Cooperative catalytic behavior of SnO₂ and NiWO₄ over BiVO₄ photoanodes for enhanced photoelectrochemical water splitting performance

Maged N. Shaddad,^a Prabhakarn Arunachalam^{a,*} Mahmoud Hezam^b, Abdullah M. Al-Mayouf ^{a,*}

- ^aElectrochemical Sciences Research Chair, Department of Chemistry, Science College, King Saud University, Riyadh, Kingdom of Saudi Arabia.
- ^bKing Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
- * Correspondence: parunachalam@ksu.edu.sa, amayouf@ksu.edu.sa Tel.: +966114696026 Academic Editor: name Received: date; Accepted: date; Published: date

Fig. S1 FE-SEM micrographs of the BiVO₄ photoanodes fabricated using electrodeposition process.

Fig. S2 FESEM images of cross-section of the NiWO4 nanoparticles over $BiVO_4/SnO_2$ photoanodes

Fig. S2 SEM images and its corresponding EDX spectra with elemental composition of various stage of fabricated photoanodes a) SnO₂ b) BiVO₄/SnO₂ c) NiWO₄/BiVO₄/SnO₂ electrodeposited on FTO substrate.

The charge separation efficiency η_{sep} is the yield of the photo-generated holes that reach the electrode/electrolyte interface or, in other words, the fraction of photo-generated holes that does not recombine with electrons in the bulk. While, the charge catalytic efficiency η_{CT} is the yield of those holes that have reached the electrode/electrolyte interface and that are injected into the electrolyte to oxidize the water, or in other words, do not recombine with electrons at surface traps. When the photocurrent measured with hole scavenger (HS) like Na₂SO₃ or H₂O₂ in the electrolyte (J_{HS}) is a product of η_{abs} and η_{sep} only because, the η_{CT} yield becomes 100% ($\eta_{CT} = 1$) in the presence of the hole scavenger in the electrolyte:

The η_{CT} yield into water is achieved by dividing J_{H2O} photocurrent by J_{HS} photocurrent.

$$\eta_{CT} = \frac{J_{H2O}}{J_{HS}} \qquad (2)$$

The η_{abs} will be calculated from the optical measurements by:

$$\eta_{abs} = \frac{e}{hc} \int I_{\lambda} (1 - 10^{-A}) d\lambda \dots (3)$$

with I_{λ} being the light intensity at a certain wavelength λ and A being the absorption coefficient.

Fig. S4. XRD patterns of SnO₂/BiVO₄/NiWO₄ photoanode before (black) and after (red) 3 h of J-t measurement in 0.1 M PBS (pH 7.5).

Fig. S5. XPS spectra of SnO₂/BiVO₄/NiWO₄ photoanode before and after 3 h of J-t measurement in 0.1 M PBS (pH 7.5).