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Abstract: Increasing the low-temperature performance of nickel-based catalysts in syngas
methanation is critical but very challenging, because at low temperatures there is high concentration
of CO on the catalyst surface, causing formation of nickel carbonyl with metallic Ni and further
catalyst deactivation. Herein, we have prepared highly dispersed Ni nanocatalysts by in situ reduction
of NiMnAl-layered double hydroxides (NiMnAl-LDHs) and applied them to syngas methanation.
The synthesized Ni nanocatalysts maintained the nanosheet structure of the LDHs, in which Ni
particles were decorated with MnOy species and embedded in the AlOx nanosheets. It was observed
that the Ni nanocatalysts exhibited markedly better low-temperature performance than commercial
catalysts in the syngas methanation. At 250 ◦C, 3.0 MPa and a high weight hourly space velocity
(WHSV) of 30,000 mL·g−1·h−1, both the CO conversion and the CH4 selectivity reached 100% over the
former, while those over the commercial catalyst were only 14% and 76%, respectively. Furthermore,
this NiMnAl catalyst exhibited strong anti-carbon and anti-sintering properties at high temperatures.
The enhanced low-temperature performance and high-temperature stability originated from the
promotion effect of MnOy and the embedding effect of AlOx in the catalyst.

Keywords: low-temperature methanation; nickel carbonyl; NiMnAl-LDHs; Ni nanocatalysts

1. Introduction

Over the last few decades, the preparation of synthetic natural gas (SNG) by coal gasification
has attracted worldwide attention, particularly in the coal-rich regions, because of the requirements
for efficient utilization of coal resources and for a secure supply of natural gas, which is a clean
fuel [1,2]. The main technology of producing SNG from syngas is CO methanation [3–5]. Until now,
all commercial methanation catalysts for SNG production have been Ni-based catalysts due to their

Catalysts 2019, 9, 282; doi:10.3390/catal9030282 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
http://www.mdpi.com/2073-4344/9/3/282?type=check_update&version=1
http://dx.doi.org/10.3390/catal9030282
http://www.mdpi.com/journal/catalysts


Catalysts 2019, 9, 282 2 of 15

high performance and low cost [6–18]. Nevertheless, the major weaknesses of nickel catalysts include
agglomeration of Ni nanoparticles, formation of carbon deposits at higher temperatures, and poor
activity at low temperatures (250 ◦C) for the complete methanation of syngas [19–31]. The increase
in low temperature performance of the Ni catalysts in syngas methanation is critical. It is also very
challenging because the high concentration of CO on the catalyst surface may lead to the formation
of Ni(CO)4 and further catalyst deactivation. At present, research on low-temperature methanation
is mainly focused on hydrogen-rich systems and slurry-bed reactors [32–37], while that for syngas
(H2/CO = 3/1) in fixed beds has rarely been reported.

Layered double hydroxides (LDHs) are widely used as catalysts or supports due to their unique
layered structure with distribution of M2+ (M = Mg, Co, Cu, Ni) and N3+ (N = Al, Fe, Co, Mn)
cations that are adjustable both in ratio and in type [38–43]. Ni-based hydrotalcites have been
used as precursors to obtain methanation catalysts via high temperature calcination followed by
reduction [13,44]. However, high temperature calcination would destroy the layered structure of
LDHs and reduce the specific surface area and pores volume, which leads to poor activity of the
obtained catalysts at low temperatures [45,46]. He et al. found that the Ni nanocatalysts prepared
via in situ reduction of NiAl-hydrotalcites with abundant surface defects showed excellent catalytic
performance in CO2 methanation [47]. Differing from CO2 methanation, the major challenge for low
temperature methanation of high concentration CO is a catalyst deactivation phenomenon due to
formation of Ni(CO)4. In general, low temperature and high CO partial pressure favor formation of
Ni(CO)4 at equilibrium; thus, the inlet temperature of the feed gas should be above 300 ◦C for SNG,
at which the catalyst can convert part of CO and maintain a low CO partial pressure so that Ni(CO)4

formation is negligible. In principle, the reaction can be operated smoothly at quite low temperatures
so that the catalyst can be active enough to maintain a low CO concentration on the catalyst surface.
Therefore, developing highly active catalysts for low-temperature CO methanation is possible but
quite challenging.

Herein, highly dispersed Ni nanocatalysts were obtained by in situ reduction of NiMnAl-LDHs
precursors and applied to CO methanation for the first time. The novel catalysts showed excellent
catalytic performance at low temperatures and high stability at high temperatures. According to
experimental results, the Ni nanocatalysts decorated with MnOy species and embedded in the AlOx

nanosheets have the application prospect for low temperature methanation.

2. Results and Discussion

2.1. Structure and Morphology of LDHs and Catalysts

The X-ray diffraction (XRD) results of the NiMnxAl10-LDHs (x = 0, 0.5, 1, 2) are shown in Figure 1a
and the inset shows the displacement of the first diffraction peak. The diffraction peaks of all the
samples at 2θ = 11.6◦–11.9◦, 23.4◦, 35.1◦, 39.6◦, 46.8◦, 61.2◦ and 62.5◦ are corresponding to the (003),
(006), (009), (015), (018), (110), and (113) planes of typical hydrotalcites, respectively [41]. Table 1 shows
the lattice parameters of the NiMnxAl10-LDHs. The lattice parameter “a” is related to the radius of
the cation [48]. Compared with NiAl-LDH, the values of "a" for NiMnAl-LDHs do not change after
adding Mn2+, because the ionic radius of Ni and Mn (0.62 Å for Ni2+, 0.66 Å for Mn2+, respectively)
are relatively close, while the additive amount of Mn is low. When the Mn/Al molar ratios change
from 0:10 to 1:10, the lattice constant “c” gradually increases from 2.255 to 2.286 nm until “c” reaches
its maximum value, which is due to the difference in bond strength of Ni-O (372 kJ/mol) and Mn-O
(402 kJ/mol). When Ni is substituted by Mn, the bond strength of M-O (M-Metal cation) is increased,
resulting in the weakened interaction of the metal cations with the interlayer anions as well as the
water molecules, so that the interlayer spacing is increased. These results confirm that most of the
added Mn2+ entered the layered structure of the hydrotalcites and did not affect crystallinity of LDHs.

The XRD spectrums of the catalysts obtained from reducing LDHs directly are shown in Figure 1b.
In comparison to Figure 1a, it can be found that the characteristic peaks of LDHs disappeared after the
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reduction, but some new diffraction peaks emerged at 2θ = 44.6◦, 51.9◦, 76.8◦, attributing to (111), (200),
(220) crystal planes of face-centered cube (fcc) Ni, respectively. Considering the low content of added
Mn2+ that is difficult to detect, we mainly focus on the diffraction of nickel species. The weak broad
diffraction peaks located at 37.1◦ and 63.3◦ are attributing to the (111) and (220) crystal planes of NiO
(fcc), respectively [41]. The sizes of Ni particles in these NiAl-C, NiMn0.5Al10-C, NiMn1Al10-C, and
NiMn2Al10-C catalysts were calculated to be 9.0 ± 0.5, 8.7 ± 0.5, 8.5 ± 0.5 and 8.6 ± 0.5 nm, respectively.
This indicates that the adding of Mn has only a slight influence on the size of the Ni particles.
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Figure 1. XRD results of LDHs precursors (a) and NiMnxAl10 catalysts (b). The inset shows the 
displacement of the first diffraction peak (LDH-layered double hydroxide, C-catalyst). 

Table 1. Lattice parameters of the LDHs. 

LDHs d003/nm d006/nm d009/nm d110/nm aa = 2d110/nm bc = (d003 + 2d006 + 3d009)/nm 
NiAl-LDH 0.741 0.378 0.255 0.151 0.302 2.258 

NiMn0.5Al10-LDH 0.752 0.378 0.255 0.151 0.302 2.269 
NiMn1Al10-LDH 0.758 0.378 0.255 0.151 0.302 2.275 
NiMn2Al10-LDH 0.752 0.378 0.255 0.151 0.302 2.269 

a The average distance of the metal cations in the hydrotalcite layer; b Three times of the interlayer thickness. 

The scanning electron microscope (SEM) images of NiMnxAl10-LDHs before and after the 
reduction are shown in Figure 2. The hydrothermally synthesized LDHs are composed of the 
connected nanosheets with relatively uniform size and smooth surface (Figure 2a–d). The NiMnxAl10 
catalysts obtained after reduction maintain the flake-like morphology but with a rougher surface 
(Figure 2e–h). The SEM results demonstrate that the incorporation of Mn has no obvious effect on the 
morphology of LDHs crystals, and the thin layered structure was still preserved after reduction, 
which is helpful to investigate the change of Ni particles before and after methanation reaction. 

The physical properties of the catalysts were investigated by BET (Figure 3). As can be seen from 
Figure 3a, all the catalysts exhibit IV type adsorption-desorption isotherms with type H3 hysteresis 
loops. The specific surface areas of the catalysts are similar (shown in Table 2). Nonetheless, the pore 
volume of NiMn0.5Al10-C and NiMn1Al10-C are relatively larger, which is possibly caused by the 
formation of macropores from the packing of nanosheets (Figure 3b). 

Figure 1. XRD results of LDHs precursors (a) and NiMnxAl10 catalysts (b). The inset shows the
displacement of the first diffraction peak (LDH-layered double hydroxide, C-catalyst).

Table 1. Lattice parameters of the LDHs.

LDHs d003/nm d006/nm d009/nm d110/nm a a = 2d110/nm b c = (d003 + 2d006 + 3d009)/nm

NiAl-LDH 0.741 0.378 0.255 0.151 0.302 2.258
NiMn0.5Al10-LDH 0.752 0.378 0.255 0.151 0.302 2.269
NiMn1Al10-LDH 0.758 0.378 0.255 0.151 0.302 2.275
NiMn2Al10-LDH 0.752 0.378 0.255 0.151 0.302 2.269

a The average distance of the metal cations in the hydrotalcite layer; b Three times of the interlayer thickness.

The scanning electron microscope (SEM) images of NiMnxAl10-LDHs before and after the
reduction are shown in Figure 2. The hydrothermally synthesized LDHs are composed of the connected
nanosheets with relatively uniform size and smooth surface (Figure 2a–d). The NiMnxAl10 catalysts
obtained after reduction maintain the flake-like morphology but with a rougher surface (Figure 2e–h).
The SEM results demonstrate that the incorporation of Mn has no obvious effect on the morphology of
LDHs crystals, and the thin layered structure was still preserved after reduction, which is helpful to
investigate the change of Ni particles before and after methanation reaction.

The physical properties of the catalysts were investigated by BET (Figure 3). As can be seen from
Figure 3a, all the catalysts exhibit IV type adsorption-desorption isotherms with type H3 hysteresis
loops. The specific surface areas of the catalysts are similar (shown in Table 2). Nonetheless, the pore
volume of NiMn0.5Al10-C and NiMn1Al10-C are relatively larger, which is possibly caused by the
formation of macropores from the packing of nanosheets (Figure 3b).
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Figure 3. N2-adsorpotion/desoportion isotherms (a) and pore size distribution of catalysts (b). 
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Table 2. Physicochemical property of catalysts.

Catalysts
a Wt% ± 0.1 b SBET

(m2·g−1)

c Vp
(cm3·g−1)

d H2 Uptake
(µmoL/g)

e De (%) ± 0.1
Ni Al Mn

NiAl-C 61.7 7.3 0 76 0.2 534 10.2
NiMn0.5Al10-C 57.5 7.3 0.6 87 0.5 559 11.4
NiMn1Al10-C 57.8 7.7 1.7 69 0.7 631 12.8
NiMn2Al10-C 57.9 7.9 3.2 66 0.2 550 11.2

a Determined by ICP; b Calculated by BET equation; c Determined by the volume of N2 adsorbed at p/p0 = 0.97;
d Calculated based on the H2-TPD data; e Calculated using the H2-TPR and H2-TPD results.

The reduction behaviors of LDHs were investigated by H2-TPR (Figure 4a). All the samples have
two distinct reduction peaks: the first one located at 300–450 ◦C is derived from the reduction of Ni
oxide species with a weak interaction with the substrate, and the second one at 450–700 ◦C is attributed
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to the reduction of Ni oxide species, having a strong interaction with the matrix. As the molar ratio of
Mn/Al changes from 0:10 to 1:10, the first reduction peak shifts to low temperature range, indicating
that adding a proper amount of Mn can improve the reduction of nickel species [12]. However, with
further increase of Mn/Al molar ratio to 2:10, the reduction temperature of the catalyst is increased
again, because of the reinforced interaction between nickle oxide species and the excess of Mn oxide
species [12]. Figure 4b shows the H2-TPD curves of the NiMnxAl10 catalysts. Although MnOx is
capable of adsorbing hydrogen, the amount of Mn is much lower than that of Ni in the catalyst, so
we will mainly focus on the H2 uptake of Ni. In addition, there is no H2 uptake of Al2O3 [11,24,28].
Therefore, the dispersion of Ni particles can be calculated from the H2-TPD results. All catalysts have
only one H2 desorption peak at the temperature interval of 100–200 ◦C, corresponding to desorption
of H2 of highly dispersed Ni nanoparticles or Ni nanoparticles with many surface defects [12], which
are benefit to the diffusion and dissociation of surface hydrogen [49]. Table 2 lists the H2 adsorption
amount on a series of NiMnxAl10 (x = 0, 0.5, 1, 2) catalysts. Among them, NiMn1Al10 shows the
maximum H2 uptake of 631 µmol/gcat and highest Ni distribution of 12.8 ± 0.1%, indicating that
incorporating an appropriate amount of Mn can significantly improve the H2 adsorption capacity and
the dispersion of Ni nanoparticles. However, excessive Mn will overlay fractional the active site of Ni
particles and reduce the adsorption capacity for H2, which is very important for the performance of
the catalyst.
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transmission electron microscopy (HRTEM) images. The lattice distance of 0.20, 0.25 and 0.21 nm is 
attributed to the (111) plane of Ni (fcc) particles, the (211) plane of Mn3O4 and the (420) plane of 
Mn2O3, respectively. The reason why Mn exists in the form of oxides is that the reduction order of 
MnOy is first from MnO2/Mn2O3 to Mn3O4, and then to MnO, and the final reduction to elemental Mn 
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Figure 4. (A) H2-TPR curves of the LDHs: (a) NiAl-LDH, (b) NiMn0.5Al10-LDH, (c) NiMn1Al10-LDH,
(d) NiMn2Al10-LDH and (B) H2-TPD results of the catalysts: (a) NiAl-C, (b) NiMn0.5Al10-C,
(c) NiMn1Al10-C and (d) NiMn2Al10-C.

The dispersion of Ni nanoparticles was further investigated by transmission electron microscopy
(TEM) (Figure 5). As can be seen from TEM images (Figure 5a–d), the catalysts maintain the
nanosheet morphology of the LDHs precursors. Additionally, Ni nanoparticles are highly dispersed
and embedded in the AlOx matrix. The inserted histograms show the size distributions of the Ni
nanoparticles. The average diameters of Ni in NiAl-C, NiMn0.5Al10-C, NiMn1Al10-C and NiMn2Al10-C
are 12.6 ± 0.5, 12.3 ± 0.5, 10.6 ± 0.5 and 12.4 ± 0.5 nm (based on measurements of 150 particles),
respectively. These results are very close to those calculated from the XRD results. The lattices
and distribution of Ni and Mn species on the substrate can be observed from the high resolution
transmission electron microscopy (HRTEM) images. The lattice distance of 0.20, 0.25 and 0.21 nm
is attributed to the (111) plane of Ni (fcc) particles, the (211) plane of Mn3O4 and the (420) plane of
Mn2O3, respectively. The reason why Mn exists in the form of oxides is that the reduction order of
MnOy is first from MnO2/Mn2O3 to Mn3O4, and then to MnO, and the final reduction to elemental Mn
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requires a temperature higher than 800 ◦C [50]. The TEM image of NiAl-C demonstrates Ni particles
are fixed by the poorly crystallized AlOx shell (Figure 5e), and the AlOx is formed during the reduction
of the LDHs precursors [41]. For the Mn-added catalyst, Ni particles and the adjacent MnOy are
collectively confined in the matrix of AlOx (Figure 5e), which is critical to improve the stability of
the catalyst. The XRD, SEM, and TEM results show that the Mn incorporated LDHs maintains its
structural characteristics during in situ reduction, which is beneficial to preparation Ni-based catalysts
embedded in AlOx matrix with high dispersion.
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Energy dispersive spectroscopy (EDS) mapping was used to characterize the spatial distribution
of individual elements in the catalyst (Figure 6). Fig. 6a shows that the signal of Ni element is strong
in the central part of the particles, while the Al and O elements are mainly distributed around Ni
particles. The distribution of Mn element cannot be clearly seen in Figure 6a due to the small amount
of Mn in the catalyst. The spatial distribution of Ni and Mn in the NiMn1Al10-C catalyst is shown in
Fig. 6b. MnOy (Mn3O4 or Mn2O3) is also dispersed around the Ni particles; thus, both the AlOx and
MnOy have a certain steric hindrance effect on the agglomeration of the Ni particles to increase the
stability of the catalysts. In addition, it can be seen from Fig. 6b that MnOy is distributed around the
Ni particles, which coincides exactly with the TEM results (Figure 5f).

The surface valence of the catalysts derived from LDHs precursors were investigated by XPS
(Figure 7). The Ni 2p3/2 spectrums are shown in Figure 7A. The surface of all the catalysts is composed
of a large portion of Ni2+ (855.8 eV), and a little part of Ni0 (853.1 eV), which is probably due to the
samples being exposed to air prior to testing and the surface Ni species being oxidized [14,50]. After
adding Mn in the catalyst, the binding energy of Ni 2p3/2 shifts from 855.6 to 855.9 eV, which can be
attributed to the interaction between MnOy and Ni [51]. The spectrum of Mn 2p3/2 can be broken
up into three peaks with centers at 647.7, 642.9, and 637.8 eV, which are corresponding to the Mn4+,
Mn3+ and Mn2+ species, respectively [12,51–53]. With the increase of Mn content, the Mn4+/Mn3+

atomic ratios in the catalysts significantly increased (Figure 7B and Table 3). O1s spectra are shown
in Figure 7C. All the catalysts are shown a broad peak that can be fitted into two peaks by searching
for the optimal combination of Gaussian bands. The obtained two peaks center at 530.5 eV and
531.8 eV are attributed to lattice oxygen (OI) and surface adsorbed oxygen (OII), respectively [53,54].
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The amounts of oxygen vacancies are positively correlated with the relative percentage of adsorbed
oxygen species [50,51]. The integrated area ratios of OII/(OII + OI) are listed in Table 3, indicating that
the incorporated Mn can significantly increase the oxygen vacancies in the catalyst.
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Table 3. Surface valence of catalysts determined by XPS.

Catalysts Mn 2p2/3 Position (eV)
Mn4+/Mn3+ O 1s Position (eV) OII/(OII + OI)

Mn2+ Mn3+ Mn4+ OI OII

NiAl-C - - - - 530.5 531.8 0.41
NiMn0.5Al10-C 637.8 642.8 647.7 0.33 530.5 531.8 0.49
NiMn1Al10-C 637.9 642.9 647.6 0.59 530.5 531.8 0.56
NiMn2Al10-C 637.9 643.0 647.8 0.48 530.4 531.7 0.50

Based on the above results, it is found that both MnOy and Ni particles are fixed by the
AlOx matrix, and MnOy is distributed around the Ni particles. In order to further elaborate the
microstructure of the catalyst, we have drawn a schematic diagram of the structure of the catalyst
(Figure 8). During the reduction process, the layered structure of LDHs is collapsed to form Ni(MnAl)Ox

nanosheets, and the Ni clusters decorated with MnOy species are formed, half-buried, and distributed
on the nanosheets. In other words, the Ni particles are decorated with MnOy and embedded on the
AlOx matrix [41]. The segregation effect of the AlOx matrix prevents the sintering of Ni particles
during the methanation reaction, thereby increasing the service life of the catalyst. In summary,
the nickel-based catalyst synthesized by in situ reduction of LDHs has a unique structure, which is
important for enhancing the low temperature activity and high temperature stability of the catalyst.
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2.2. Catalytic Activity

Generally, high pressure is used in the synthesis of SNG in the industry [14]. For the purpose
of studying the low temperature activity of the catalysts for CO methanation under the industrial
reaction conditions, the performance test was executed at 3.0 MPa and a WHSV of 30,000 mL·g−1·h−1

(Figure 9). For NiAl-C, the CO conversion and CH4 yield at 250 ◦C is 62% and 59%, respectively. After
adding Mn in the catalyst, the performances of NiMnxAl10-C are significantly improved (shown in
Figure 9a–b). Among them, NiMn1Al10-C exhibits the highest performance at low temperature, and
both CO conversion and selectivity of CH4 achieve 100% at 250 ◦C, owning to the high scatter of Ni
nanoparticles and H2 uptake (Table 2), and appearance of a number of oxygen vacancies in the catalyst
(Table 3). However, the conversion of CO on commercial catalyst (Ni-35.3 wt%) is only 14% at the
same reaction condition. To the best of our knowledge, there is no reported Ni-based catalyst that
can achieve 100% conversion of CO at such low temperatures and high pressure of CO with feed gas
H2:CO of 3:1 [16,24,26], at which the conventional nickel-based catalysts are susceptible to inactivation
owing to the formation of Ni(CO)4. In this work, the synthesized NiMnxAl10-C can convert most of the
CO even at low temperatures, so that the CO concentration on the surface of the catalysts is very low,
which can avoid the formation of nickel carbonyl. Therefore, the NiMnxAl10-C catalyst is promising in
industrial applications of low temperature methanation.
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(c) CH4 yield.

The durability test is indispensable for further investigation of the low temperature performance of
the catalysts (Figure 10a). The conversion of CO of the Commercial-C decreased from 36% to 24% after
23 h of reaction at a low temperature. The amount of Ni of the fresh and used catalysts are determined
by ICP; we found that the amount of Ni decreased from 35.3 wt% to 28.4 wt%, which is a result of the
formation of a Ni(CO)4. However, the performance of the NiMn1Al10-C did not decrease, which was
attributed to the fact that the added Mn increased the H2 uptake and the number of oxygen vacancies
(Figures 4b and 7C). Although Commercial-C has poor low temperature activity, its high temperature
stability is good [9]. Furthermore, a good methanation catalyst should show high performance at
low temperatures and strong resistance against sintering and coking at high temperatures. Therefore,
the stability of NiMn1Al10-C was evaluated at 500 ◦C and 3.0 MPa with different space velocities.
The NiMn1Al10-C is very stable at a high temperature with different space velocities: the CO
conversion maintains at 100% for 180 h, and the selectivity of CH4 is slightly reduced when the
space velocity is increased from 30,000 mL·g−1·h−1 to 60,000 mL·g−1·h−1(Figure 10b). Compared
with the supported nickel-based catalyst, the NiMnXAl10-C catalyst has high low-temperature activity
and strong anti-sintering performance [15,17,35,37]. The high stability of the NiMn1Al10-C at high
temperatures is attributed to the confinement effect of AlOx and MnOy ( Figures 5f and 6), which
prevents the sintering of Ni particles during the reaction.
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Figure 11. XRD (a), TG (b) and Raman spectrum (c) of the catalysts. 

3. Materials and Methods  

3.1. Chemicals 

Aluminum nitrate nonahydrate (Al(NO3)3·9H2O), urea (CO(NH2)2), Nickel (II) nitrate 
hexahydrate (Ni(NO3)2·6H2O) and manganese nitrate (Mn(NO3)2·4H2O) were purchased from 
Sinopharm Chemical Reagent Co. Ltd., Shanghai, China. All reagents were of analytical grade and 
used without further purification. 

Figure 10. Low temperature (a) and high temperature (b) lifetime tests of the catalysts.

The XRD results of the fresh and used NiMn1Al10-C are shown in Figure 11a, and both of them
display the characteristic peaks at 2θ = 44.6◦, 51.9◦, 76.8◦, attributing to (111), (200), (220) planes of Ni
(fcc), respectively. Additionally, the peak intensities of Ni for the used catalyst almost do not change
compared with that of the fresh one. The average diameters of Ni particles in the fresh and used
catalysts are 8.5 ± 0.5 and 8.3 ± 0.5 nm, respectively, indicating there was no agglomeration of the Ni
particles after the high temperature stability test. The result proves that the NiMn1Al10-C catalyst has a
high stability at high temperatures, which was due to the confinement of the AlOx substrate (Figure 5).
The carbon deposit amount was investigated by thermogravimetric (TG) (Figure 11b). The weights of
fresh and used catalysts increased at 200–400 ◦C is associated with the oxidation of the reduced Ni
particles. The superposition of both TG curves indicates that there were almost no carbon deposits
formed, implying that NiMn1Al10-C possesses excellent anti-coking properties due to the high H2

adsorption and catalyst containing a larger number of oxygen vacancies (Tables 2 and 3). By contrast,
with the nickel-based catalyst synthesized by traditional means [9–11,15,21], the NiMn1Al10-C catalyst
exhibits much higher stability due to greatly improved resistance to coking and sintering. The carbon
deposit amount was further investigated by Raman spectra (Figure 11c). No peak of carbon was
observed, indicating that there was no carbon deposit on the used catalyst surface.
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3. Materials and Methods

3.1. Chemicals

Aluminum nitrate nonahydrate (Al(NO3)3·9H2O), urea (CO(NH2)2), Nickel (II) nitrate
hexahydrate (Ni(NO3)2·6H2O) and manganese nitrate (Mn(NO3)2·4H2O) were purchased from
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Sinopharm Chemical Reagent Co. Ltd., Shanghai, China. All reagents were of analytical grade
and used without further purification.

3.2. Catalysts Preparation

The NiAl hydrotalcite was prepared by hydrothermal method. First, 1.5 mmol of Ni(NO3)2·6H2O,
0.5 mmol of Al(NO3)3·9H2O and 10 mmol of CO(NH2)2 were dissolved in 70 mL of deionized
water. Then the solution was transferred into an autoclave for a hydrothermal treatment at 120 ◦C
for 12 h. Subsequently, the product was centrifuged and washed with deionized water. The collected
product was subsequently dried at 80 ◦C for 15 h, which was named NiAl-LDH. The synthesis
of the NiMnAl ternary hydrotalcites is similar to the above process, except that a certain amount
of Mn(NO3)2·4H2O was added. The synthesized NiMnAl ternary hydrotalcites with the molar
ratios of Mn/Al (Mn:Al = 0.5:10, 1:10, 2:10) are denoted as NiMn0.5Al10-LDH, NiMn1Al10-LDH,
and NiMn2Al10-LDH, respectively. After reduction in hydrogen at 600 ◦C for 2 h (10 ◦C/min), the
methanation catalysts are marked as NiAl-C (C stands for the catalyst), NiMn0.5Al10-C, NiMn1Al10-C,
and NiMn2Al10-C accordingly. The commercial catalyst (Ni-35.3 wt%) was purchased from LiaoNing
HaiTai SCI-TECH Development CO., Ltd., Fushun, China. For comparison with the commercial
catalyst, nickel content of the NiMnAl catalysts was diluted to 35 wt% with α-Al2O3 (commercial
γ-Al2O3 (GongYi HuaYu, Zhengzhou, China) calcined at 1200 ◦C in air for 6 h), and the α-Al2O3 is
inactive for CO methanation.

3.3. Catalysts Characterization

The X-ray diffraction (XRD) characterization was carried out on Cu-Ka radiation with a rate
of 10◦ min−1 (40 kV, 40 mA). N2 adsorption/desorption isotherms and the specific surface area
and pore size distributions of the samples were tested on the Quantachrome NOVA 3200e (FL, USA).
The morphology and microscopic feature of the samples were detected by scanning electron microscope
(SEM) (JSM-7001F, INCA X-MAX, Tokyo, Japan, 15 kV) and transmission electron microscopy
(TEM) (JEM-2010F, JEOL, Tokyo, Japan). Hydrogen temperature programmed reduction (H2-TPR)
and Hydrogen temperature programmed desorption (H2-TPD) were obtained from Quantachrome
automated chemisorption analyzer. In a typical experiment of H2-TPR, the hydrotalcite precursor
(30 mg) was sealed in the quartz U-tube reactor and purged in a He flow for 2 h at 150 ◦C (10 ◦C/min),
and then reduced by injecting H2 and Ar (10% H2/Ar) at a given temperature. In a typical experiment
of H2-TPD, the hydrotalcite precursor (100 mg) firstly in situ reduced with pure H2, then cooled down
in the N2 atmosphere, and subsequently switched to Ar flow purging for 1.5 h to remove the physically
adsorbed H2 on the surface of the catalysts. The H2 adsorption amounts of the catalysts were measured
at a heating rate of 10 ◦C/min. The dispersion of Ni nanoparticles was calculated from the data of
H2-TPD, and the calculation details can be found in our previous work [9]. The elements amount
of the catalysts were obtained from Optima 7000 DV inductively coupled plasma optical emission
spectrometer (ICP, MA, USA). The surface chemical compositions of the catalysts were measured by
X-ray photoelectron spectroscopy (XPS) on an Esca Lab 250Xi with a monochromatic Al Kα radiation.
The carbon deposits on the surface of the used catalyst were determined by thermogravimetric analyzer
(TG/DTA 6300, Seiko Instruments, Tokyo, Japan) and Raman Spectrometer (Renishaw RM 2000, laser
wavelength = 532 nm, London, UK).

3.4. Catalytic Performance Measurement

The methanation measurements are similar to what we have reported previously [11]. The CO
methanation reaction was performed in a fixed bed reactor at 3.0 MPa, and the reaction data were
recorded in the temperature interval of 250–500 ◦C; the spacing is 20 ◦C or 50 ◦C. In each case,
the catalyst (200 mg) admixed with 5 g of quartz sand, then heated to the reaction temperature (250 ◦C)
in a H2 atmosphere, and finally switched to syngas (H2:CO:N2 = 3:1:1) for methanation reaction.
The mixed gas after the methanation reaction was first cooled down and then analyzed on line by
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Micro Gas chromatography (3000A; Agilent Technologies, CA, USA). The amount of H2, N2, CH4, and
CO in the outlet gases were analyzed by a thermal conductivity detector (TCD, CA, USA) connected to
a molecular sieve column. The amount of CO2, C2H4 and C2H6 in the outlet gases were detected by
TCD connected to a Plot Q column (CA, USA). The stability of the catalyst is investigated at 3.0 MPa
and 500 ◦C.

4. Conclusions

In summary, to enhance the low-temperature performance of the Ni catalysts for syngas
methanation, the highly dispersed Ni nanocatalysts are successfully prepared by in situ reduction of
NiMnAl-LDHs precursors, and Ni particles decorated with the promoter of MnOy are confined in the
matrix of AlOx. The synthesized NiMnAl catalysts exhibit higher properties than the NiAl catalyst
since the addition of Mn increases dispersion of Ni particles and H2 uptake. The NiMn1Al10 exhibits
the best performance at low temperatures and the greatest resistance to sintering and coking due to
the highest dispersion of Ni and the steric hindrance of AlOx and MnOy against aggregation of the Ni
particles. This work demonstrates how to enhance the performance of the Ni catalysts in methanation
by carefully adding promoter MnOy and by embedding the fine Ni particles on the AlOx nanosheets.
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