Electronic Supplementary Information

Z-Schemed WO₃/rGO/SnIn₄S₈ Sandwich Nanohybrids for Efficient Visible Light Photocatalytic Water Purification

Pingfan Xu ^{1,2}, Siyi Huang ², Minghua Liu ^{2,*}, Yuancai Lv ², Zhonghui Wang ¹, Jinlin Long ³, Wei Zhang ⁴ and Haojun Fan ^{1,*}

- ¹ National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; shoppingfan@126.com (P.X.); wangzhonghui652@163.com (Z.W.)
- ² College of Environment & Resource, Fuzhou University, Fuzhou 350116, China; hsy920329@163.com (S.Y.); yclv@fzu.edu.cn (Y.L.)
- ³ State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China; jllong@fzu.edu.cn
- ⁴ State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China; weizhang@scu.edu.cn
- * Correspondence: mhliu2000@fzu.edu.cn (M.L.); fanhaojun@scu.edu.cn (H.F.)

Figure S1. SEM images (A) rGO; (B) SIS; (C) Original WO₃; (D) WO₃; (E-F) WGS-5%.

Figure S2. XPS spectra of GO, detail scan of C 1s.

Element	Peak location(eV)		Peak separation(eV)	Area ratio (d5/2:d3/2 or f7/2:f5/2)	
Sn	452.5(d5/2)	444.9(d _{3/2})	8.5	1.53	
In	494.9(d5/2)	452.5(d _{3/2})	7.6	1.5	
W	37.85(f7/2)	35.71(f _{5/2})	2.15	1.38	

Table S1. the peak separation and area ratios of Sn, In, and W.

Table S2. The optical properties of WO₃ and SIS.

Sample	$\mathbf{V} = \mathbf{B}\mathbf{V} + \mathbf{A}$	V	Efb	$E_{fb} \approx E_{CB} a$	E_g	EVB b
/Frequency(kHZ)	I = DA + A	(V vs. SCE)	(V vs. SCE)	(V vs. NHE)	(eV)	(V vs. NHE)
WO3-1	Y = 6.23X + 0.567	-0.091	-0.12			
WO ₃ -1.5	Y = 6.00X + 0.639	-0.106	-0.13	0.12	2.67	2.79
WO ₃ -2	Y = 5.68X + 0.669	-0.118	-0.14			
SIS-1.5	Y = 3.80X + 3.28	-0.863	-0.89	-0.66	1.95	1.29
SIS-2	Y = 3.63X + 3.22	-0.887	-0.91			

^a $E_{\mathcal{H}}$ (V vs. SCE) = $E_{\mathcal{H}}$ (V vs. NHE) + 0.245; ^b $E_{VB} = E_g + E_{CB}$.

Table S3. Z-scheme heterojunction with rGO as electron mediator for degradation of pollutants

under visible light irradiation.

Figure S3. Reusability of WGS-2.5% for the photocatalytic reduction of Cr(VI) at pH 4.

Figure S4. XRD pattern of WGS-2.5% before and after four cycles used.

References

- Ma, D.; Wu, J.; Gao, M.; Xin, Y.; Sun, Y.; Ma, T. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. *Chem. Eng. J.* 2017, 313, 1567-1576.
- Wang, C.; Wang, G.; Zhang, X.; Dong, X.; Ma, C.; Zhang, X.; Ma, H.; Xue, M. Construction of g-C₃N₄ and FeWO₄ Z-scheme photocatalyst: effect of contact ways on the photocatalytic performance. *RSC Adv.* 2018, *8*, 18419-18426.
- Jiang, D.; Xiao, P.; Shao, L.; Li, D.; Chen, M. RGO-Promoted All-Solid-State g-C₃N₄/BiVO₄ Z-Scheme Heterostructure with Enhanced Photocatalytic Activity toward the Degradation of Antibiotics. *Ind. Eng. Chem. Res.* 2017, 56, 8823-8832.
- 4. Jia, C.; Zhang, X.; Matras-Postolek, K.; Huang, B.; Yang, P. Z-scheme reduced graphene oxide/TiO₂-Bronze/W₁₈O4⁹ ternary heterostructure towards efficient full solar-spectrum photocatalysis. *Carbon*. 2018, *139*, 415-426.
- 5. Ma, D.; Wu, J.; Gao, M.; Xin, Y.; Ma, T.; Sun, Y. Fabrication of Z-scheme g -C₃N₄/RGO/Bi₂WO₆ photocatalyst with enhanced visible-light photocatalytic activity. *Chem. Eng. J.* 2016, *290*, 136-146.
- Chen, A.; Bian, Z.; Xu, J.; Xin, X.; Wang, Hui. Simultaneous removal of Cr(VI) and phenol contaminants using Z-scheme bismuth oxyiodide/reduced graphene oxide/bismuth sulfide system under visible-light irradiation. *Chemosphere*. 2017, 188, 659-666.