Photocatalytic degradation of microcystins by TiO₂ using UV-LED controlled periodic illumination

Supplementary Information

Olivia M. Schneider^{1, †}, Robert Liang^{1,2, †,*}, Leslie Bragg³, Ivana Jaciw-Zurakowsky¹, Azar Fattahi¹, Shasvat Rathod¹, Peng Peng⁴, Mark R. Servos³, Y. Norman Zhou^{1,2}

¹Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
²Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
³Department of Biology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
⁴School of Mechanical Engineering and Automation, International Research Institute for Multidisciplinary Science, Beihang University, 37 Xueyuan Rd, Beijing, 100191
¹ Denotes equal contribution
* Corresponding author
Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
Tel: +1-519-888-4567 x33326
Email: rliang@uwaterloo.ca
Alternative Email: rliang66@gmail.com

Pulsed Width Modulation Setup

Pulse width modulation (PWM) was used to control the UV-LED. Digital control is used to create a square wave, a signal switched between on and off states. This on-off pattern can simulate voltages in between full on (5 volts) and off (0 volts) by changing the portion of the time the signal spends on versus the time it spends off. The duration of the "on time" is called the pulse width. An Arduino Uno connected to a LED Current Driver (LEDSEEDUINO) and a high power UV-LED (LED Engin, 1 A, λ = 365 nm) was used. A PWM program was coded into the Arduino microcontroller using the following script:

int ledPin = 9;	// LED connected to digital pin 9				
int timeON = x	// initializes x value of time that LED is ON				
int timeOFF = y	// initializes y value of time that LED is OFF				
void setup() { pinMode(ledPin, OU }	TPUT);	// sets the digital pin as output			

```
void loop()
{
    digitalWrite(ledPin, HIGH); // sets the LED on
    delay(timeON); // waits for x milliseconds
    digitalWrite(ledPin, LOW); // sets the LED off
    delay(timeOFF); // waits for x milliseconds
}
```

Table S1. Calculated Degradation Rates. Poor fit with the linear regression model due to insignificant degradation is seen in membrane only and UV only conditions, as well as 50 Hz MC-LR.

		MC-LA	MC-LR	MC-RR	total
50 Hz	Kapp (min ⁻¹)	-1.24 x 10 ⁻³	1.88 x 10-5	-1.04 x 10 ⁻³	-7.83 x 10 ⁻⁴
	R ²	0.88	0.29	0.50	0.80
5 Hz	Kapp (min ⁻¹)	-2.07 x 10 ⁻³	-6.26 x 10-4	-2.60 x 10 ⁻³	-1.82 x 10 ⁻³
	R ²	0.86	0.74	0.76	0.90
0.5 Hz	Kapp (min ⁻¹)	-2.10 x 10 ⁻³	-8.86 x 10-4	-3.98 x 10 ⁻³	-2.61 x 10 ⁻³
	R ²	0.96	0.79	0.92	0.97
dual frequency	Kapp (min ⁻¹)	-3.12 x 10 ⁻³	-2.08 x 10 ⁻³	-6.72 x 10 ⁻⁴	-2.08 x 10 ⁻³
	R ²	0.81	0.93	0.29	0.89
membrane, no UV	Kapp (min ⁻¹)	-6.44 x 10 ⁻⁴	-5.86 x 10-4	-6.20 x 10 ⁻⁴	-6.11 x 10 ⁻⁴
	R ²	0.23	0.25	0.44	0.37
UV, no membrane	Kapp (min ⁻¹)	1.03 x 10 ⁻⁴	-5.28 x 10 ⁻⁴	1.29 x 10 ⁻⁴	-1.55 x 10 ⁻⁴
	R ²	-0.10	0.57	0.44	0.20

Figure S1. Change in microcystin concentration over the course of various UV/TiO₂ treatments.

Figure S2. Linear regression plots for the calculation of degradation rate.

Figure S3. Chromatogram demonstrating the separation of MC-LA, MC-LR, MC-RR, and NOD.