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Abstract: In the work, we firstly report the facile and large-scale synthesis of defective black TiO2−x(B)
nanosheets via a dual-zone NaBH4 reduction method. The structure, physico-chemical, and optical
properties of TiO2−x(B) nanosheets were systematically characterized by powder X-ray diffraction,
Raman spectroscopy, UV-Vis absorption spectroscopy, and X-ray photoelectron spectroscopy, etc.
The concentration of Ti3+ can be well tuned by NaBH4 reduction. With increasing the mass ratio
of NaBH4 to TiO2(B), the generation of Ti3+ defects gives rise to the increased intensity of a broad
band absorption in the visible wavelength range. It is demonstrated that the TiO2−x(B) photocatalyst
synthesized with the mass ratio of NaBH4 to TiO2(B) of 3:1 exhibited an optimum photocatalytic activity
and excellent photostability for hydrogen evolution under visible-light irradiation. By combining the
advantages of 2D TiO2(B) nanosheets architecture with those of Ti3+ self-doping and simultaneous
production of oxygen vacancy sites, the enhanced photocatalytic performance of the defective
TiO2−x(B) nanosheets was achieved.
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1. Introduction

Photocatalytic semiconducting materials for hydrogen evolution via water splitting have attracted
considerable interest [1–4]. The anatase-, rutile-, and brookite-type TiO2 are the most widely
studied photocatalysts. However, their potential applications are hindered severely by their large
band gaps and consequently their limited visible-light-harvesting properties. Therefore, several
approaches to enhance visible-light photoactivity and inhibit charge carrier recombination in TiO2-based
photocatalysis have been developed, such as co-catalysts deposition [5,6], hetero/self-doping [7–10],
junction composite [11,12], crystal facet engineering [13,14], surface disordering [15,16], etc.
Especially, the intrinsic defects in the TiO2 matrix have been proved to trigger the visible-light
activity of TiO2 [17–22]. The hydrogenation-induced defect-rich black TiO2−x displays remarkable
stability and photoactivity. Meanwhile, the theoretical results also clearly demonstrate that a vacancy
band state is formed as a result of the high vacancy concentration, thus achieving a narrow band gap
(about 1.0 eV).

Apart from these TiO2 polymorphs, the crystalline structure of the metastable TiO2(B) nanosheet
is found to be a layered and perovskite-like with lattice channels. The synthesis process is facile with
ethylene glycol solutions and 140–180 ◦C, and only involves a one-step hydrolysis reaction of TiCl3 or
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TiCl4 [23,24]. Therefore, extensive efforts have been contributed to investigate the applications of the
TiO2(B) nanosheet in the photocatalysis field [23,25–28]. However, due to the metastable structure and
character of TiO2(B), almost no work has been reported on the facile and large-scale synthesis method
and concurrently controllable structure and optical properties for defect-rich TiO2−x(B).

In this paper, we offer a facile dual-zone reduction approach to produce defect-rich TiO2−x(B)
nanosheets by using NaBH4 as reductant agents. By adjusting the mass ratio of NaBH4/TiO2(B),
the formation of Ti3+ and oxygen-vacancy defects can be well controlled. The as-synthesized defective
TiO2−x(B) exhibited a broad absorption in the visible-light range, achieving the visible-light photoactivity
for H2 evolution.

2. Results and Discussions

2.1. Fabrication of Defective Black TiO2−x(B) Nanosheets

The TiO2(B) phase commonly suffers from phase transformation into the stable TiO2 phase
(anatase or rutile) in high-temperature annealing conditions, owing to the thermodynamically
metastable structure. Thus, this work provides a new and simple dual-zone NaBH4 reduction
approach to produce defective TiO2−x(B) nanosheets (Figure 1), showing the potential to replace
the dangerous high-temperature hydrogenation method by directly using H2 as reductant reagent.
Moreover, the byproducts residues from decomposition reactions of NaBH4 can be also avoided. Taking
the advantage of the dual-zone reduction synthetic procedure, the phase transformation of TiO2(B)
was inhibited, achieving self-doping of Ti3+ and simultaneous formation of oxygen vacancy sites.
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Figure 1. Schematic illustration for the formation of defective black TiO2−x(B) nanosheets.

2.2. Material Characterizations

Figure 2 shows the powder XRD patterns of the defective TiO2−x samples. The observed diffraction
peaks at 2θ = 25.0◦, 28.6◦, and 48.6◦ can be assigned to the [110], [002], and [020] planes of the TiO2(B)
phase (JCPDS No.74-1940), indicating that no phase transformation was observed on the as-synthesized
TiO2−x(B) samples. The results show that under the mild reduction conditions, the simultaneous
self-doping of Ti3+ and generation of oxygen vacancy sites were achieved, thus inhibiting the phase
transformation of TiO2(B). In addition, the diffraction peaks intensity was decreased, not only indicating
the decreased crystallinity of TiO2−x(B) along with increasing the mass ratio of NaBH4 to TiO2(B),
but also shows that the TiO2(B) prepared by simple hydrothermal method possesses a low crystallinity
and the reduction process at 200 ◦C further reduces the crystallinity.

Raman scatterings (shown as Figure 3) were measured to further examine the structure of
the obtained TiO2−x(B) samples. No obvious change was observed on the Raman spectra of the
as-synthesized TiO2−x(B) samples. However, with increasing the mass ratio of NaBH4 to TiO2(B),
an obvious decrease in the Raman signal intensity was observed, indicating the lower crystallinity of
the TiO2(B) phase, which is consistent with XRD results.
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Figure 2. Powder XRD patterns of the as-synthesized pristine TiO2(B) and defective TiO2−x(B) 
nanosheets. 
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Figure 3. Raman spectra of defective TiO2−x(B) nanosheets in comparison to that of pristine TiO2(B). 
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nanosheets compared to the pristine TiO2(B). It can be seen that, with increasing the mass ratio of 
NaBH4 to TiO2(B), the UV-Vis absorption of defective TiO2−x(B) samples is enhanced to expand to the 
entire visible-light region, in accordance with distinct color change from white BT into black BT3 
(inset of Figure 4b).The results confirm the assumption that a new vacancy band state, located below 

Figure 2. Powder XRD patterns of the as-synthesized pristine TiO2(B) and defective
TiO2−x(B) nanosheets.
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Figure 3. Raman spectra of defective TiO2−x(B) nanosheets in comparison to that of pristine TiO2(B).

Figure 4 shows the UV-Vis absorption spectra (a) and Tauc plots (b) for the defective TiO2−x(B)
nanosheets compared to the pristine TiO2(B). It can be seen that, with increasing the mass ratio of
NaBH4 to TiO2(B), the UV-Vis absorption of defective TiO2−x(B) samples is enhanced to expand to the
entire visible-light region, in accordance with distinct color change from white BT into black BT3 (inset
of Figure 4b).The results confirm the assumption that a new vacancy band state, located below the
conduction band minimum (CBM) of TiO2(B), can be formed by high concentration of Ti3+ doping. [17]

As shown in Figure 5a, the XPS survey spectra show the similar surface components of Ti and O
elements in BT and BT3. The narrow scan XPS spectra of Ti 2p show that the binding energies of the
spin doublet with Ti 2p3/2 and 2p1/2 are 458.4 and 464.1 eV, respectively (Figure 5b). The result indicates
that the Ti species mainly exist as Ti4+, which is in good accordance with the literature results [29].
Moreover, the devolution of the Ti 2p XPS spectrum for the BT3 sample results in the obvious peaks
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belonging to Ti3+, for which the Ti 2p1/2 and Ti 2p3/2 peaks are located at about 457.5 and 463.2 eV,
which confirms the generation of surface Ti3+ in TiO2(B). Such differences can be ascribed to the
reduction of Ti4+ into Ti3+ after the NaBH4 treatment. As represented in Figure 5c, the deconvoluted
peaks of O1s at 529.7, 531.0, and 532.8 eV are due to the lattice oxygen (Ti–O–Ti), surface hydroxyl
group/O–defective matrix (Ti–O–H), and Ti–O–C groups, respectively [30–32]. The observation of
Ti–O–C groups can be attributed to the surface-absorbed ethylene glycolate [26]. More interesting,
the amount of lattice Ti–O–Ti bonds relative to surface Ti–O–H bonds/O–defective matrix was notably
increased in BT3, as compared to those of BT. The results indicate the simultaneous production of
oxygen vacancy sites [26,32].
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Figure 5. XPS spectra of pristine TiO2(B) and defective TiO2−x(B): Survey scans (a), narrow scan Ti 2p
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2.3. Photocatalytic Activity for H2 Evolution

The amounts and rates of H2 evolution from aqueous methanol solution under visible-light
were measured to represent the photocatalytic activity of the defect-containing TiO2−x(B) with
photodeposition of 0.03 wt.% Rh as co-catalysts, as shown in Figure 6. No H2 gases were evolved from
pristine BT. Interestingly, by an intermittent visible-light irradiation (every 30 min radiation followed by
30 min interval), the stable and continuous H2 evolution (nearly linear correlation between the evolved
hydrogen amount with the irradiation time) was observed on the as-synthesized defective TiO2−x(B)
samples (Figure 6a), indicating no significant deactivation of H2 evolution and excellent stability of
defective TiO2−x(B) nanosheets. With increasing the mass ratio of NaBH4/BT, the H2 evolution from
BT1 increased drastically, reached the maximum average rate of 0.58 µmol·g−1

·h−1 for BT3, and then
decreased (Figure 6b). The results confirm that the appropriate amount of self-doped Ti3+ defects
along with the production oxygen vacancy sites are the key factors, leading to enhanced photocatalytic
performance of the defective TiO2−x(B) nanosheets.
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Figure 6. (a) Photocatalytic H2 evolution over the as-synthesized defective TiO2−x(B) nanosheets under
visible-light irradiation (>420 nm) and reaction conditions—0.03 g of catalysts, 30 mL of 10 vol.%
aqueous methanol solution, loading of 0.03 wt.% Rh as co-catalysts. (b) The corresponding average H2

evolution rates of the as-synthesized defective TiO2−x(B). Error bars are generated by measurements
repeated at least three times for all samples, with less than 5% deviations for the samples prepared in
different batches.

3. Experimental

3.1. Chemicals

Titanium tetrachloride (TiCl4, ≥99%) and Na3RhCl6 were purchased from Alfa Aesar. Ethylene
glycol (EG, ≥99%), sodium borohydride (NaBH4, ≥99%), and methanol (MeOH, ≥99.9%) were
purchased from Sigma-Aldrich.

3.2. Photocatalysts Preparation

A modified hydrolysis method was used to synthesize the TiO2(B) nanosheet powders [23].
Typically, a desired amount of deionized water was added into the pre-mixture of TiCl4 and ethylene
glycol, and then heated at 150 ◦C for 6 h in a Teflon-lined stainless-steel autoclave. Finally, centrifugation,
washing by deionized water and ethanol, and drying at 80 ◦C all night were performed to obtain
products (denoted as BT).

The BT as precursor and the NaBH4 as reductant agent at different mass ratios of 1 to 4 were
separately placed in a dual-zone quartz tube furnace. The reduction processes were carried out in an
argon atmosphere with a flow rate of 10 mL/min (5.0 quality) at a heating rate of 5 ◦C/min. The NaBH4

and BT samples were annealed at 500 and 200 ◦C for 1 h, respectively. After being cooled to room
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temperature, the samples were thoroughly washed with deionized water and ethanol several times,
and dried at 80 ◦C overnight. The obtained products were accordingly denoted as BT1, BT2, BT3,
and BT4, with respect to the different mass ratio of 1 and 4.

3.3. Characterization

The X-ray diffraction (XRD) patterns of all samples were recorded using a PANalytical MPD
diffractometer, with the radiation source of Cu-Kα (λ = 0.1541 nm) X-ray emission, and the scan
range was set to 10◦ to 70◦ (2θ), with step of 0.05◦. Raman spectra of all samples were collected
using a Renishaw Raman microscope equipped with a 514 nm excitation laser. Taking BaSO4 as a
reference, the UV-Vis absorption spectra were measured using a Shimadzu UV-2450 spectrophotometer.
The X-ray photoelectron spectroscopy (XPS) measurements were carried out in Thermo ESCALAB
250XI System (ThermoFisher Scientific, Waltham, MA, USA), consisting of the Mg-Kα X-ray radiation
source (hν = 1253.6 eV) operating at 250 W (14 kV) and a high resolution hemisphere energy analyzer.

The base pressure of about 5 × 10−10 mbar was maintained in the measurement chamber. To obtain
an overall energy resolution of 0.25 eV, the fixed transmission mode and pass energy of 93.9 eV were
adopted during the measurements. The charging effects were compensated by a flood gun. A piece
of carbon tape (Nisshin EM Co. Ltd, Tokyo, Japan) was used to manually mount samples in the
sample holder. The XPS peak deconvolution was performed using the Casa software (Version 2.3.15
RUB license, Casa Software Ltd, Teignmouth, UK, 2009) with Shirley background subtraction and
Gaussian–Lorentzian broadening function.

3.4. Photocatalytic Activity Tests

Photocatalytic hydrogen production reactions were conducted in a homemade eight-parallel
multi-zone reaction system with air-tight quartz reactors. A 500 W mid-pressure Hg lamp was
equipped as light irradiation source, with a water filter and a 420 nm cut-off filter. The evolved gases
were determined by gas chromatography method using a thermal conductivity detector (GC7900,
Techcomp Ltd., Beijing, China, MS-5A column and high-purity N2 (5.0 quality) as carrier gas).
Typically, 30 mg powders were dispersed in 30 mL 10 vol.% aqueous methanol solution (MeOH),
and then the ultrasonication was carried out for 10 min. Subsequently, for in-situ photodeposition
of optimum amount of 0.03 wt.% Rh as co-catalyst, the Na3RhCl6 solution was added as precursor.
Before irradiation, including the photocatalysts, the whole system was purged with N2 (5.0 quality) to
remove air completely.

4. Conclusions

In summary, a facile and large-scale approach of a dual-zone NaBH4 reduction method was
used for preparing defective black TiO2−x(B) nanosheets. We demonstrate that the mass ratio of
NaBH4 to TiO2(B) plays a critical role in controlling the self-doped Ti3+ defects and simultaneously
produced oxygen vacancy sites towards engineering the defective TiO2−x(B). The presence of Ti3+ and
oxygen vacancy defects gives rise to the significantly increased intensity of the broad band absorption
in the visible wavelength range. Under visible-light irradiation, the photocatalytic performance of
defective TiO2−x(B) photocatalysts was greatly enhanced with excellent stability for hydrogen evolution,
as compared to the non-photoactive pristine TiO2(B). The synthetic approach for synthesis of defective
TiO2−x(B) shows great significance for developing a highly efficient catalytic system.
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