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Abstract: This paper offers an efficient copper-catalyzed oxidative trifluoromethylation of indoles
with low-cost CF3SO2Na via C–H activation. Notably, the use of a base is crucial for the
trifluoromethylation of indoles. This reaction proceeds efficiently in good to excellent yields and
is tolerance of a broad range of functional groups. Furthermore, melatonin, a medicine for sleep
disorders, is converted to its 2-CF3 analogue in 68% yield. Studies of possible reaction pathways
suggest that this reaction proceeds through a radical process.

Keywords: Cu(II) catalyst; Langlois reagent; trifluoromethylation; indole; radical reaction

1. Introduction

The trifluoromethyl group is a privileged motif of medicinal chemistry, as it can dramatically
improve the binding selectivity, solubility, lipophilicity, and catabolic stability of drug candidates [1–5].
As a consequence, the development of new methods for the synthesis of trifluoromethylated arenes and
heteroarenes has received substantial attention [6–13]. In 2010, Sodeoka reported a Cu(OAc)-catalyzed
trifluoromethylation of indoles using expensive and sensitive Togni reagent as the trifluoromethyl
source (Scheme 1a) [14]. However, this method is limited to dry solvents and expensive trifluoromethyl
sources, and it requires long reaction times. Therefore, the identification of an alternative inexpensive
and readily available trifluoromethylation agent is actively being pursued in current research [15–21].
A seminal advance in this area was developed by Langlois who reported a novel trifluoromethyl
source, CF3SO2Na (Langlois reagent). Although the study was restricted to electron-rich subtrates,
it greatly extended the field of trifluoromethylation chemistry [22]. Subsequently, Li et al. described
the photoinduced trifluoromethylation of arenes with CF3SO2Na as the trifluoromethyl source
(Scheme 1b) [23]. Very recently, the Baran group also extended the substrate scope to heterocycles
with the trifluoromethyl salt in the absence of a metal catalyst; however, the reaction took 3–24 h
(Scheme 1c) [24].

Based on these procedures, we envisioned that CF3SO2Na is suitable for the trifluoromethylation
of substituted indoles. Herein, we report an enhanced oxidative trifluoromethylation of unactivated
indoles through a radical-mediated mechanism with commercially available CF3SO2Na as the
trifluoromethyl source and KF as the base (Scheme 1d).
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2. Results

At the start of our work, the experiment of 3-methyl-1H-indole (1a) with CF3SO2Na (2) under
various conditions was investigated (Table 1). To our delight, the C2-trifluoromethylated indole was
obtained in a 39% yield with CuI as a catalyst and tBuOOH (tert-butyl hydroperoxide, 70% solution
in H2O) as the oxidant at 85 ◦C (Table 1, entry 1). Subsequently, we evaluated different catalyses,
and Cu(II) appeared dramatically on the reaction, giving 3a in 55% yield (entries 1–5). The screening
of other oxidants revealed that tBuOOH was the best oxidant (entries 6–8). The effects of different
solvents were compared, and the desired trifluoromethylated product was obtained in a 62% total
yield in DMA (dimethylacetamide) (entries 9–15). Moreover, we were pleased to find that the presence
of a base slightly improved the yield of this reaction, and KF provided a satisfying yield (entries 16–18).
Additionally, by carefully adjusting the amount of KF, the yield was further improved, and the reaction
gave desired product 3a in 86% isolated yield (entry 19). Finally, performing the reaction at room
temperature diminished the reaction rate and yield (entry 20).

With the optimized reaction conditions in hand, we explored the substrate scope. Our initial
studies were focused on the reactions of 3-substituted and N-substituted indoles (Figure 1). To our
satisfaction, a range of functional groups, such as linear alkyl groups, cyclic alkanes, esters, and amides,
were tolerated in this reaction and provided the desired products in 47–86% (3a–3j). Notably, substrates
with strong electron-withdrawing groups, such as halides and cyano, at the C3 position also reacted
efficiently to give 3k and 3l in 45% and 58% yields respectively. Although the trifluoromethylation
of N-benzyl indole required 12 h, it afforded the corresponding trifluoromethylated indole (3o) an
excellent yield (70%).
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Entry Cat. Oxidant Solvent Base 3a (Yield %) b

1 CuI tBuOOH dioxane - 39
2 - tBuOOH dioxane - 37
3 FeCl2 tBuOOH dioxane - 38
4 CuSO4

tBuOOH dioxane - 55
5 Cu(OTf)2

tBuOOH dioxane - 42
6 CuSO4 air dioxane - N.D.
7 CuSO4 H2O2 dioxane - N.D.
8 CuSO4

tBuOOH c dioxane - 36
9 CuSO4

tBuOOH DCM:H2O d - 58
10 CuSO4

tBuOOH MeOH - 34
11 CuSO4

tBuOOH DCM - 23
12 CuSO4

tBuOOH MeCN - 26
13 CuSO4

tBuOOH PhMe - 39
14 CuSO4

tBuOOH DMF - 49
15 CuSO4

tBuOOH DMA - 62
16 CuSO4

tBuOOH DMA CsF 69
17 CuSO4

tBuOOH DMA NH4OH 68
18 CuSO4

tBuOOH DMA KF e 72
19 CuSO4

tBuOOH DMA KF f 88(86)
20 CuSO4

tBuOOH DMA KF f,g 72

a Conditions: 1a (0.5 mmol), CF3SO2Na (1.5 mmol), catalyst (10 mol %), solvent (3.0 mL), 85 ◦C, 1 h, under
Ar. b Reported yields were based on 3a and determined by 1H NMR using CH2Br2 as an internal standard.
c tBuOOH-decane. d DCM:H2O (1:1 ratio). e KF (100 mol%). f KF (50 mol%). g Room temperature, 12 h.

Furthermore, a variety of substrates with functional groups on the benzene ring were also
screened (Figure 2). Generally, a wide range of functional groups, such as fluoro, chloro, bromo, and
methoxy, were compatible with this protocol (4a–4p). In particular, halides, such as F, Cl, and Br,
were well-tolerated, affording the C2-trifluoromethylated indoles in good to excellent yields (53–83%).
Moreover, the newly developed protocol was successfully applied to the late-stage trifluoromethylation
of complex or bioactive substances (4q–4s). Notably, melatonin, a medicine for sleep disorders, was
directly converted to its 2-CF3 analogue, 4s, in 68% yield using the optimized conditions.

To elucidate the mechanism of this reaction, radical scavenger experiments were conducted
(Scheme 2). When a radical inhibitor, including TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) and
BHT (butylated hydroxytoluene), was added, the reaction was dramatically suppressed, implying that
a radical reaction pathway might be involved in the catalytic cycle.
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Figure 2. Reaction scope of functional indoles a. a Conditions: 1 (0.5 mmol), 2 (1.5 mmol), CuSO4 (10 
mol %), tBuOOH (2.5 mmol), KF (50 mol%), dimethylacetamide (DMA) (3.0 mL), 85 °C, 1 h, under Ar. 
Isolated yield. b Yield based on 1H NMR. 

Figure 2. Reaction scope of functional indoles a. a Conditions: 1 (0.5 mmol), 2 (1.5 mmol), CuSO4

(10 mol %), tBuOOH (2.5 mmol), KF (50 mol%), dimethylacetamide (DMA) (3.0 mL), 85 ◦C, 1 h, under
Ar. Isolated yield. b Yield based on 1H NMR.
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Based on the above results and previous literature, a plausible mechanistic interpretation
is depicted in Scheme 3 [22,24–31]. Initially, CF3SO2

− reacts with tBuOOH to form •CF3 (A).
Alternatively, A could also be derived from CF3SO2

− and tBuO• (B). Subsequently, in situ-generated
•CF3 species A adds to indole 1, affording radical intermediate C. Thereafter, intermediate D is formed
by the oxidation of the Cu(II) catalyst, which regenerates the Cu(I) catalyst. Following deprotonation,
D reacts with base to give the expected products 3 and 4. In addition, the Cu(I) catalyst is oxidized to
Cu(II) by tBuOOH to complete the catalytic cycle.
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3. Materials and Methods

1H NMR spectra were recorded on Bruker 500 MHz spectrometer and the chemical shifts were
reported in parts per million (δ) relative to internal standard TMS (0 ppm) for CDCl3. The peak
patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet;
q, quartet. The coupling constants, J, are reported in Hertz (Hz). 13C NMR spectra were obtained at
Bruker 125 MHz and referenced to the internal solvent signals (central peak is 77.0 ppm in CDCl3).
The NMR yield was determined by 1H NMR using CH2Br2 as an internal standard. APEX II (Bruker
Inc.) was used for ESI-HRMS. 19F NMR spectra were recorded on Bruker 470 MHz spectrometer
(see Supplementary Materials). IR spectra were recorded by a Nicolet 5MX-S infrared spectrometer.
Flash column chromatography was performed over silica gel 200–300. All reagents were weighed and
handled in air at room temperature. All chemical reagents were purchased from Alfa, Acros, Aldrich,
and TCI, J&K and used without further purification.

A dry Schlenk tube was charged with 1 (0.5 mmol), 2 (1.5 mmol), CuSO4 (12.5 mg, 10 mol%) and
KF (14.7 mg, 50 mol%). DMA (dimethylacetamide, 3.0 mL) was added under argon, and the mixture
was stirred at room temperature. tert-Butyl hydroperoxide (tBuOOH, 70% solution in H2O, 2.5 mmol)
was dropped into the mixture under argon at room temperature. The resulting mixture was stirred
at 85 ◦C for 1 h. Once the mixture was cooled to room temperature, the solvent was removed under
reduced pressure. The crude product was purified by flash column chromatography on silica gel (ethyl
acetate/petroleum ether) to give product 3 or 4.

3-Methyl-2-(trifluoromethyl)-1H-indole (3a) (86 mg, 86%). Isolated by flash column chromatography
(ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 3391, 2921, 2803, 1452, 1257, 1077, 1030,
754, 715 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.20 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H),
7.35 (t, J = 7.5 Hz, 1H), 7.20 (t, 1H), 2.45 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 135.2, 128.0, 124.7, 124.3 (q,
JC-F = 262.5 Hz), 121.6 (q, J2 = 37.5 Hz), 120.4, 120.1, 114.0 (q, J3 = 3.0 Hz) 111.5, 8.3; 19F NMR (470 MHz,
CDCl3) δ −58.6 (d, J = 1.1 Hz); HRMS (ESI) calcd. for C10H7NF3 [M − H]−, 198.0536; found: 198.0538.

Dimethyl 2-(2-(2-(trifluoromethyl)-1H-indol-3-yl)ethyl)malonate (3b). (117 mg, 68%). Isolated by
flash column chromatography (ethyl acetate/petroleum ether = 1:40, Rf = 0.3); IR (neat): νmax 3394, 2923,
2843, 1724, 1260, 1111, 1078, 908, 730 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.45 (s, 1H), 7.70 (d, J = 8.1 Hz,
1H), 7.40 (d, J = 8.3 Hz, 1H), 7.30 (t, J = 7.60 Hz, 1H), 7.20 (t, 1H), 3.75 (s, 6H), 3.45 (t, J = 7.3 Hz, 1H),
2.30–2.95 (m, 2H), 2.35–2.25 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 169.6, 135.3, 127.1, 124.8, 122.0 (q,
JC-F = 267.3 Hz), 121.7 (q, J2 = 36.8 Hz), 120.6, 120.1, 116.7 (q, J3 = 3.0 Hz), 111.8, 52.5, 51.1, 29.6, 21.5; 19F
NMR (470 MHz, CDCl3) δ −58.3 (s); HRMS (ESI) calcd. for C16H15O4NF3 [M − H]−, 342.0959; found:
342.0956; HRMS (ESI) calcd. for C16H15O4NF3 [M − H]−, 342.0959; found: 342.0956.

Diethyl 2-(2-(2-(trifluoromethyl)-1H-indol-3-yl)ethyl)malonate (3c). (97 mg, 52%). Isolated by flash
column chromatography (ethyl acetate/petroleum ether = 1:40, Rf = 0.3); IR (neat): νmax 3371, 2993,
2863, 1721, 1260, 1161, 1118, 908, 732 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.40 (s, 1H), 7.70 (d, J = 8.1 Hz,
1H), 7.40 (d, J = 8.3 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.20 (t, 1H), 4.30–4.15 (m, 4H), 3.45 (t, J = 7.3 Hz,
1H), 3.00–2.90 (m, 2H), 2.35–2.20 (m, 2H), 1.30 (t, J = 7.1 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ

169.28, 135.27, 127.16, 124.78, 121.9 (q, JC-F = 267.4 Hz), 121.6 (q, J2 = 36.8 Hz), 120.57, 120.17, 116.9 (q,
J3 = 2.6 Hz), 111.73, 61.47, 51.57, 29.60, 21.57, 13.98; 19F NMR (470 MHz, CDCl3) δ −58.3 (s); HRMS
(ESI) calcd. for C18H19O4NF3 [M − H]−, 370.1272; found: 370.1280.

Methyl 3-(2-(trifluoromethyl)-1H-indol-3-yl)propanoate (3d). (61 mg, 47%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 3386, 2943, 2822,
1324, 1261, 1106, 1076, 747, 725 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.65 (s, 1H), 7.65 (d, J = 8.1 Hz,
1H), 7.35–7.25 (m, 2H), 7.25–7.20 (m, 1H), 3.95 (s, 2H), 3.70 (s, 3H); 13C NMR (125 MHz, CDCl3) δ
171.2, 135.1, 127.2, 124.9, 123.8 (q, JC-F = 267.4 Hz), 122.8 (q, J2 = 36.9 Hz), 121.0, 120.0, 111.8, 110.2 (q,
J3 = 2.8 Hz), 52.2, 29.6; 19F NMR (470 MHz, CDCl3) δ −58.6 (s); HRMS (ESI) calcd. for C12H9O2NF3

[M − H]−, 256.0591; found: 256.0588.
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Ethyl 3-(2-(trifluoromethyl)-1H-indol-3-yl)propanoate (3e). (93 mg, 72%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:40, Rf = 0.3); IR (neat): νmax 3321, 2823, 1323, 1146,
1097, 1052, 741, 726 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.45 (s, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.40 (d,
J = 8.3 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.20 (t, 1H), 3.70 (t, J = 7.7 Hz, 2H), 3.55 (q, J = 7.0 Hz, 2H),
3.25–3.15 (m, 2H), 1.20 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 135.2, 127.6, 124.7, 122.1 (q,
J2 = 36.5 Hz), 122.0 (q, JC-F = 267.4 Hz), 120.5, 120.3, 114.9 (q, J3 = 3.0 Hz), 111.7, 70.6, 66.2, 24.6, 15.1;
19F NMR (470 MHz, CDCl3) δ −58.3 (s); HRMS (ESI) calcd. for C12H9O2NF3 [M − H]−, 256.0955;
found: 256.0954.

3-Cyclohexyl-2-(trifluoromethyl)-1H-indole (3f). (72 mg, 54%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:40, Rf = 0.3); IR (neat): νmax 3387, 2922, 2823, 1318,
1249, 1115, 1082, 740, 705 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.20 (s, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.40
(d, J = 8.2 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 3.00 (t, J = 12.1 Hz, 1H), 2.00–1.80 (m,
8H), 1.50–1.40 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 135.4, 126.3, 124.3, 123.9 (q, J3 = 3.0 Hz), 122.2,
122.1 (q, JC-F = 267.3 Hz), 120.5 (q, J2 = 36.0 Hz), 120.0, 111.9, 36.2, 32.8, 27.0, 26.2; 19F NMR (470 MHz,
CDCl3) δ −57.5 (s); HRMS (ESI) calcd. for C15H15NF3 [M − H]−, 266.1162; found: 266.1163.

2-(2-(Trifluoromethyl)-1H-indol-3-yl)ethyl acetate (3g). (75 mg, 55%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:40, Rf = 0.3); IR (neat): νmax 3361, 2954, 1719, 1160,
1086, 1037, 907, 731 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.55 (s, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.40 (d,
J = 8.3, 0.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.20 (t, 1H), 4.30 (t, J = 6.9 Hz, 2H), 3.25 (t, 2H), 2.00 (s, 3H);
13C NMR (125 MHz, CDCl3) δ 171.2, 135.2, 127.3, 124.8, 122.4 (q, J2 = 36.5 Hz), 121.9 (q, JC-F = 267.4 Hz),
120.7, 113.8 (q, J3 = 2.9 Hz), 111.8, 64.1, 23.4, 20.9; 19F NMR (470 MHz, CDCl3) δ −58.3 (s); HRMS (ESI)
calcd. for C13H11O2NF3 [M − H]−, 270.0747; found: 270.0745.

1-(2-(Trifluoromethyl)-1H-indol-3-yl)propan-2-one (3h). (105 mg, 87%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:10, Rf = 0.3); IR (neat): νmax 3389, 2933, 2823, 1703,
1253, 1109, 1074, 740, 725 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.83 (s, 1H), 7.57 (d, J = 8.1 Hz, 1H),
7.36 (d, J = 8.2 Hz, 1H), 7.34–7.29 (m, 1H), 7.20–7.15 (m, 1H), 3.98 (s, 2H), 2.19 (s, 3H); 13C NMR (125
MHz, CDCl3) δ 205.9, 135.3, 127.2, 126.0, 125.1, 124.0 (q, JC-F = 267.5 Hz), 123.1 (q, J3 = 3.4 Hz), 122.7 (q,
J2 = 36.8 Hz), 121.1, 120.0, 112.0, 39.3, 28.9; 19F NMR (470 MHz, CDCl3) δ −58.3 (s); HRMS (ESI) calcd.
for C12H9ONF3 [M − H]−, 240.0642; found: 240.0639.

Tert-butyl (2-(2-(trifluoromethyl)-1H-indol-3-yl)ethyl)carbamate (3i). (87 mg, 53%). Isolated by flash
column chromatography (ethyl acetate/petroleum ether = 1:5, Rf = 0.3); IR (neat): νmax 3351, 2961,
2853, 1688, 1250, 1111, 1083, 732 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.85 (s, 1H), 7.70 (d, J = 7.6 Hz,
1H), 7.40 (d, J = 8.0 Hz, 1H), 7.30 (t, J = 7.3 Hz, 1H), 7.15 (d, J = 6.6 Hz, 1H), 4.65 (s, 1H), 3.45 (s, 2H), 3.10
(s, 2H), 1.45 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 156.0, 135.4, 127.4, 124.7, 122.3 (q, J2 = 36.4 Hz), 122.0
(q, JC-F = 267.5 Hz), 120.5, 120.2, 115.0 (q, J3 = 3.0 Hz), 111.8, 79.3, 41.1, 28.3, 24.4; 19F NMR (470 MHz,
CDCl3) δ −57.9 (s); HRMS (ESI) calcd. for C16H18O2N2F3 [M − H]−, 327.1326; found: 327.1322.

N-(2-(2-(trifluoromethyl)-1H-indol-3-yl)ethyl)acetamide (3j). (78 mg, 58%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:1, Rf = 0.3); IR (neat): νmax 3309, 2923, 2813, 1051,
1024, 1005, 820, 757 cm−1; 1H NMR (500 MHz, DMSO) δ 11.90 (s, 1H), 8.00 (t, J = 5.8 Hz, 1H), 7.70 (d,
J = 8.0 Hz, 1H), 7.45 (d, J = 8.3 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 5.75 (s, 1H), 3.30–3.25 (m, 2H), 3.00 (t,
J = 7.1 Hz, 2H), 1.75 (s, 3H); 13C NMR (125 MHz, DMSO) δ 169.2, 135.8, 126.9, 124.4, 122.4 (q, JC-F =
267.4 Hz), 121.2 (q, J2 = 36.0 Hz), 120.0, 117.9, 114.6 (q, J3 = 2.8 Hz), 112.4, 24.0, 22.7, 22.6; 19F NMR (470
MHz, DMSO) δ −56.5 (s); HRMS (ESI) calcd. for C13H14ON2F3 [M + H]+, 271.1053; found: 271.1057.

3-(2-Bromoethyl)-2-(trifluoromethyl)-1H-indole (3k). (66 mg, 45%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:50, Rf = 0.3); IR (neat): νmax 3388, 2932, 2860, 1313,
1251, 1109, 1068, 741, 727 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.35 (s, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.40
(d, J = 8.3 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.25–7.20 (m, 1H), 3.60–3.55 (m, 2H), 3.50–3.45 (m, 2H); 13C
NMR (125 MHz, CDCl3) δ 135.1, 126.9, 125.1, 122.2 (q, J2 = 36.9 Hz), 121.7 (q, JC-F = 267.5 Hz), 120.9,
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119.9, 115.3 (q, J3 = 2.8 Hz), 111.8, 31.3, 27.7; 19F NMR (470 MHz, CDCl3) δ −58.3 (s); HRMS (ESI) calcd.
for C11H8NBrF3 [M − H]−, 289.9798; found: 289.9792.

2-(2-(Trifluoromethyl)-1H-indol-3-yl)acetonitrile (3l). (65 mg, 58%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:10, Rf = 0.3); IR (neat): νmax 3396, 2995, 2873, 1328,
1161, 1133, 1073, 740, 618 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.80 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.45
(d, J = 8.3 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.30–7.25 (m, 1H), 4.00 (s, 2H); 13C NMR (125 MHz, CDCl3)
δ 135.0, 125.9, 125.6, 122.8 (q, J2 = 37.5 Hz), 121.7, 121.2 (q, JC-F = 267.6 Hz),119.4, 116.8, 112.2, 105.5
(q, J3 = 2.5 Hz), 12.7; 19F NMR (470 MHz, CDCl3) δ −58.5 (s); HRMS (ESI) calcd. for C11H6N2F3 [M −
H]−, 223.0489; found: 223.0489.

Tert-butyl 3-methyl-2-(trifluoromethyl)-1H-indole-1-carboxylate (3m). (117 mg, 78%). Isolated by
flash column chromatography (petroleum ether, Rf = 0.3); IR (neat): νmax 2921, 2873, 1738, 1324, 1126,
1087, 743, 731 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.20 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 7.9 Hz, 1H),
7.45–7.40 (m, 1H), 7.35–7.30 (m, 1H), 2.45 (q, J = 2.9 Hz, 3H), 1.65 (s, 9H); 13C NMR (125 MHz, CDCl3)
δ 149.0, 136.8, 128.6, 127.2, 123.0, 122.2 (q, J2 = 36.9 Hz), 121.9 (q, JC-F = 267.9 Hz), 119.9, 115.4, 111.5 (q,
J3 = 3.0 Hz), 85.0, 29.7, 27.8; 19F NMR (470 MHz, CDCl3) δ −54.1 (d, J = 2.9 Hz); HRMS (ESI) calcd. for
C15H16O2NF3K [M + K]+, 338.0770; found: 338.0773.

1-Benzyl-3-methyl-2-(trifluoromethyl)-1H-indole (3n). (78 mg, 54%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 2911, 1428, 1270,
1163, 1098, 1046, 737, 695 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.70 (d, J = 7.9 Hz, 1H), 7.30–7.25 (m, 3H),
7.25–7.20 (m, 3H), 7.00 (d, J = 7.2 Hz, 2H), 5.45 (s, 2H), 2.55–2.50 (m, 3H); 13C NMR (125 MHz, CDCl3)
δ 137.6, 137.4, 128.8, 128.6, 127.3, 125.8, 125.5, 124.9, 122.7 (q, JC-F = 268.3 Hz),122.7 (q, J2 = 34.9 Hz),
120.3, 114.9 (q, J3 = 2.9 Hz), 114.9, 110.5, 48.1, 29.7; 19F NMR (470 MHz, CDCl3) δ −55.1 (d, J = 1.6 Hz);
HRMS (ESI) calcd. for C17H15NF3 [M + H]+, 290.1078; found: 290.1070.

(3-Methyl-2-(trifluoromethyl)-1H-indol-1-yl)(phenyl)methanone (3o). (106 mg, 70%). Isolated by
flash column chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 2925,
2886, 1708, 1322, 1125, 1020, 711, 665 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.90–7.85 (m, 2H), 7.70 (t,
J = 7.5 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.55 (t, J = 7.8 Hz, 2H), 7.25–7.20 (m, 1H), 7.15 (t, J = 7.7 Hz, 1H),
6.75 (d, J = 8.5 Hz, 1H), 2.55–2.50 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 168.5, 136.8, 134.1, 133.9, 130.3,
129.0, 128.8, 126.2, 124.3 (q, J2 = 37.0 Hz), 123.8 (q, JC-F = 271.1 Hz), 122.9 (q, J3 = 2.8 Hz), 122.7, 120.3,
113.7, 29.7; 19F NMR (470 MHz, CDCl3) δ −54.4 (d, J = 2.1 Hz); HRMS (ESI) calcd. for C17H11ONF3 [M
− H]−, 302.0798; found: 302.0793.

4-Fluoro-3-methyl-2-(trifluoromethyl)-1H-indole (4a). (79 mg, 73%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:50, Rf = 0.3); IR (neat): νmax 2204, 1165, 1118, 1054,
1027, 909, 731 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.25 (s, 1H), 7.20–7.15 (m, 1H), 7.15 (d, J = 8.2 Hz,
1H), 6.80 (dd, J = 11.0, 7.9 Hz, 1H), 2.55 (d, J = 1.2 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 159.2, 157.2,
137.5 (d, J = 10.9 Hz), 125.3 (d, J = 8.0 Hz), 121.7 (q, JC-F = 267.3 Hz), 121.6 (q, J2 = 36.5 Hz), 113.0 (q,
J3 = 3.0 Hz), 107.6 (d, J = 4.0 Hz), 105.5 (d, J = 19.1 Hz), 9.9 (d, J = 2.9 Hz); 19F NMR (470 MHz, CDCl3) δ
−58.8 (d, J = 1.3 Hz), -123.3 (dd, J = 11.1, 4.7 Hz); HRMS (ESI) calcd. for C10H6NF4 [M − H]−, 216.0442;
found: 216.0443.

N-benzyl-N-methyl-3-phenylprop-2-yn-1-amine (4b). (81 mg, 58%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:50, Rf = 0.3); IR (neat): νmax 1253, 1181, 1162,
1120, 1027, 908, 734 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.25 (s, 1H), 7.35–7.30 (m, 2H), 7.10 (t, J = 7.9
Hz, 1H), 2.70 (dd, J = 3.3, 1.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 136.2, 125.9, 125.3, 125.1, 122.9
(q, J2 = 36.1 Hz), 121.8 (q, JC-F = 267.5 Hz),115.9, 115.2 (q, J3 = 2.9 Hz), 111.0, 10.7; 19F NMR (470 MHz,
CDCl3) δ−58.6 (d, J = 0.9 Hz); HRMS (ESI) calcd. for C10H6NBrF3 [M − H]−, 275.9641; found: 275.9644.

4-Methoxy-3-methyl-2-(trifluoromethyl)-1H-indole (4c). (62 mg, 54%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 3402, 2927, 2813,
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1311, 1251, 1165, 1120 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 7.20 (t, J = 8.0 Hz, 1H), 6.95
(d, J = 8.2 Hz, 1H), 6.50 (d, J = 7.8 Hz, 1H), 3.90 (s, 3H), 2.60 (dd, J = 3.6, 1.7 Hz, 3H); 13C NMR (125
MHz, CDCl3) δ 156.1, 136.7, 125.5, 121.1 (q, JC-F = 266.8 Hz), 120.1 (q, J2 = 36.4 Hz), 118.1, 114.9 (q, J3 =
3.1 Hz), 104.5, 100.1, 55.1, 10.5; 19F NMR (470 MHz, CDCl3) δ −58.4 (d, J = 1.3 Hz); HRMS (ESI) calcd.
for C11H9ONF3 [M − H]−, 228.0642; found: 228.0641.

5-Chloro-3-methyl-2-(trifluoromethyl)-1H-indole (4d). (78 mg, 67%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:50, Rf = 0.3); IR (neat): νmax 3396, 2995, 2874, 1445,
1251, 1094, 1025, 797, 720, 592 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.25 (s, 1H), 7.60 (d, J = 1.2 Hz,
1H), 7.30–7.25 (m, 2H), 2.40 (dd, J = 3.4, 1.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 133.43, 129.06,
126.12, 125.17, 122.8 (q, J2 = 36.9 Hz), 121.7 (q, JC-F = 267.4 Hz), 119.57, 113.6 (q, J3 = 2.9 Hz), 112.69, 8.2;
19F NMR (470 MHz, CDCl3) δ −58.9 (d, J = 1.3 Hz); HRMS (ESI) calcd. for C10H6NClF3 [M − H]−,
232.0146; found: 232.0148.

5-Bromo-3-methyl-2-(trifluoromethyl)-1H-indole (4e). (113 mg, 81%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 3520, 2988, 2873,
1317, 1105, 1047, 1023, 793, 718 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.25 (s, 1H), 7.75 (s, 1H), 7.40 (dd,
J = 8.7, 1.4 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H), 2.40 (d, J = 1.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ
133.7, 129.7, 127.7, 122.8, 122.3 (q, J2 = 36.8 Hz), 121.7 (q, JC-F = 272.9 Hz), 113.6, 113.5 (q, J3 = 3.1 Hz),
113.1, 8.2; 19F NMR (470 MHz, CDCl3) δ −58.9 (d, J = 1.3 Hz); HRMS (ESI) calcd. for C10H6NBrF3 [M
− H]−, 275.9641; found: 275.9645.

5-Methoxy-3-methyl-2-(trifluoromethyl)-1H-indole (4f). (66 mg, 58%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:50, Rf = 0.3); IR (neat): νmax 3367, 2911, 2823, 1469,
1165, 1067, 1018, 840, 798, 725, 701, 624 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 7.30–7.25 (m,
1H), 7.00 (s, 1H), 7.00 (d, J = 8.8 Hz, 1H), 3.90 (d, J = 0.9 Hz, 3H), 2.40 (s, 3H); 13C NMR (125 MHz,
CDCl3) δ 154.5, 130.3, 128.4, 122.1 (q, J2 = 36.8 Hz), 122.0 (q, JC-F = 267.1 Hz), 115.6, 113.5 (q, J3 =
3.1 Hz), 112.5, 100.9, 55.8, 8.4; 19F NMR (470 MHz, CDCl3) δ −58.7 (d, J = 1.3 Hz); HRMS (ESI) calcd.
for C11H9ONF3 [M − H]−, 228.0642; found: 228.0640.

6-Fluoro-3-methyl-2-(trifluoromethyl)-1H-indole (4g). (68 mg, 63%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 1318, 1258, 1118,
1027, 734 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.20 (s, 1H), 7.55 (dd, J = 8.7, 5.3 Hz, 1H), 7.05 (dd, J = 9.3,
2.1 Hz, 1H), 7.00–6.90 (m, 1H), 2.40 (dd, J = 3.6, 1.7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 161.4 (d, J
= 239.8 Hz), 135.2 (d, J = 13.3 Hz), 124.7, 121.9 (q, JC-F = 266.9 Hz), 121.8 (q, J2 = 36.6 Hz), 121.2 (d, J
= 10.4 Hz), 114.3 (q, J3 = 2.8 Hz), 109.6 (d, J = 24.9 Hz), 97.7 (d, J = 26.4 Hz), 8.3; 19F NMR (470 MHz,
CDCl3) δ −58.8 (d, J = 1.0 Hz), -117.1 (td, J = 9.4, 5.3 Hz); HRMS (ESI) calcd. for C10H6NF4 [M − H]−,
216.0442; found: 216.0441.

6-Chloro-3-methyl-2-(trifluoromethyl)-1H-indole (4h). (89 mg, 76%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 2223, 1052, 1025,
1007, 751, 726 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.15 (s, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.35 (d, J =
1.5 Hz, 1H), 7.15 (dd, J = 8.5, 1.8 Hz, 1H), 2.40 (dd, J = 3.6, 1.8 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ
135.4, 130.7, 126.6, 121.8 (q, JC-F = 267.1 Hz), 122.1 (q, J2 = 36.8 Hz), 121.3, 121.1, 114.2 (q, J3 = 3.0 Hz),
111.4, 8.2; 19F NMR (470 MHz, CDCl3) δ −58.9 (d, J = 1.3 Hz); HRMS (ESI) calcd. for C10H6NClF3 [M
− H]−, 232.0146; found: 232.0146.

6-Methoxy-3-methyl-2-(trifluoromethyl)-1H-indole (4i). (74 mg, 65%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:50, Rf = 0.3); IR (neat): νmax 2343, 1053, 1025, 1006,
819, 757, 727 cm−1; 1H NMR (500 MHz, DMSO) δ 11.60 (s, 1H), 7.50 (d, J = 8.7 Hz, 1H), 6.85 (s, 1H), 6.75
(dd, J = 8.8, 1.9 Hz, 1H), 3.80 (s, 3H), 2.35 (s, 3H); 13C NMR (125 MHz, DMSO) δ 157.7, 136.7, 122.7 (q,
JC-F = 266.5 Hz), 121.6, 120.8, 119.2 (q, J2 = 35.8 Hz), 112.7 (q, J3 = 3.1 Hz), 110.9, 94.1, 55.3, 8.3; 19F NMR
(470 MHz, DMSO) δ −56.4 (d, J = 1.5 Hz); HRMS (ESI) calcd. for C11H9ONF3 [M − H]−, 228.0642;
found: 228.0641.
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7-Fluoro-3-methyl-2-(trifluoromethyl)-1H-indole (4j). (74 mg, 68%). Isolated by flash column
chromatography (petroleum ether, Rf = 0.3); IR (neat): νmax 2287, 1052, 1026, 1007, 908, 723 cm−1; 1H
NMR (500 MHz, CDCl3) δ 8.35 (s, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.15–7.05 (m, 1H), 7.05 (dd, J = 10.8, 7.8
Hz, 1H), 2.45 (dd, J = 3.5, 1.7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 149.5 (d, J = 244.4 Hz), 131.6 (d, J
= 4.9 Hz), 123.9 (q, JC-F = 267.5 Hz), 122.4 (q, J2 = 36.6 Hz), 120.7 (d, J = 5.9 Hz), 115.8 (d, J = 3.6 Hz),
114.7 (q, J3 = 2.8 Hz), 109.3 (d, J = 15.6 Hz), 107.8 (d, J = 16.3 Hz), 8.5; 19F NMR (470 MHz, CDCl3) δ
−59.0 (d, J = 1.0 Hz), -134.7 (dd, J = 11.0, 4.7 Hz); HRMS (ESI) calcd. for C10H6NF4 [M − H]−, 216.0442;
found: 216.0442.

7-Chloro-3-methyl-2-(trifluoromethyl)-1H-indole (4k). (76 mg, 65%). Isolated by flash column
chromatography (petroleum ether, Rf = 0.3); IR (neat): νmax 1313, 1164, 1119, 1027, 734 cm−1; 1H
NMR (500 MHz, CDCl3) δ 8.35 (s, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.15 (t, J = 7.8
Hz, 1H), 2.45 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 132.6, 129.3, 124.0, 122.3 (q, J2 = 37.0 Hz), 121.7 (q,
JC-F = 267.4 Hz), 121.2, 118.7, 117.0, 115.1 (q, J3 = 2.9 Hz), 8.5; 19F NMR (470 MHz, CDCl3) δ −58.9 (d, J
= 1.2 Hz); HRMS (ESI) calcd. for C10H6NClF3 [M − H]−, 232.0146; found: 232.0146.

7-Bromo-3-methyl-2-(trifluoromethyl)-1H-indole (4l). (99 mg, 71%). Isolated by flash column
chromatography (petroleum ether, Rf = 0.3); IR (neat): νmax 3471, 2931, 2813, 1580, 1328, 1115, 908, 779,
731 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.30 (s, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H),
7.10 (t, J = 7.8 Hz, 1H), 2.45 (dd, J = 3.4, 1.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 134.0, 129.0, 127.0,
122.2 (q, J2 = 36.8 Hz), 121.7 (q, JC-F = 267.3 Hz), 121.5, 119.3, 115.2 (q, J3 = 3.0 Hz), 105.0, 8.6; 19F NMR
(470 MHz, CDCl3) δ −58.8 (d, J = 1.1 Hz); HRMS (ESI) calcd. for C10H6NBrF3 [M − H]−, 275.9641;
found: 275.9643.

7-Methoxy-3-methyl-2-(trifluoromethyl)-1H-indole (4m). (61 mg, 53%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 3411, 2918, 2806,
1265, 1161, 1109, 733 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.40 (s, 1H), 7.25 (d, J = 8.1 Hz, 1H), 7.10 (t, J
= 7.9 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 3.95 (s, 3H), 2.45–2.40 (m, 3H); 13C NMR (125 MHz, CDCl3) δ
146.3, 129.3, 126.1, 122.1 (q, JC-F = 267.0 Hz), 121.3 (q, J2 = 36.8 Hz), 120.8, 114.3 (q, J3 = 2.9 Hz), 112.4,
103.9, 55.4, 8.5; 19F NMR (470 MHz, CDCl3) δ −58.7 (s); HRMS (ESI) calcd. for C11H9ONF3 [M − H]−,
228.0642; found: 228.0646.

5-Fluoro-3-methyl-2-(trifluoromethyl)-1H-indole (4n). (90 mg, 83%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:50, Rf = 0.3); IR (neat): νmax 3393, 2921, 2863, 1325,
1169, 1109, 1026, 852, 796, 728 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.20 (s, 1H), 7.31 (dd, J = 8.9, 4.2 Hz,
1H), 7.27 (dd, J = 8.9, 2.5 Hz, 1H), 7.08 (td, J = 9.0, 2.4 Hz, 1H), 2.41–2.38 (m, 3H); 13C NMR (125 MHz,
CDCl3) δ 159.0, 157.1, 131.6, 128.5, 128.4, 123.2 (q, J2 = 36.8 Hz), 121.8 (q, JC-F = 267.4 Hz), 114.0 (q, J3 =
3.0 Hz), 113.7, 113.5, 112.6, 112.5, 104.9, 104.7, 8.3; 19F NMR (470 MHz, CDCl3) δ −58.96 (d, J = 1.4 Hz),
-123.0 (td, J = 9.1, 4.2 Hz); HRMS (ESI) calcd. for C10H6NF4 [M − H]−, 216.0442; found: 216.0442.

6-Bromo-3-methyl-2-(trifluoromethyl)-1H-indole (4o). (39 mg, 28%). Isolated by flash column
chromatography (ethyl acetate/petroleum ether = 1:100, Rf = 0.3); IR (neat): νmax 3390, 2901, 2862, 1325,
1172, 1109, 1022, 842, 728 cm−1; 1H NMR (500 MHz, CDCl3) 1H NMR (500 MHz, cdcl3) δ 8.18 (s, 1H),
7.53 (d, J = 1.4 Hz, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.29 (dd, J = 8.5, 1.6 Hz, 1H), 2.41 (s, 3H); 13C NMR (125
MHz, CDCl3) 13C NMR (126 MHz, cdcl3) δ 135.77, 126.94, 123.89, 122.0 (q, J2 = 36.9 Hz), 121.8 (q, JC-F =
267.3 Hz) 121.39, 118.39, 114.45, 114.2 (q, J3 = 2.9 Hz), 8.24; 19F NMR (470 MHz, CDCl3) δ −58.96 (d, J =
1.4 Hz), -123.0 (td, J = 9.1, 4.2 Hz); HRMS (ESI) calcd. for C10H6NF4 [M − H]−, 275.9641; found: 275.964.

2-(7-Ethyl-2-(trifluoromethyl)-1H-indol-3-yl)ethyl acetate (4q). (105 mg, 70%). Isolated by flash
column chromatography (ethyl acetate/petroleum ether = 1:50, Rf = 0.3); IR (neat): νmax 3397, 2998,
2883, 1723, 1253, 1163, 1117, 908, 732 cm−1; 1H NMR (500 MHz, CDCl3) δ 8.30 (s, 1H), 7.60–7.55 (m,
1H), 7.20–7.15 (m, 2H), 4.30 (dd, J = 9.1, 4.8 Hz, 2H), 3.25 (td, J = 6.9, 1.1 Hz, 2H), 2.90 (q, J = 7.6 Hz, 2H),
2.00 (s, 3H), 1.40 (t, J = 7.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 171.2, 134.3, 129.8, 127.2, 123.2, 122.1
(q, J2 = 36.6 Hz), 122.0 (q, JC-F = 267.3 Hz), 121.1, 117.7, 114.4 (q, J3 = 2.8 Hz), 65.6, 64.1, 23.6, 20.9, 13.6;
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19F NMR (470 MHz, CDCl3) δ −58.1 (s); HRMS (ESI) calcd. for C15H15O2NF3 [M − H]−, 298.1060;
found: 298.1055.

2-(5-Methoxy-2-(trifluoromethyl)-1H-indol-3-yl)acetonitrile (4r). (54 mg, 42%). Isolated by flash
column chromatography (ethyl acetate/petroleum ether = 1:10, Rf = 0.3); IR (neat): νmax 3389, 1052,
1024, 1005, 820, 757, 624, 558 cm−1; 1H NMR (500 MHz, DMSO) δ 12.30 (s, 1H), 7.40 (d, J = 8.9 Hz,
1H), 7.35 (s, 1H), 7.00 (d, J = 8.9 Hz, 1H), 4.25 (s, 2H), 3.80 (s, 3H); 13C NMR (125 MHz, DMSO) δ 154.6,
130.7, 126.2, 122.2 (q, J2 = 36.8 Hz), 121.8 (q, JC-F = 267.5 Hz), 118.5, 116.3, 113.7, 105.4 (q, J3 = 2.3 Hz),
100.4, 55.6, 12.0; 19F NMR (470 MHz, DMSO) δ −56.9 (s); HRMS (ESI) calcd. for C12H8ON2F3 [M −
H]−, 253.0594; found: 253.0591.

N-(2-(5-methoxy-2-(trifluoromethyl)-1H-indol-3-yl)ethyl)acetamide (4s) [24]. (102 mg, 68%).
Isolated by flash column chromatography (ethyl acetate/petroleum ether = 1:10, Rf = 0.3); 1H NMR
(500 MHz, DMSO) δ 12.30 (s, 1H), 7.40 (d, J = 8.9 Hz, 1H), 7.35 (s, 1H), 7.00 (d, J = 8.9 Hz, 1H), 4.25 (s,
2H), 3.80 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 170.5, 154.7, 130.6, 127.7, 122.7 (q, J2 = 36.4 Hz), 121.9
(q, JC-F = 267.3 Hz), 116.0, 114.3 (q, J3 = 2.8 Hz), 112.9, 100.5, 55.7, 40.0, 23.9, 23.2; 19F NMR (470 MHz,
DMSO) δ −57.9 (s); HRMS (ESI) calcd. for C14H14O2N2F3 [M − H]−, 299.1013; found: 299.1009.

4. Conclusions

In conclusion, we have demonstrated a new application of KF as a base to promote the
trifluoromethylation of electron-deficient and electron-rich indoles via C-H activation. Compared
with previous works, this method features broad functional group tolerance, shorter reaction times,
and a less expensive trifluoromethylating agent. This methodology allows the construction of a
variety of bioactive molecules containing C2-trifluoromethylated indole moieties. The value of this
strategy has been highlighted via the trifluoromethylation of melatonin in 68% yield. Preliminary
mechanistic studies indicate that the reaction pathway may proceed through a radical process involving
a Cu(II)/Cu(I) redox process.
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