans 114 through not only stabilizing a homoenolate intermediate but also
facilitating protonation by increasing the acidity of the thiol. In a word, the combination of a
chiral N-heterocyclic carbene (NHC) catalyst and a strong Brønsted/Lewis acid cocatalyst solved
the longstanding challenge of enantioselective remote β-protonation of homoenolates with excellent
reactivity and enantioselectivity [80].
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7. Conclusions

In this review, a number of catalytic applications have demonstrated that the combination of
NHC catalysis with Lewis acid is a unique and efficient strategy for access to a wide range of highly
functionalized complex and enantiomerically enriched structural motifs. The use of a Lewis acid in
combination with a NHC catalyst enable us to (1) increase the yield and enantioselectivity, (2) reverse
diastereo- and regioselectivity, (3) change the reaction pathway and (4) activate a previous inactive
electrophile in NHC-generated processes. Overall, the dual catalytic approaches would expand the
utility of NHC/Lewis acid methodology and construct other synthetically useful products with diverse
particularly important skeletons. Further development of the cooperative catalysis in the total synthesis
of natural products and pharmaceuticals will be the target of future studies.
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