Selective catalytic reduction of nitric oxide with propylene over Fe/Beta catalysts under lean-burn conditions

Hao Zhou^{1, *}, MengYao Ge¹, Huishuang Zhao¹, Shiguo Wu¹, MengYu Li ¹, Yaxin Su²

¹ Changzhou Institute of Engineering Technology, Changzhou 213164, PR China

² School of Environmental Science and Engineering, Donghua University, Shanghai
201620, PR China

*Corresponding author: Tel: +86-519-86332216, Fax: +86-519-86332216, E-mail: hzhou@czie.edu.cn

Support information

Fig. S1. XPS spectra of Fe 2p of Fe/Beta catalysts prepared by different methods.

Fig. S2. UV-vis spectra of Fe₂O₃.

Fig. S3. UV-vis spectra with deconvolution method of Fe/Bate catalysts.

Fig. S4. Apparent TOF with total Fe at 200 °C on Fe/Bate catalysts.

Fig. S5. XRD diffractograms of the fresh and aged Fe/Bate catalysts.

Fig. S6. UV-vis spectra with deconvolution method of the fresh and aged Fe/Bate catalysts.

 Table S1 Percentage of Fe species over the fresh and aged Fe/Bate catalysts

Catalyst	$Fe_a(\%)$	Fe_b (%)	Fe_c (%)
Fe/Bate(LIE)-Fresh	65.2	13.5	21.3
Fe/Bate(LIE)-Aged	51.3	20.7	28.0

(a) Isolated Fe³⁺ in tetrahedral and octahedral coordination, (b) Oligomeric Fe_xO_y clusters, (c) Fe₂O₃ nanoparticles.