Support Information

10		• Onit cell parameters for	$\mathbf{\Pi ZSWI} = \mathbf{J} / \mathbf{AI}_2 \mathbf{O}_3$	material and	ZI- and Mg- I	nounied samples
	N⁰	Samples	a, Å	b, Å	c, Å	Volume, Å ³
	1	HZSM-5/Al ₂ O ₃	20.162	20.002	13.432	5416.8
	2	Zr-HZSM-5/Al ₂ O ₃	20.123	19.942	13.466	5431.3
	3	Mg-HZSM-5/Al ₂ O ₃	20.176	19.991	13.392	5374.3

Table S1. Unit cell parameters for HZSM- $5/Al_2O_2$ material and Zr- and Mg- modified samples

Fig. S1. NH₃ TPD profiles of the fresh HZSM-5/Al₂O₃, Zr- and Mg-modified samples. $1-HZSM-5/Al_2O_3,\ 2-Zr-HZSM-5/Al_2O_3,\ 3-Mg-HZSM-5/Al_2O_3.$ Total Acidity, µmol NH₃/ g (cat): 1 – 1005, 2 – 924, 3 – 952.

Fig. S2. Conversion of DME (X(DME)) as a function of time on stream (TOS). $1 - HZSM-5/Al_2O_3$, $2 - Zr-HZSM-5/Al_2O_3$, 3- Mg-HZSM-5/Al₂O₃. $T = 320^{\circ}C$, P = 0.1 MPa, $\tau = 0.82$ g(cat)/g(C)*h.

Fig. S3. ²⁷Al MAS NMR spectra of Mg-HZSM-5/Al₂O₃. 3 - hydrothermally treated sample, 3S fresh sample.

Fig. S4. The pore size distribution (A) (BJH method) and BET isotherms (B). 1 – HZSM-5/Al₂O₃, 2 – Zr-HZSM-5/Al₂O₃, 3 – Mg-HZSM-5/Al₂O₃.

Fig. S5. IR spectra of pyridine adsorbed at 150°C. 1 – HZSM-5/Al₂O₃, 2 – Zr-HZSM-5/Al₂O₃, 3 – Mg-HZSM-5/Al₂O₃.

Fig. S6. The experimental and equilibrium yield of methanol for HZSM-5/Al₂O₃ (A) and Zr-HZSM-5/Al₂O₃ (B).

Fig. S7. The product distribution of C_1 - C_4 alkanes (A) and C_5 - C_8 hydrocarbons (B) over Mg-HZSM-5/Al₂O₃.

Fig. S8. The ratio of ethylene/alkenes C₃–C₅ (R) as a function of DME conversion (X(DME)) for the Mg-HZSM-5/Al₂O₃.

 $C_2H_4/2MB$ is the ratio of ethylene to sum of 2-methylbutane and 2-methyl-2-butene yield in carbon basis.

Fig. S9. Molar ratio of trans-/cis- C₄H₈ as a function of DME conversion (X(DME)). 1 – HZSM-5/Al₂O₃, 2 – Zr-HZSM-5/Al₂O₃, 3 – Mg-HZSM-5/Al₂O₃.

The isomerization rate was too high for Zr-modified sample, and the catalysts worked in the kinetic control zone of reaction. Therefore, butenes formed did not have time enough for isomerization into the trans-configuration.

Table S2. Products distribution for HZSM-5/Al₂O₃, Zr- and Mg- modified samples. Experimental data.

	S, % mol.				
Product	HZSM-5/Al ₂ O ₃		Zr-HZSM-5/Al ₂ O ₃		Mg-HZSM-5/Al ₂ O ₃
	X=55%	X=78%	X=53%	X=82%	X=78%

CH ₃ OH	51.2	38.0	49.9	37.9	37.5
C_2H_4	12.7	17.5	13.1	17.8	18.5
C ₃ H ₆	17.4	18.6	18.5	18.9	17.7
$\Sigma C_4 H_8$	7.7	10.5	7.0	9.3	9.6
$\Sigma C_5 H_{10}$	0.9	1.2	0.8	1.3	1.8
CH ₄	0.5	0.6	0.4	0.5	0.8
C_2H_6	0.1	0.1	0.1	0.1	0.1
C ₃ H ₈	0.3	0.8	0.3	0.6	0.8
$\Sigma C_4 H_{10}$	1.0	2.7	1.0	2.6	2.4
$\Sigma C_5 H_{12}$	0.5	1.3	0.8	1.6	1.7
ΣC_6	2.8	3.2	2.9	3.5	3.4
ΣC_{7+}	5.0	5.5	5.2	5.8	5.6

Table S3. The activation energy for the methylation reaction of olefins $C_2 - C_4$ and aromatics. Zeolite HZSM-5 (SiO₂ / Al₂O₃ = 45). Experimental data.

	Methylation	Ea, kJ/mol	References
	agent		
Ethylopo	Methanol	103-109	[50, 51]
Euryrene	DME	94±3	[39]
Dronvlono	Methanol	69	[50, 51]
Propylene	DME	63±3	[39]
Dertomog	Methanol	45	[50, 51]
Butenes	DME	44-56	[39]
Talwara	Methanol*	57-79	[52]
Toluene	DME	52±4	[53]
Vylana	Methanol*	25±5	[52]
Aylene	DME	62±4	[55]

*) for HZSM-5 with $SiO_2/Al_2O_3=30$

Table S4. Chemical reaction equations of conversion DME into hydrocarbons.

N⁰	Reaction				
Hydrocarbon pool formation					
1	$n(CH_3)_2O \rightarrow hydrocarbon pool (cyclopentenyl cations + methylbenzenes cations)$				
Metl	Methylation by DME				
2	$2(CH_3)_2O \rightarrow CH_3OH + C_3H_6 + H_2O$				
3	$(CH_3)_2O + C_3H_6 \rightarrow C_4H_8 + CH_3OH$				
4	$(CH_3)_2O + C_4H_8 \rightarrow C_5H_{10} + CH_3OH$				
5	$(CH_3)_2O + C_5H_{10} \rightarrow C_6H_{12} + CH_3OH$				
6	$(CH_3)_2O + C_6H_{12} \rightarrow C_7H_{14} + CH_3OH$				
7	$(CH_3)_2O + C_7H_{14} \rightarrow C_8H_{16} + CH_3OH$				
Creaking of higher olefins					
8	$C_8H_{16} \rightarrow C_3H_6 + C_5H_{10}$				
9	$C_8H_{16} \rightarrow 2C_4H_8$				
10	$C_7H_{14} \rightarrow C_3H_6 + C_4H_8$				
Methylation polymethylbenzenes by methanol and subsequent dealkilation					
11	$n(CH_3)-C_6H_{6-n}+CH_3OH \rightarrow n-1(CH_3)-C_6H_{6-n}-(C_2H_5)+H_2O$				
12	$n-1(CH_3)-C_6H_{6-n}-(C_2H_5) \rightarrow n-1(CH_3)-C_6H_{7-n}+C_2H_4$				
H-tra	H-transfer				

13	$2C_4H_8 \longrightarrow C_4H_6 + C_4H_{10}$		
14	$C_{3}H_{6} + C_{4}H_{8} \rightarrow C3H8 + C4H6$		
15	$2C_4H_6 \rightarrow \text{cyclo-}C_6H_9\text{-}(C_2H_3) + 2\text{Zeolite} \rightarrow C_6H_5\text{-}(C_2H_5) + 2\text{Zeolite-}H$		
16	$C_4H_6 + C_3H_6 \rightarrow cyclo-C_6H_9-(CH_3) + 4Zeolite \rightarrow C_6H_5-(CH_3) + 4Zeolite-H$		
17	$C_3H_6 + 2Zeolite-H \rightarrow C_3H_8 + 2Zeolite$		
18	$C_4H_8 + 2Zeolite-H \rightarrow C_4H_{10} + 2Zeolite$		
19	$C_5H_{10} + 2Zeolite-H \rightarrow C_5H_{12} + 2Zeolite$		
20	$C_6H_{12} + 2Zeolite-H \rightarrow C_6H_{14} + 2Zeolite$		
21	$C_7H_{14} + 2Zeolite-H \rightarrow C_7H_{16} + 2Zeolite$		
Isomerization			
22	$n-C_4H_8 \rightarrow i-C_4H_8$		
23	$n-C_5H_{10} \rightarrow i-C_5H_{10}$		
24	$n-C_6H_{12} \rightarrow i-C_6H_{12}$		
25	$n-C_7H_{14} \rightarrow i-C_7H_{14}$		