Electronic Supplementary Information

Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media

Gonçalo A. O. Tiago ¹, Kamran T. Mahmudov ^{1,2,*}, M. Fátima C. Guedes da Silva ^{1,*}, Ana P. C. Ribeiro ^{1,*}, Luís C. Branco ³, Fedor I. Zubkov ⁴ and Armando J. L. Pombeiro ¹

- ¹ Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal; goncalo.tiago@tecnico.ulisboa.pt (G.A.O.T.); pombeiro@tecnico.ulisboa.pt (A.J.L.P.)
- ² Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
- ³ LAQV-REQUINTE, Departamento de Química, Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; l.branco@fct.unl.pt (L.C.B.);
- ⁴ Organic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation; fzubkov@sci.pfu.edu.ru (F.I.Z.)
- * Correspondence: kamran_chem@yahoo.com or kamran_chem@mail.ru (K.T.M.); fatima.guedes@tecnico.ulisboa.pt (M.F.C.G.S.); apribeiro@tecnico.ulisboa.pt (A.P.C.R.);

1. X-ray analyses

Figure S1. Fragments of the 2D network in compound **1** viewed (top) down the crystallographic *a* axis, and (bottom) perpendicular to the *ab* plane (90° flipped).

Figure S2. Fragment of a 1D infinite chain in compound **1** to highlight the side-sharing {AgO}₂ and {AgO₂S}₂ metallacycles. The non-coordinated atoms from the ligands are omitted for clarity.

Figure S3. Fragment of two 2D sheets of polymer **1** with intercalated water molecules (represented in space filling model).

Figure S4. Fragments of the 1D chain in compound 2 viewed perpendicular to the *ab* plane.

Figure S5. Fragment of chains of polymer 2 with intercalated water molecules (represented in space filling model).

D–H…A	D-H	Н…А	D…A	D–H…A	Symmetry operation
		1			
N1-H1N…O1	0.82(10)	1.89(10)	2.673(8)	158(11)	intra
N5-H5O…O4	0.94(10)	1.90(10)	2.829(9)	166(10)	<i>x,</i> -1+ <i>y,z</i>
		2			
O1-H1W…O4	0.89(2)	1.86(2)	2.748(9)	177(9)	<i>x,y,1+z</i>
O1–H2W…O3	0.90(2)	1.95(3)	2.825(9)	164(9)	-x,-y,-z
N4-H4A…O2	0.89(2)	2.41(5)	3.229(9)	152(8)	-1+ <i>x</i> , <i>y</i> , <i>z</i>
N4-H4B…O1	0.90(2)	2.19(6)	2.952(9)	142(8)	intra
N5-H5A…O1W	0.90(2)	2.15(4)	3.000(10)	158(9)	<i>x,y,-1+z</i>
N5-H5B…O1	0.92(2)	2.33(7)	3.029(9)	133(8)	-x,-y,-z
N6-H6A…O1	0.90(2)	2.23(7)	2.980(10)	141(8)	1+ <i>x</i> , <i>y</i> , <i>z</i>
N6-H6B…O2	0.89(2)	2.30(5)	3.136(9)	155(9)	intra
N7-H7A…O1W	0.89(2)	2.27(3)	3.158(10)	172(9)	-x,-y,-z
N7-H7B…O2	0.89(2)	2.13(4)	2.973(10)	157(9)	intra

Table S1. Hydrogen bonding distances (Å) and angles (°) for 1 and 2. a

2. Calculation of aldehyde cyanosilylation conversion values by ¹H NMR analysis of crude products

a) Table 5, entry 4

The ¹H NMR spectrum of crude products from benzaldehyde cyanosilylation (with addition of internal standard - 1,2-dimethoxyethane) under the conditions described at Table 5, entry 4 (in MeOH), is displayed in Figure S6.

Figure S6. ¹H NMR spectrum of crude products from benzaldehyde cyanosilylation with TMSCN using 5 mol% of catalyst **2** (Table 5, Entry 4).

b) Table 5, entry 4

Conversion is calculated by dividing characteristic peak area of the corresponding product by sum of characteristic peak areas of substrate and corresponding product.

Conversion (%) = $[a/(a + b)] \times 100\%$

a: characteristic peak area of the corresponding product.

b: characteristic peak area of substrate.

The ¹H NMR spectrum of crude products from benzaldehyde cyanosilylation in a mixture of [DHTMG][L-Lactate] : MeOH (1:10, v/v) (2 mL) under the conditions described at Table 2, is displayed in Figure S7.

Characteristic peak area of 2-phenyl-2-((trimethylsilyl)oxy)acetonitrile = 1.00Characteristic peak area of benzaldehyde = 0.08

Figure S7. ¹H NMR spectrum of crude products from benzaldehyde cyanosilylation with TMSCN using 5 mol% of catalyst **2** in a mixture of [DHTMG][*L*-Lactate] : MeOH (1:10, v/v) (2 mL) (Table 5, Entry 4).