

Review Titanium-Dioxide-Based Visible-Light-Sensitive Photocatalysis: Mechanistic Insight and Applications

Shinya Higashimoto

Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan; shinya.higashimoto@oit.ac.jp; Tel.: +81-(0)6-6954-4283

Received: 15 January 2019; Accepted: 14 February 2019; Published: 22 February 2019

Abstract: Titanium dioxide (TiO₂) is one of the most practical and prevalent photo-functional materials. Many researchers have endeavored to design several types of visible-light-responsive photocatalysts. In particular, TiO₂-based photocatalysts operating under visible light should be urgently designed and developed, in order to take advantage of the unlimited solar light available. Herein, we review recent advances of TiO₂-based visible-light-sensitive photocatalysts, classified by the origins of charge separation photo-induced in (1) bulk impurity (N-doping), (2) hetero-junction of metal (Au NPs), and (3) interfacial surface complexes (ISC) and their related photocatalysts. These photocatalysts have demonstrated useful applications, such as photocatalytic mineralization of toxic agents in the polluted atmosphere and water, photocatalytic organic synthesis, and artificial photosynthesis. We wish to provide comprehension and enlightenment of modification strategies and mechanistic insight, and to inspire future work.

Keywords: Titanium dioxide (TiO₂); visible-light-sensitive photocatalyst; N-doped TiO₂; plasmonic Au NPs; interfacial surface complex (ISC); selective oxidation; decomposition of VOC; carbon nitride (C_3N_4); alkoxide; ligand to metal charge transfer (LMCT)

1. Introduction

Titanium dioxide (TiO₂) is one of the most practical and prevalent photo-functional materials, since it is chemically stable, abundant (Ti: 10th highest Clarke number), nontoxic, and cost-effective. In recent years, a great deal of attention has been directed towards TiO₂ photocatalysis for useful applications such as photocatalytic mineralization of toxic agents in the polluted atmosphere and water, photocatalytic organic synthesis, and artificial photosynthesis [1–20].

The TiO₂ involving Ti³⁺ sites that are oxygen-deficient at the impurity level exhibits n-type semiconductor. The photocatalytic activities of TiO₂ strongly depend on crystal structures (anatase, brookite, and rutile), crystallinity, crystalline plane, morphology, particle sizes, defective sites, and surface OH groups. The valence band (V.B.) and conduction band (C.B.) of TiO₂ consist of O 2p and Ti 3d orbitals, respectively, and their band gap (forbidden band) is circa ~3.0–3.2 eV (~410–380 nm). Photo-irradiation (hv > 3.2 eV) of the TiO₂ photocatalyst leads to band gap excitation, resulting in charge separation of electrons into the C.B. and the holes in the V.B. These photo-formed electrons and holes simultaneously work as electron donors and acceptors, respectively, on the photocatalyst surface, thus enabling the photocatalytic reactions. Details are given in other articles and reviews [21–25]. UV light reaching the earth surface represents only a very small fraction (4%) of the solar energy available. Therefore, many researchers have endeavored to design several types of visible-light-responsive photocatalyst. In particular, TiO₂-based photocatalysts operating under visible light should be urgently designed and developed, in order to take advantage of the unlimited solar light available.

In the late 1990s, Anpo et al. first reported that TiO_2 doped with Cr, V, and Fe cations by ion implantation operates under visible light irradiation. They exhibited red shift of the band-edge of the

 TiO_2 , resulting in decomposition of NO into N₂, O₂, and N₂O [26]. This work accelerated subsequent works for the design and development of visible-light-responsive photocatalysts. Recently, much attention has been paid to visible-light-responsive TiO_2 prepared by: doping with nitrogen (N), carbon (C), and sulfur (S) ions etc.; surface plasmonic effects with Au or Ag nanoparticles (NPs); the interfacial surface complex (ISC); coupling with visible-light-sensitive hetero-semiconductors (cadmium sulfide, carbon nitride etc.); and dye-sensitized photocatalysts. In fact, some photocatalysts are considered to work under similar principles.

Along these backgrounds, this review focuses on the recent advances of the visible-light-sensitive TiO_2 photocatalyst. These advances have been classified by the origin of charge separation photo-induced in (1) the bulk impurity (N-doping), (2) hetero-junction of metal (Au NPs), and (3) the interfacial surface complex (ISC) (See Figure 1). They have been well characterized by several spectroscopic techniques, and applied for mineralization of volatile organic compounds (VOC), water splitting to produce H₂, and fine organic synthesis.

Figure 1. Visible-light-sensitive TiO₂ photocatalyst modified by (1) nitrogen-doping, (2) plasmonic Au nanoparticles (NPs), and (3) interfacial surface complex (ISC).

2. Nitrogen-doped TiO₂ Photocatalysts

In 1986, Sato and co-workers first explored the photocatalytic activity of nitrogen-doped TiO₂ (N-doped TiO₂) photocatalysts for the oxidation of gaseous ethane and carbon monoxide [27]. They found that N-doped TiO₂ photocatalyst exhibited a superior photocatalytic activity to pure TiO₂ under visible light irradiation. Later, in 2001, Asahi et al. demonstrated visible-light-induced complete photo-oxidation of gaseous CH₃CHO (one of VOCs) to CO₂ with an N-doped TiO₂ photocatalyst [28]. In this section, fundamental synthetic routes, characterizations, and application of photocatalytic reactions are highlighted.

2.1. Synthesis of N-doped TiO₂ Photocatalyst

N-doped TiO₂ was prepared by employing several procedures and materials. Details are given in Reference [13]. Preparation methods for N-doped TiO₂ photocatalysts can be classified into two categories: dry processes and wet processes.

2.1.1. Dry Processes

Typically, N-doped TiO₂ powder can be prepared by the nitrification of TiO₂ in an ammonia (NH₃) gas flow at high temperature [28,29]. The amount of N doping into the TiO₂ can be controlled by annealing temperatures in the range of 550-600 °C under an NH₃ flow. However, a large number of O vacancies are introduced into the N-doped TiO₂ with increasing annealing temperature, since the NH₃ decomposes into N₂ and H₂ at high temperature, and TiO₂ is simultaneously reduced by H₂ [30]. Figure 2 shows schematics of N-doping into TiO₂, accompanied by the formation of oxygen vacancies to exhibit the n-type semiconductor.

Figure 2. When the N^{3-} is replaced with lattice O^{2-} ions in the TiO₂ lattice, the hole (h⁺) is formed in order to compensate for the charge balance (p-type semiconductor) (a). However, an oxygen vacancy is produced by the reduction with H₂, which is formed by the decomposition of NH₃ to produce an oxygen vacancy and excess electrons (b). As a consequence, N^{3-} doped into TiO₂ (N-doped TiO₂) involves electrons located at N 2p and Ti 3d sites at impurity levels (n-type semiconductor) (c).

2.1.2. Wet Processes

A sol-gel method can be employed for the preparation of N-doped TiO₂ powder. Typically, NH₃ aq. (NH₄OH) is added to a solution of titanium (IV) isopropoxide (TTIP) [31–33] to form titanium hydroxide involving N-species. The precipitate was dried, followed by calcination at ~400–450 °C in air to obtain a yellowish TiO₂ powder.

2.2. N-states in N-doped TiO₂

One of the major concerns is to understand the physico-chemical nature of the N species in N-doped TiO_2 , which are responsible for the visible light sensitivity. They were characterized by density functional theory (DFT) calculations, X-rap photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) and electron paramagnetic resonance (EPR) spectroscopy.

2.2.1. DFT Calculations

DFT calculations demonstrated the electronic structures of the N-doped TiO_2 photocatalyst (see Figure 3). The substitution of N with lattice O of the N-doped TiO_2 exhibits band gap narrowing (circa 0.1 eV) caused by mixing orbitals of N 2p with O 2p, resulting in the negative shift of the valence band edge. On the other hand, the interstitial N is localized to impurity states (N 2p levels) above the V.B. (circa 0.7 eV) in the mid-band gap. Therefore, the oxidation power of photo-induced holes on the N 2p is lower than on the O 2p in the TiO_2 lattice.

Figure 3. Schematic illustration of structures and their corresponding energy bands for substitutional and interstitial N species in the N-doped TiO₂, together with photo-induced electronic processes.

2.2.2. XPS Spectra

XPS analysis can confirm the oxidative states of the N species and bonding states in the N-doped TiO₂ (See Figure 4I). N 1s XPS peaks at a binding energy in the range of ~396–400 eV showed different oxidative states of the N species. By the combination of the DFT calculations [31], it was identified that the N 1s XPS peaks at ~396–397 eV are due to the substitution of N with the lattice O of TiO₂ [13,34], while those at ~399–400 eV are due to the interstitial N in the form of NO_x or NH_x [13,31,35,36].

Figure 4. XPS [I] and UV-vis absorption spectra [II] of (a) N-doped TiO₂ nanoball film [34], and (b) N-doped TiO₂ prepared by the sol-gel method [36].

2.2.3. Optical Properties

The UV-vis absorption spectra of the N-doped TiO₂ are shown in Figure 4II. The N-doped TiO₂ with the substitution of N exhibited band gap narrowing from 3.1 to 2.8 eV. On the other hand, the N-doped TiO₂ prepared by the sol-gel method exhibited visible light absorption up to 540 nm (2.3 eV), due to the electronic transition from localized N doping level to the C.B. of the TiO₂, while band-narrowing was not observed. These results are in good agreement with the DFT calculations.

2.2.4. Electron Paramagnetic Resonance (EPR) Spectra

N species in the N-doped TiO₂ are present at either diamagnetic (N⁻) or paramagnetic (N[•]) bulk centers, which are responsible for the visible light sensitivity [31,37]. The EPR measurements can detect the paramagnetic (N[•]) bulk centers (see Figure 5). One type, of three lines with a hyperfine tensor (g = 2.006 and A = 32.0 G) splitting by nuclear spin of nitrogen (I = 1), was observed. The signal intensity of N[•] radicals increased when the light was turned on, while the signal intensity significantly decreased when the light was turned off. In general, the paramagnetic interaction between N species and O₂ makes EPR signals disappear. However, they were remarkably enhanced in the presence of O₂ under $\lambda > 420$ nm, while its signal intensity still remained to some extent even after the light was turned off. These results suggest that N-species are located in bulk inside the TiO₂, and visible light irradiation of the N-doped TiO₂ exhibits effective charge separation to form holes (N[•] radicals) and electrons, which participate in the oxidation and reduction of reactant molecules, respectively.

Figure 5. Schematic illustration of [I] formation of paramagnetic ·N by the excitation of diamagnetic N⁻ species. Electron paramagnetic resonance (EPR) signal [II] of ·N radicals on N–TiO₂, and the relative signal intensity of I_N/I_{N0} [III] under vacuum, in the presence of argon (Ar) or O₂ (400 Pa) [37]. I_{N0} and I_N show the intensity due to ·N radicals at the initial and measured time, respectively.

2.2.5. Photo-Electrochemical Properties

Nakamura et al. investigated the photo-electrochemical oxidation power of the N-doped TiO₂ by employing several electron donors [38]. Figure 6 shows that the photo-induced hole on the N 2p level can directly oxidize only I⁻ ions under visible light illumination, while I⁻, SCN⁻, Br⁻, and H₂O are oxidized by the hole on the V.B. under UV light illumination. Therefore, the oxidation power of the holes induced on the N 2p level is lower than that of those on the O 2p on the V.B. Tang et al. studied the dynamics of photogenerated electrons and holes on the N-doped TiO₂ using transient absorption spectroscopy [39]. They concluded that the lack of activity of nanocrystalline N-doped TiO₂ film for photocatalytic water oxidation is due to rapid electron–hole recombination. On the other hand, Higashimoto et al. investigated the photo-electrochemical reduction power of the N-doped TiO₂ (see Figure 7) [33]. When the N-doped TiO₂ was photo-excited under visible light irradiation, the photo-induced electrons were accumulated on the oxygen vacancies of TiO₂. Subsequently, when various kinds of redox species as electron acceptors were introduced into the photo-charged N–TiO₂, the accumulated electrons could reduce O₂ molecules, Pt⁴⁺, Ag⁺, and Au³⁺ ions, but not MV²⁺, H⁺, and Cu²⁺ ions. In principle, the N-doped TiO₂ has the potential to reduce H⁺/H₂, but many oxygen vacancies involved in the bulk TiO₂ could influence the drastic charge recombination. In particular, photo-induced electrons trapped at the oxygen vacancies (mainly γ region) could reduce O₂ molecules to form such active oxygen species as hydrogen peroxide (H₂O₂), resulting in further oxidation of organic substrates.

Figure 6. Schematic illustration of proposed energy bands for the N-doped TiO₂, together with some photo-induced electronic processes. *E*: equilibrium redox potentials for one electron transfer [38].

Figure 7. Energy levels for sub-band structures of N-doped TiO₂ and photo-induced charge transfer into various kinds of redox species under visible light irradiation. The energy levels of sub-bands at the α , β , and γ potential regions (oxygen vacancies) and N-doping levels are also shown. Oxygen vacancies were estimated from the photo-electrochemical measurements. Signs of circle and cross stand for energetically favorable and unfavorable electron transfers, respectively [33].

Time profile for the photocatalytic decomposition of gaseous acetaldehyde on the N-doped TiO_2 is shown in Figure 8. The N-doped TiO_2 exhibited photocatalytic activity 5 times greater than TiO_2 under visible light irradiation, while they exhibited similar activities under UV light irradiation [28].

Figure 8. Photocatalytic decomposition of gaseous acetaldehyde on the N-doped TiO₂ photocatalyst. Evolved CO₂ concentration (\bigcirc , \bullet , N-doped TiO₂; \Box , \blacksquare , TiO₂) [28].

Table 1 shows that the N-doped TiO₂ exhibited photocatalytic activity for the decomposition of several kinds of VOC into CO₂ under visible light irradiation ($\lambda > 420$ nm). It was observed that the N-doped TiO₂ exhibited photocatalytic activity for the decomposition of aldehydes, but little activity for alcohol, acid, ketone, and halogene compounds. The vanadium species was deposited on the N-doped TiO₂ (VCl₃/N-doped TiO₂) by impregnation method. As shown in Table 1, VCl₃/N-doped TiO₂ showed higher photocatalytic activity for the decomposition of all VOC, in particular, acetic acid or acetone by ~13–16 times more than N-doped TiO₂. Therefore, it was confirmed that vanadium species worked as the effective co-catalyst.

Entry	Reactant Molecules	Yields of CO ₂ /µmol	
2		N-doped TiO ₂	VCl ₃ /N-doped TiO ₂
1	methanol ^a	0.2	1.1
2	ethanol ^a	0.3	0.5
3	formaldehyde ^a	4.6	21.6
4	acetaldehyde ^a	4.1	35.0
5	formic acid ^a	0.7	4.8
6	acetic acid ^a	1.2	17.0
7	acetone ^a	0.7	11.4
8	ethyl acetate ^a	1.3	10.6
9	dichloromethane ^b	2.4	4.1
10	trichloromethane ^b	1.5	4.1
11	1, 1-dichloroethane ^b	0.7	4.8
12	trans-1, 2-dichloroethylene ^b	1.0	5.7

Table 1. Yields of CO₂ for the photocatalytic decomposition of various kinds of volatile organic compounds (VOC) in aqueous solutions with N–TiO₂ and VCl₃/N-doped TiO₂ under visible light irradiation (λ > 420 nm) for 3 h [40].

Concentrations of VOC are (a) 0.5 M and (b) 50 mM.

Furthermore, effects of co-catalysts (48 metal ions using nitrate, sulfate, chloride, acetate, and oxide precursors) deposited on the N-doped TiO₂ for the photocatalytic activities were examined (See Figure 9) [40]. The bars marked in yellow exhibited higher photocatalytic activities than the N-doped TiO₂ by itself. In particular, N-doped-TiO₂-deposited Cu, Fe, V, and Pt oxides exhibited high photocatalytic activities. The local structures of the co-catalysts were characterized by XPS. It was observed that Cu loaded N-doped TiO₂ involves cuprous oxide (Cu₂O) or Cu hydroxides, Fe loaded N-doped TiO₂ involves clusters containing Fe–O bonds or Fe²⁺ hydroxide [41], and Pt loaded N-doped TiO₂ involves Pt⁴⁺/Pt²⁺ species [36]. The redox potentials of co-catalysts such as V (+IV/+V), Fe (+II/+III), Cu (+I/+II), and Pt (+III/+IV) were in the range of circa +0.6 to +1.0 V vs. SHE, while the multi-electron reduction of O₂ leads to the formation of active oxygen species via O₂ + 2H⁺ + 2e⁻ / H₂O₂ ($E_0 = +0.687$ V vs. SHE). Therefore, the co-catalysts, such as Pt, Fe, Cu, and V species, enhance the photocatalytic activity due to the effective electron transfer to O₂ (O₂ reduction), resulting in the formation of active oxygen species.

Several kinds of metallic salts for co-catalyst

Figure 9. Photocatalytic activities for the decomposition of acetic acid under visible light irradiation ($\lambda > 420 \text{ nm}$) on N-doped TiO₂, modified by various kinds of metal species as co-catalysts. Each metal salt used in this study is shown [40].

2.4. C₃N₄-Modified TiO₂ Compared with N-doped TiO₂

Several nitrogen sources such as urea, cyanamid, cyanuric acid, and melamine were employed for the preparation of N-containing TiO₂ photocatalyst, i.e., the TiO₂ surface is modified with polymerized carbon nitride (C₃N₄) [42–51]. The structures of the C, N-species strongly depend on their concentrations. If the C, N species are present in only a small amount, they act as a molecular photosensitizer. At higher amounts they form a C₃N₄ crystalline semiconductor, which chemically binds to TiO₂. The C₃N₄–TiO₂ was systematically synthesized by thermal condensation of cyanuric acid on the TiO₂ surface [51]. In fact, H₂ was evolved from TEA aq. on the C₃N₄–TiO₂ photocatalyst under visible light irradiation, while the N-doped TiO₂ did not exhibit H₂ production. From characterization of C₃N₄–TiO₂ by Fourier transformed-infrared (FT-IR), XPS, electrochemical measurements, and DFT calculations, the band structures and photo-induced charge separation mechanisms were demonstrated (Figure 10). The C₃N₄–TiO₂ was found to exhibit photo-induced charge separation through the hetero-coupling of semiconductors between C₃N₄ and TiO₂ on the surface. On the other hand, N-doped TiO₂ was photo-sensitized by bulk impurity of the N-doping. It can be assumed that many oxygen vacancies promoted the charge recombination, resulting in weak reduction power in the N-doped TiO₂.

Figure 10. Photo-induced charge separation on the C₃N₄ deposited TiO₂ surface [51].

3. Plasmonic Au NPs Modified TiO₂

3.1. What Is Localized Surface Plasmon Resonance (LSPR)?

Localized surface plasmon resonance (LSPR) is an optical phenomenon generated by light when it interacts with conductive nanoparticles (NPs) that are smaller than the incident wavelength. The LSPR is induced by the collective oscillations of delocalized electrons in response to an external electric field. The resonance wavelength strongly depends on the size and shape of the NPs, the interparticle distance, and the dielectric property of the surrounding medium. The Au and Ag NPs exhibit unique plasmon absorption [52,53]. The plasmonic Ag NPs are considered to be unstable under illumination, and could be applicable to multi-colored rewritable devices. In this section, we focused on stable plasmonic Au NPs exploited for a visible-light-sensitive photovoltaic fuel cell or photocatalyst [54,55].

3.2. Preparation and Characterization of Au–TiO₂ Photocatalyst

3.2.1. Photodeposition (PD) Methods

By using the photocatalysis of TiO₂, metallic Au was deposited on the TiO₂ surface, accompanied by the oxidation of methanol [56,57] or ethanol [58]. Typically, TiO₂ powder was suspended in a 50 vol. % aqueous methanol in the presence of HAuCl₄·6H₂O, purged of air with argon. The suspension was photoirradiated with UV light under magnetic stirring. The temperature of the suspension during photoirradiation was maintained at 298K. The Au/TiO₂ photocatalyst was centrifuged, washed with distilled water, dried at 393K, and ground in an agate mortar.

3.2.2. Colloid Photodeposition Operated in the Presence of a Hole Scavenger (CPH)

Colloidal Au NPs were prepared using the method reported by Frens [59]. In brief, mixtures of an aqueous tetrachloroauric acid (HAuCl₄) solution and sodium citrate were heated and boiled for 1 h. The color of the solution changed from deep blue to deep red. The citrate plays a role in the reduction of Au ions, and the capping agent in suppressing the aggregation of Au NPs. The suspension of TiO₂ in an aqueous solution of colloidal Au NPs and oxalic acid was then photo-irradiated at λ > 300 nm at 298 K under argon (Ar). The solids were recovered, washed, and dried to produce Au–TiO₂. Details are given in Reference [60].

Deposition–precipitation (DP) methods were employed for the deposition of a gold (III) species on the TiO₂ surface [61,62]. The [AuCl(OH)₃][–], main species present at pH 8, adjusted by NaOH aq., reacts with hydroxyl groups of the TiO₂ surface to form a grafted hydroxyl–gold compound. The catalyst was then recovered, filtered, washed with deionized water, and dried. Finally, the powder was calcined at ~473–673 K in air.

3.2.4. Characterization of the Au-TiO₂ Photocatalyst

The Au–TiO₂ photocatalysts were typically characterized by the transmittance electron microscope (TEM) for the particle sizes, and UV-vis absorption for optical properties (See Table 2).

Entry	Au Deposition Methods	Particle Sizes/nm	Top Peak/nm	Ref.
1	PD	~10–60	~530–610	[56–58]
2	СРН –	~12–14	~550–560	[60,63–66]
		13	~550–620	[67]
3	DP –	~2–6	~550–560	[61]
		< 5	550	[68–70]

Table 2. Particle sizes of Au nanoparticles (NPs) and optical properties of the Au–TiO₂ prepared by several techniques.

Kowalska et al. [56,57] reported that Au–TiO₂ photocatalysts with different Au particle sizes (~10–60 nm) were prepared by photo-deposition (entry 1). The particle sizes of Au strongly depend on the particle sizes of the TiO₂ polycrystalline structure. The top peak of plasmonic absorption was in the range of ~530–610 nm, depending on the particle sizes of the Au NPs. Tanaka and Kominami et al. [60,63–66] reported unique CPH methods for the preparation of Au-TiO₂ (entry 2). The particle sizes were uniformed to be ~12–14 nm, which exhibits plasmonic absorption at ~550–560 nm. Thus, colloidal Au NPs were successfully loaded onto TiO₂ without change in the original particle size. Furthermore, the top peak of Au plasmon absorption was found to extend towards 620 nm by simple calcinations of the samples. This phenomenon is due to high contact area between TiO₂ and Au NPs without change of particle size [66]. Additionally, Naya et al. [67,68] and Shiraishi et al. [69] employed precipitation deposition methods to deposit small Au NPs (~2–6 nm) on TiO₂ (entry 3).

3.3. Application of LSPR of Au–TiO₂ to Several Photocatalytic Reactions

Au NPs deposited on TiO₂ have been used as visible-light-responsive photocatalysts for several chemical reactions: decomposition of VOCs, selective oxidation of an aromatic alcohol, direct water splitting, H₂ formation from sacrificial aqueous solutions, and reduction of organic compounds (see Table 3). Several research groups concluded that photocatalytic activities are induced by LSPR of the Au NPs. Some research indicates that small Au NPs (~5 nm) effectively work for the reactions [61,69]. Tanaka and Kominami et al. suggest that two types of Au particles of different sizes loaded onto TiO₂ exhibit different functionalities. That is, the larger Au particles contribute to strong light absorption, and the smaller Au particles act as a co-catalyst for H₂ evolution [63].

Entry	Photocatalytic Reactions	Au Deposition Methods	References
1	oxidations of 2-propanol and ethanol oxidation of formic acid	PD CPH	[56–58] [60]
2	oxidation of thiol to disulfide	DP	[67]
	oxidation of amine to imine	DP	[68]
	oxidation of aromatic alcohol to aldehyde	СРН	[66]
		DP	[69]
	oxidation of benzene to phenol	PD	[70]
3	H ₂ formation from alcohols	СРН	[63,71]
	water splitting into H_2 and O_2	DP CPH	[61] [64,72]
4	reduction of nitrobenzene to aniline	СРН	[65]

Table 3. Applications to several photocatalytic reactions on the Au–TiO₂ photocatalyst.

3.4. Application to a Photovoltaic Fuel Cell Operating under Visible Light Irradiation

The Au–TiO₂ films were found to exhibit the behavior of a photovoltaic fuel cell [54,55]. An anodic photocurrent was yielded on the Au–TiO₂ film as the visible light was irradiated, while the current was observed neither on a TiO₂ film under visible light irradiation, nor on the Au–TiO₂ film when the light was turned off. The short-circuit photocurrent density (J_{sc}) was strongly influenced by kinds of donors, and the photocurrent efficiency was maximized in the presence of Fe²⁺ ions. Furthermore, the photocurrent action spectra were closely fitted with the absorption spectrum of the Au NPs deposited on the TiO₂ film (See Figure 11).

Figure 11. Short-circuit photocurrent densities [I] vs. apparent formal potential of different donors on the Au–TiO₂ photoanode in acetonitrile/ethylene glycol (v/v 60/40) containing 0.1 M LiNO₃ and 0.1 M donors; IPCE [II] of the Au–TiO₂ film in a N₂-saturated acetonitrile and ethylene glycol (v/v: 60/40) solution containing 0.1 M FeCl₂ and 0.05 M FeCl₃ [55].

3.5. Mechanisms of Charge Separation

The mechanism for the Au plasmon-induced charge separation is shown in Figure 12. Visible light irradiation generates the photo-excited state of the Au NPs by LSPR. The photo-excited electrons are injected into the C.B. of TiO₂, while the holes abstracted electrons from a donor in the solution. The Au NPs behave like an intrinsic semiconductor, and the Fermi levels of Au NPs and TiO₂ are leveled out, resulting in the formation of Schottky barrier at Au–TiO₂ junctions. This band model seems to be similar with dye-sensitized photo-anodic electrodes.

Figure 12. Schematic illustration [I] and its energy band levels [II] for the photo-induced charge separation on the Au–TiO₂ in the presence of donors [55].

Recently, Furube et al. studied the plasmon-induced charge transfer mechanisms between Au NPs and TiO_2 by means of femtosecond visible pump/infrared probe transient absorption spectroscopy [73]. The electron transfer from the Au NPs to the C.B. of TiO_2 was confirmed to occur within 50 fs, and that the electron injection yielded 20–50% upon 550 nm laser excitation.

4. Photo-Induced Interfacial Charge Transfer

4.1. Dye-Sensitized TiO₂ Photocatalysis

Dye sensitized TiO₂ photocatalysis was studied in the late 1990s. The Ru complex, $[Ru(bipy)_3]^{2+}$ grafted on the TiO₂ surface exhibits visible light absorption [74,75]. In this system, the excitation of the Ru complex induces electron transfer via metal–ligand charge transfer (MLCT). The photo-induced electrons are then transferred onto TiO₂, resulting in photocatalytic water splitting to produce H₂. The platinum-chloride-modified TiO₂ system was reported by Kisch et al. [76,77]. Photo-irradiation of Pt(IV) chloride exhibits visible-light absorption to generate the active center, $(Pt^{4+}(Cl^{-})_4 + h\nu \rightarrow Pt^{3+}Cl^0(Cl^{-})_3$. The photo-induced electrons are transferred from Pt³⁺ to C.B. of TiO₂ as reductive sites, while the Cl⁰ work as the oxidative sites, resulting in the redox photocatalytic reactions. Important strategies to develop these types of photocatalysts are to design robust sensitizers adjusted with HOMO-LUMO levels.

4.2. Visible-Light-Responsive TiO₂ Photocatalyst Modified by Phenolic Organic Compounds

Strong interaction of phenolic groups in organic compounds with Ti–OH of the TiO₂ surface probably forms two types of interfacial surface complexes (ISC, Figure 13I), which exhibits visible light absorption via LMCT. The photocatalysis of the ISC is strongly influenced by the electronic structures of the ISC (Figure 13II): the ISC with EWG exhibits strong oxidizability under visible light irradiation, and it can favorably oxidize the TEA, together with H₂ evolution from deaerated TEA aqueous solutions [78]. The visible light response of the ISC is attributed to electronic excitation from the donor levels (0.7 V above V.B.) to the C.B. of TiO₂ (see Figure 14). Therefore, the electronic structures of sensitizers strongly influence the photocatalytic activities. Ikeda et al. [79] demonstrated that a TiO₂ photocatalyst modified with 1,1'-binaphthalene-2,2'-diol (bn(OH)₂) exhibited photocatalytic H₂ evolution from deaerated TEA aq. under visible light irradiation. Kamegawa et al. [80] designed a 2, 3-dihydroxynaphthalene (2,3-DN)-modified TiO₂ photocatalyst for the reduction of nitrobenzene to aminobenzene under visible light irradiation.

Figure 13. Schematic illustration for the formation of two types of ISCs [I], and photocatalytic H₂ evolution [II] from aq. TEA (10 vol. %) on (a) BC/TiO₂, (b) MC/TiO₂, (c) CA/TiO₂, (d) BA/TiO₂, (e) BN/TiO₂, and (f) TN/TiO₂ [78]. BC: 4-*t*-butyl catechol, MC: 3-methoxy catechol, CA: catecol, BA: 2,3-dihydroxy benzoic acid; BN: 3,4-dihydroxy benzonitrile; TN: tiron.

Figure 14. Schematic illustration of photo-induced charge separation on the BN/TiO_2 for H₂ evolution from TEA aq. in the presence of Pt as co-catalyst under visible light irradiation [78].

On the other hand, the phenolic compounds were degraded on the TiO₂ in the presence of O₂ under visible light ($\lambda > 420$ nm) illumination, producing Cl⁻ and CO₂ [81]. The ISC formed by the interaction of phenolic compounds with TiO₂ exhibited self-degradation. It was proposed that an electronic transition occurs from the ISC to the C.B. of TiO₂ to form active oxygen species, which also participate in the oxidative degradation of phenolic compounds.

4.3. Interfacial-Surface-Complex-Mediated Visible-Light-Sensitive TiO₂ Photocatalysts

The interfacial surface complex (ISC)-mediated visible-light-sensitive TiO_2 photocatalyst was applied to selective oxidation of several aromatic alcohols [82–88]. Unlike to the ISC in Figure 14, reactant molecules adsorbed onto the TiO_2 surface (ISC) is activated under visible-light irradiation, and they are converted into products. Figure 15 shows reaction time profiles for the oxidation of

benzyl alcohol in an acetonitrile solution suspended with TiO₂ photocatalyst in the presence of O₂ under visible light irradiation ($\lambda > 420$ nm). This reaction does not proceed without TiO₂ or irradiation. It was found that the amount of benzyl alcohol decreased with an increase in the irradiation time, while the amount of benzaldehyde increased. Neither benzoic acid nor CO₂ were formed as oxidative products. The yield of benzaldehyde reached circa 95%, and the carbon balance in the liquid phase was circa 95% after photo-irradiation for 4 h.

Figure 15. Selective oxidation of benzyl alcohol on TiO_2 (50 mg) under visible light irradiation [82]. The initial amount of benzyl alcohol was 50 µmol. Amounts of: benzyl alcohol (a); benzaldehyde (b); benzoic acid (c); CO_2 (d); and percentage of total organic compounds in solution (e).

Photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes was carried out with TiO_2 under visible light irradiation. Benzyl alcohol and its derivatives substituted by $-OCH_3$, -Cl, $-NO_2$, $-CH_3$, $-CF_3$, and $-C(CH_3)_3$ groups were successfully converted to corresponding aldehydes with a high conversion and high selectivity on TiO_2 , while no other products were observed (See Table 4). However, the phenolic compound (entry 9) was deeply oxidized, since it strongly adsorbed on the TiO_2 surface [82].

	R2	$\begin{array}{c} \begin{array}{c} & \\ & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\xrightarrow{P_2}$ -light (4h)	RI
Entry	R ₁	R ₂	Conversion (%)	Selectivity (%)
1	Н	Н	> 99	> 99
2	Н	$C(CH_3)_3$	> 99	> 99
3	Н	OCH ₃	> 99	> 99
4	Н	CH ₃	> 99	> 99
5	Н	Cl	> 99	> 99
6	Н	NO ₂	> 99	> 99
7	Н	CF ₃	> 99	> 99
8	CH ₃	Н	> 99	> 99
9	Н	OH	> 85	23

Table 4. Chemoselective photocatalytic oxidation of different kinds of benzylic alcohols on TiO₂ [82].

4.3.1. What Is the Origin of the Visible Light Response?

The interaction of benzyl alcohol with TiO_2 was analyzed by FT-IR spectroscopy (See Figure 16). Characteristic features of the ISC are as follows: (i) a remarkable downward negative band at 3715 cm^{-1} attributed to the O–H stretching of the terminal OH group; (ii) a new band appeared at circa 1100 cm⁻¹,

which is attributed to the C–O stretching of the alkoxide species formed by the interaction of benzyl alcohol with TiO_2 , while that of benzyl alcohol by itself is 1020 cm⁻¹.

Figure 16. FT-IR spectra [I] of benzyl alcohol by itself and benzyl alcohol adsorbed on TiO₂; and [II] their peak identification [82].

When the TiO₂ was treated by diluted HF (aq), the IR band at 3715 cm⁻¹ on the HF–TiO₂ drastically decreased, while the photocatalytic activity significantly decreased. The active sites were confirmed to be alkoxide by the interaction of benzyl alcohol with the terminal OH groups of TiO₂.

 TiO_2 by itself exhibited absorption only in the UV region, which is attributed to the charge transition from V.B. to C.B. When the benzyl alcohol was adsorbed on TiO_2 , absorption in the visible region could be observed. This absorption in the visible light region is assignable to the ISC through the LMCT (See Figure 17). The action spectra of apparent quantum yield (AQY) plots were fitted with the photo-absorption of TiO_2 -adsorbed benzyl alcohol, suggesting that visible light absorption directly participated in the photocatalytic reactions.

Figure 17. UV-vis absorption spectra of TiO_2 (a), TiO_2 adsorbed with benzyl alcohol (b), and apparent quantum yield (AQY) for the formation of benzaldehyde (c); and schematic illustration of photo-induced charge transfer through LMCT in the alkoxide [82].

DFT calculations [87] indicated the interaction of benzyl alcohol with surface hydroxyl groups on the TiO_2 surface, resulting in the formation of alkoxide species. The electron density contour maps for

the alkoxide species are shown in Figure 18. The orbital #212 at -0.80 eV forms the V.B. of TiO₂, while #218 at +2.25 eV forms the C.B. One type of surface state consisting of the orbital (#215) originates with the alkoxide species ([Ti]–O–CH₂–ph) hybridized with the O2p AOs in the V.B. of the TiO₂. The energy gap between #215 and #218 (2.8 eV) was confirmed to be the origin for the visible light response.

Figure 18. Photo-induced electron transfer from the hybridized orbital to the C.B. of TiO₂ under visible light irradiation [87]. Density maps of V.B., C.B., and hybridized orbital are shown here.

4.3.2. What Makes the High Selectivity for the Photocatalytic Reactions?

It was observed that benzyl alcohol is adsorbed on TiO_2 more favorably than benzaldehyde in a mixture of benzyl alcohol and benzaldehyde under dark conditions. This result indicates that the interaction between benzaldehyde and TiO_2 is fairly weak. According to DFT calculations [87,88], the interaction of benzyl alcohol with the TiO_2 surface formed a hybridized orbital, while benzaldehyde did not form orbital mixing. Therefore, once benzaldehyde was produced by the oxidation of benzyl alcohol, benzaldehyde was immediately released into the bulk solution, and was not oxidized further to benzoic acid or CO_2 .

4.3.3. Reaction Mechanisms behind the Selective Photocatalytic Oxidation of Benzyl Alcohol

The photocatalytic activities for the oxidation of benzyl alcohol or α , α -d2 benzyl alcohol were investigated. The kinetic isotope effect (KIE) [= k_{C-H}/k_{CD}] was estimated to be 3.9 at 295 K. This result suggests that the process for the α -deprotonation is the rate determining step (RDS) for the overall reaction. From the experimental and theoretical studies by DFT calculations, one of the favorable reaction paths is depicted in Figure 19. When benzyl alcohol interacts with Ti–OH of the TiO₂, the alkoxide species (ISC) is formed on a Ti site (3). The ISC was photo-excited under visible light irradiation via LMCT of the ISC, which induces holes (h⁺) and electrons (e⁻). Subsequently, the electrons are transferred to O₂ to form superoxide anions (the bonding distance between O–O becomes longer), which induces α -deprotonation from another benzyl alcohol to form benzaldehyde (7-8TS), resulting in regeneration of the surface terminal OH groups. The consecutive generation of the terminal OH groups would, thus, be one of the key factors for the photocatalytic reactions.

Figure 19. Possible reaction path for the selective oxidation of benzyl alcohol in the presence of O_2 on the TiO₂ under visible light irradiation [87].

4.4. Photocatalytic Oxidation of Benzyl Amine into Imine

Imines are important intermediates for the synthesis of pharmaceuticals and agricultural chemicals. Selective photocatalytic oxidation of benzyl amine into N-benzylidenebenzylamine takes place in the presence of O_2 on the TiO₂ at room temperature (Scheme 1) [89,90]. Several kinds of benzylic amines were examined, and they were converted into the corresponding imines, yielding circa 38–94% [89]. The origin of the visible light response is due to formation of amine oxide (ISC) through the interaction of benzylic amine onto the surface of TiO₂, and the ISC exhibits electronic transition from the localized N 2p orbitals of the amine oxide (ISC) to the C.B. of TiO₂. The photo-induced redox catalysis produces benzaldehyde in the presence of O_2 . Subsequently, the condensation reaction of benzaldehyde with another benzyl amine forms N-benzylidenebenzylamine under dark conditions.

benzyl amine

N-benzylidenebenzylamine

Scheme 1. Selective oxidation of benzyl amine into N-benzylidenebenzylamine on the TiO_2 photocatalyst under visible light irradiation.

5. Conclusions

This review focused on some fundamental issues behind the visible-light-sensitive TiO_2 photocatalysts, highlighting the bulk and/or surface electronic structures modified by doping with nitrogen anions; plasmonic Au NPs, and interfacial surface complexes (ISC) and their related photocatalysts. Tailoring the interface and bulk properties, including surface band bending, sub-band structure, surface state distribution, and charge separation, significantly reflects on the photocatalysis. We hope that this review has provided some useful contributions for the future design and development of novel photocatalytic systems employing TiO_2 as well as non- TiO_2 semiconductor materials with nanoscale levels. The applications of such photocatalytic systems could not only convert

unlimited solar energy into chemical energy, but also protect our environment, leading to sustainable green chemistry.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

NPs	nanoparticles
ISC	interfacial surface complex
VOCs	volatile organic compounds
V.B.	valence band
C.B.	conduction band
XPS	X-ray photoelectron spectroscopy
EPR	electron paramagnetic resonance
UV-vis	Ultraviolet-visible
LSPR	localized surface plasmon resonance
PD	photodeposition
СРН	colloid photodeposition by hole scavenger
DP	deposition precipitation
TEM	transmittance electron microscope
J _{SC}	short-circuit photocurrent
IPCE	incident photo to current efficiency
DFT	density functional theory
MLCT	metal to ligand charge transfer
FT-IR	Fourier transformed-infrared
KIE	kinetic isotope effect
LMCT	ligand to metal charge transfer

References

- Honda, K.; Fijishima, A. Electrochemical Photolysis of Water at a Semiconductor Electrode. *Nature* 1972, 238, 37–38.
- 2. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. *Nature* **1979**, 277, 637–638. [CrossRef]
- 3. Kamat, P.V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. *Chem. Rev.* **1993**, *93*, 267–300.
- 4. Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341–357.
- 5. Hoffman, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. *Chem. Rev.* **1995**, *95*, 69–96. [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, A. Titanium dioxide photocatalysis. J. Photochem. Photobio. C Photochem. Rev. 2000, 1, 1–21. [CrossRef]
- 7. Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. *J. Catal.* **2003**, *216*, 505–516. [CrossRef]
- 8. Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. *Chem. Rev.* **2007**, 197, 2891–2959. [CrossRef]
- 9. Shiraishi, Y.; Hirai, T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 157–170. [CrossRef]
- 10. Palmisano, G.; García-López, E.; Marcì, G.; Loddo, V.; Yurdakal, S.; Augugliaro, V.; Palmisano, L. Advances in selective conversions by heterogeneous photocatalysis. *Chem. Commun.* **2010**, *46*, 7074–7089. [CrossRef]
- 11. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO₂ Photocatalysis: Mechanisms and Materials. *Chem. Rev.* **2014**, *114*, 9919–9986. [CrossRef]
- 12. Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium dioxide-based nanomaterials for: Photocatalytic fuel generations. *Chem. Rev.* **2014**, *114*, 9987–10043. [CrossRef]

- 13. Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visiblelight-sensitive photocatalyst: Designs, developments, and prospects. *Chem Rev.* **2014**, *114*, 9824–9852. [CrossRef]
- Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. *Chem. Soc. Rev.* 2014, 43, 473–486. [CrossRef]
- 15. Sang, L.; Zhao, Y.; Burda, C. TiO₂ Nanoparticles as Functional Building Blocks. *Chem. Rev.* **2014**, 114, 9283–9318. [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. *Chem. Rev.* 2017, 117, 11302–11336. [CrossRef]
- 17. Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R.S. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. *Chem. Rev.* 2017, 117, 1445–1514. [CrossRef]
- Prakash, J.; Sun, S.; Swart, H.C.; Gupta, R.K. Noble metals-TiO₂ nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. *Appl. Mater. Today* 2018, 11, 82–135. [CrossRef]
- 19. Wang, W.; Tadé, M.O.; Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. *Prog. Mater. Sci.* **2018**, *92*, 33–63. [CrossRef]
- 20. Yamashita, H.; Mori, K.; Kuwahara, Y.; Kamegawa, T.; Wen, M.; Verma, P.; Che, M. Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. *Chem. Soc. Rev.* **2018**, *47*, 8072–8096. [CrossRef]
- Ahmed, A.Y.; Kandiel, T.A.; Oekermann, T.; Bahnemann, D. Photocatalytic Activities of Different Well-defined Single Crystal TiO₂Surfaces: Anatase versus Rutile. J. Phys. Chem. Lett. 2011, 2, 2461–2465. [CrossRef]
- 22. Tanaka, K.; Capule, M.F.V.; Hisanaga, T. Effect of Crystallinity of TiO₂ on Its Photo-catalytic Action. *Chem. Phys. Lett.* **1991**, *187*, 73–76. [CrossRef]
- 23. Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO₂ films. *Sci. Rep.* **2014**, *4*, 4043–4050. [CrossRef]
- 24. Gordon, T.R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R.T.; Fornasiero, P.; Murray, C.B. Nonaqueous Synthesis of TiO₂ Nanocrystals Using TiF₄ to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. *J. Am. Chem. Soc.* **2012**, *134*, 6751–6761. [CrossRef]
- 25. Zhang, Z.; Wang, C.-C.; Zakaria, R.J.; Ying, Y. Role of Particle Size in Nanocrystalline TiO₂-Based Photocatalysts. *J. Phys. Chem. B* **1998**, *102*, 10871–10878. [CrossRef]
- Anpo, M.; Ichihashi, Y.; Takeuchi, M.; Yamashita, H. Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation. *Res. Chem. Intermed.* 1998, 24, 143–149. [CrossRef]
- 27. Sato, S. Photocatalytic activity of NO_x-doped TiO₂ in the visible light region. *Chem. Phys. Lett.* **1986**, 123, 126–128. [CrossRef]
- Asahi, R.; Morikawa, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [CrossRef]
- 29. Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_{2-x}N_x Powders. *J. Phys. Chem. B* **2003**, *107*, 5483–5486. [CrossRef]
- 30. Shin, C.; Bugli, G.; Djega-Mariadassou, G. Preparation and characterization of titanium oxynitrides with high specific surface areas. *J. Solid State Chem.* **1991**, *95*, 145–155. [CrossRef]
- Livraghi, S.; Paganini, M.C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light. J. Am. Chem. Soc. 2006, 128, 15666–15671. [CrossRef]
- Wang, J.; Zhu, W.; Zhang, Y.; Liu, S. An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: Visible-light-induced photodecomposition of methylene blue. J. Phys. Chem. C 2007, 111, 1010–1014. [CrossRef]
- 33. Higashimoto, S.; Azuma, M. Photo-induced charging effect and electron transfer to the redox species on nitrogen-doped TiO₂ under visible light irradiation. *Appl. Catal. B Environ.* **2009**, *89*, 557–562. [CrossRef]
- Wang, H.; Hu, Y. The Photocatalytic Property of Nitrogen-Doped TiO₂ Nanoball Film. *Int. J. Photoenergy* 2013. [CrossRef]
- 35. Diwald, O.; Thompson, T.L.; Zubkov, T.; Goralski, E.G.; Walck, S.D.; Yates, J.T., Jr. Photochemical Activity of Nitrogen-Doped Rutile TiO₂(110) in Visible Light. *J. Phys. Chem. B* **2004**, *108*, 6004–6008. [CrossRef]

- 36. Higashimoto, S.; Ushiroda, Y.; Azuma, M.; Ohue, H. Synthesis, characterization and photocatalytic activity of N-doped TiO₂ modified by platinum chloride. *Catal. Today* **2008**, *132*, 165–169. [CrossRef]
- Higashimoto, S.; Ushiroda, Y.; Azuma, M. Mechanism for enhancement of visible light response on nitrogen-doped TiO₂ by modification with vanadium species. *J. Nanosci. Nanotechnol.* 2010, 10, 246–251. [CrossRef]
- Nakamura, R.; Tanaka, T.; Nakato, Y. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO₂ Film Electrodes. *J. Phys. Chem. B* 2004, *108*, 10617–10620. [CrossRef]
- Tang, J.; Cowan, A.J.; Durrant, J.R.; Klug, D.R. Mechanism of O₂ production from water splitting: Nature of charge carriers in nitrogen doped nanocrystalline TiO₂ films and factors limiting O₂ production. *J. Phys. Chem. C* 2011, *115*, 3143–3150. [CrossRef]
- Higashimoto, S.; Tanihata, W.; Nakagawa, Y.; Azuma, M.; Ohue, H.; Sakata, Y. Effective photocatalytic decomposition of VOC under visible-light irradiation on N-doped TiO₂ modified by vanadium species. *Appl. Catal. A Gen.* 2008, 340, 98–104. [CrossRef]
- 41. Morikawa, T.; Ohwaki, T.; Suzuki, K.; Moribe, S.; Tero-Kubota, S. Visible-light-induced photocatalytic oxidation of carboxylic acids and aldehydes over N-doped TiO₂ loaded with Fe, Cu or Pt. *Appl. Catal. B Environ.* **2008**, *83*, 56–62. [CrossRef]
- Sreethawong, T.; Laehsalee, S.; Chavadej, S. Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO₂ for photocatalytic H₂ production under visible light irradiation. *Catal. Commun.* 2009, *10*, 538–543. [CrossRef]
- Dolat, D.; Quici, N.; Kusiak-Nejman, E.; Morawski, A.W.; Puma, G.L. One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N,C-TiO₂) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. *Appl. Catal. B Environ.* 2012, *115*, 81–89. [CrossRef]
- 44. Virkutyte, J.; Varma, R.S. Visible light activity of Ag-loaded and guanidine nitrate-doped nano-TiO₂: Degradation of dichlorophenol and antibacterial properties. *RSC Adv.* **2012**, *2*, 1533–1539. [CrossRef]
- 45. Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. Synthesis and Characterization of Nitrogen-Doped TiO₂Nanophotocatalyst with High Visible Light Activity. *J. Phys. Chem. C* **2007**, *111*, 6976–6982. [CrossRef]
- 46. Yang, X.; Cao, C.; Erickson, L.; Hohn, K.; Maghirang, R.; Klabunde, K. Synthesis of visible-light-active TiO₂-based photocatalysts by carbon and nitrogen doping. *J. Catal.* **2008**, *260*, 128–133. [CrossRef]
- 47. Mitoraj, D.; Kisch, H. On the Mechanism of Urea–Induced Titania Modification. *Chem. Eur. J.* 2010, *16*, 261–269. [CrossRef]
- Chai, B.; Peng, T.; Mao, J.; Li, K.; Zan, L. Graphitic carbon nitride (g-C₃N₄)-Pt-TiO₂ nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. *Phys. Chem. Chem. Phys.* 2012, 14, 16745–16752. [CrossRef]
- Han, C.; Wang, Y.; Lei, Y.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. *In situ* synthesis of graphitic-C₃N₄ nanosheet hybridized N-doped TiO₂ nanofibers for efficient photocatalytic H₂ production and degradation. *Nano Res.* 2015, *8*, 1199–1209. [CrossRef]
- 50. Yan, H.; Yang, H. TiO₂-g-C₃N₄ composite materials for photocatalytic H₂ evolution under visible light irradiation. *J. Alloy. Comp.* **2010**, *509*, L26–L29. [CrossRef]
- Higashimoto, S.; Hikita, K.; Azuma, M.; Yamamoto, M.; Takahashi, M.; Sakata, Y.; Matsuoka, M.; Kobayashi, H. Visible Light-Induced Photocatalysis on Carbon Nitride Deposited Titanium Dioxide: Hydrogen Production from Sacrificial Aqueous Solutions. *Chin. J. Chem.* 2017, *35*, 165–172. [CrossRef]
- 52. Zhang, Q.; Gangadharan, D.T.; Liu, Y.; Xu, Z.; Chaker, M.; Ma, D. Recent advancements in plasmon-enhanced visible light-driven water splitting. *J. Materiomics* **2017**, *3*, 33–50. [CrossRef]
- 53. Ohko, Y.; Tatsuma, T.; Fujii, T.; Naoi, K.; Niwa, C.; Kubota, Y.; Fujishima, A. Multicolour photochromism of TiO₂ films loaded with silver nanoparticles. *Nat. Mater.* **2003**, *2*, 29–31. [CrossRef] [PubMed]
- 54. Tian, Y.; Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO₂. *Chem. Commun.* **2004**, *0*, 1810–1811. [CrossRef] [PubMed]
- 55. Tian, Y.; Tatsuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO₂ Films Loaded with Gold Nanoparticles. *J. Am. Chem. Soc.* **2005**, 127, 7632–7637. [CrossRef] [PubMed]
- 56. Kowalska, E.; Abe, R.; Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: Action spectrum analysis. *Chem. Commun.* **2009**, *0*, 241–243. [CrossRef] [PubMed]

- 57. Kowalska, E.; Mahaney, O.O.P.; Abe, R.; Ohtani, B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. *Phys. Chem. Chem. Phys.* **2010**, *12*, 2344–2355. [CrossRef] [PubMed]
- 58. Kolinko, P.A.; Selishchev, D.S.; Kozlov, D.V. Visible Light Photocatalytic Oxidation of Ethanol Vapor on Titanium Dioxide Modified with Noble Metals. *Theor. Exp. Chem.* **2015**, *51*, 96–103. [CrossRef]
- 59. Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. *Nat. Phys. Sci.* **1973**, 241, 20–22. [CrossRef]
- Tanaka, A.; Ogino, A.; Iwaki, M.; Hashimoto, K.; Ohnuma, A.; Amano, F.; Ohtani, B.; Kominami, H. Gold–Titanium(IV) Oxide Plasmonic Photocatalysts Prepared by a Colloid-Photodeposition Method: Correlation Between Physical Properties and Photocatalytic Activities. *Langmuir* 2012, 28, 13105–13111. [CrossRef]
- 61. Silva, C.G.; Juarez, R.; Marino, T.; Molinari, R.; Garcia, H. Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. *J. Am. Chem. Soc.* **2011**, *133*, 595–602. [CrossRef] [PubMed]
- Zanella, R.; Delannoy, L.; Louis, C. Mechanism of deposition of gold precursors onto TiO₂ during the preparation by cation adsorption and deposition–precipitation with NaOH and urea. *Appl. Catal. A Gen.* 2005, *291*, 62–72. [CrossRef]
- 63. Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Preparation of Au/TiO₂ with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light. *ACS Catal.* **2013**, *3*, 79–85. [CrossRef]
- Tanaka, A.; Nakanishi, K.; Hamada, R.; Hashimoto, K.; Kominami, H. Simultaneous and Stoichiometric Water Oxidation and Cr(VI) Reduction in Aqueous Suspensions of Functionalized Plasmonic Photocatalyst Au/TiO₂-Pt under Irradiation of Green Light. ACS Catal. 2013, 3, 1886–1891. [CrossRef]
- Tanaka, A.; Nishino, Y.; Sakaguchi, S.; Yoshikawa, T.; Imamura, K.; Hashimoto, K.; Kominami, H. Functionalization of a plasmonic Au/TiO₂ photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. *Chem. Commun.* 2013, 49, 2551–2553. [CrossRef] [PubMed]
- Tanaka, A.; Hashimoto, K.; Kominami, H. A very simple method for the preparation of Au/TiO₂ plasmonic photocatalysts working under irradiation of visible light in the range of 600–700 nm. *Chem. Commun.* 2017, 53, 4759–4762. [CrossRef]
- 67. Naya, S.; Teranishi, M.; Isobe, T.; Tada, H. Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium(IV) dioxide. *Chem. Commun.* **2010**, *46*, 815–817. [CrossRef]
- 68. Naya, S.; Kimura, K.; Tada, H. One-Step Selective Aerobic Oxidation of Amines to Imines by Gold Nanoparticle-Loaded Rutile Titanium(IV) Oxide Plasmon Photocatalyst. *ACS Catal.* **2013**, *3*, 10–13. [CrossRef]
- 69. Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold Nanoparticles Located at the Interface of Anatase/Rutile TiO₂ Particles as Active Plasmonic Photocatalysts for Aerobic Oxidation. *J. Am. Chem. Soc.* **2012**, *134*, 6309–6315. [CrossRef]
- Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.-H. Facile *in situ* synthesis of visible-light plasmonic photocatalysts M@TiO₂ (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. *J. Mater. Chem.* 2011, *21*, 9079–9087. [CrossRef]
- Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Preparation of Au/TiO₂ exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation from organic and inorganic compounds under irradiation of visible light. *Catal. Sci. Technol.* **2012**, *2*, 907–909. [CrossRef]
- Tanaka, A.; Teramura, K.; Hosokawa, S.; Kominami, H.; Tanaka, T. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO₂ photocatalyst with metal co-catalysts. *Chem. Sci.* 2017, *8*, 2574–2580. [CrossRef] [PubMed]
- Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO₂ Nanoparticles. *J. Am. Chem. Soc.* 2007, 129, 14852–14853. [CrossRef] [PubMed]
- 74. Borgarello, E.; Kiwi, J.; Pelizzetti, E.; Visca, M.; Grätzel, M. Photochemical cleavage of water by photocatalysis. *Nature* **1981**, *289*, 158–160. [CrossRef]
- 75. Vinodgopal, K.; Hua, X.; Dahlgren, R.L. Photochemistry of Ru(bpy)₂(dcbpy)²⁺ on A1₂O₃ and TiO₂ surfaces. an insight into the mechanism of photosensitization. *J. Phys. Chem.* **1995**, *99*, 10883–10889. [CrossRef]

- Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. *Angew. Chem. Int. Ed.* 2003, 42, 4908–4911. [CrossRef] [PubMed]
- 77. Macyk, W.; Burgeth, G.; Kisch, H. Photoelectrochemical properties of platinum(IV) chloride surface modified TiO₂. *Photochem. Photobiol. Sci.* **2003**, *2*, 322–328. [CrossRef]
- Higashimoto, S.; Nishi, T.; Yasukawa, M.; Azuma, M.; Sakata, Y.; Kobayashi, H. Photocatalysis of titanium dioxide modified by interfacial surface complexes (ISC) with different substituted groups. *J. Catal.* 2015, 329, 286–290. [CrossRef]
- Ikeda, S.; Abe, C.; Torimoto, T.; Ohtani, B. Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation. *J. Photochem. Photobiol. A Chem.* 2003, 160, 61–67. [CrossRef]
- 80. Kamegawa, T.; Seto, H.; Matsuura, S.; Yamashita, H. Preparation of hydroxynaphthalene modified TiO₂ via formation of surface complexes and their applications in the photocatalytic reduction of nitrobenzene under visible-light irradiation. *ACS Appl. Mater. Interfaces* **2012**, *4*, 6635–6639. [CrossRef]
- 81. Kim, S.; Choi, W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path. *J. Phys. Chem. B* **2005**, *109*, 5143–5149. [CrossRef] [PubMed]
- 82. Higashimoto, S.; Kitao, N.; Yoshida, N.; Sakura, T.; Azuma, M.; Ohue, H.; Sakata, Y. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. *J. Catal.* **2009**, *266*, 279–285. [CrossRef]
- 83. Higashimoto, S.; Okada, K.; Morisugi, T.; Azuma, M.; Ohue, H.; Kim, T.-H.; Matsuoka, M.; Anpo, M. Effect of surface treatment on the selective photocatalytic oxidation of benzyl alcohol infrared study of hydroxy groups on coordinative defect sites. *Top. Catal.* **2010**, *53*, 578–583. [CrossRef]
- 84. Higashimoto, S.; Okada, K.; Azuma, M.; Ohue, H.; Terai, T.; Sakata, Y. Characteristics of the charge transfer surface complex on titanium(IV) dioxide for the visible light induced chemoselective oxidation of benzyl alcohol. *RSC Adv.* **2012**, *2*, 669–676. [CrossRef]
- 85. Higashimoto, S.; Suetsugu, N.; Azuma, M.; Ohue, H.; Sakata, Y. Efficient and selective oxidation of benzylic alcohol by O₂ into corresponding aldehydes on a TiO₂ photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity. *J. Catal.* **2010**, *274*, 76–83. [CrossRef]
- Higashimoto, S.; Shirai, R.; Osano, Y.; Azuma, M.; Ohue, H.; Sakata, Y.; Kobayashi, H. Influence of metal ions on the photocatalytic activity: Selective oxidation of benzyl alcohol on iron (III) ion-modified TiO₂, using visible light. *J. Catal.* 2014, 311, 137–143. [CrossRef]
- 87. Kobayashi, H.; Higashimoto, S. DFT study on the reaction mechanisms behind the catalytic oxidation of benzyl alcohol into benzaldehyde by O₂ over anatase TiO₂ surfaces with hydroxyl groups: Role of visible-light irradiation. *Appl. Catal. B Environ.* **2015**, *170*, 135–143. [CrossRef]
- 88. Li, R.; Kobayashi, H.; Guo, J.; Fan, J. Visible-light induced high-yielding benzyl alcohol-to benzaldehyde transformation over mesoporous crystalline TiO₂: A self-adjustable photooxidation system with controllable hole-generation. *J. Phys. Chem. C* **2011**, *115*, 23408–23416. [CrossRef]
- 89. Lang, X.; Ma, W.; Zhao, Y.; Chen, C.; Ji, H.; Zhao, J. Visible-light-induced selective catalytic aerobic oxidation of amines into imines on TiO₂. *Chem. Eur. J.* **2012**, *18*, 2624–2631. [CrossRef]
- 90. Higashimoto, S.; Hatada, Y.; Ishikawa, R.; Azuma, M.; Sakata, Y.; Kobayashi, H. Selective Photocatalytic Oxidation of Benzyl Amine by O₂ into N-Benzylidenebenzylamine on TiO₂ Using Visible Light. *Curr. Org. Chem.* 2013, 17, 2374–2381. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).