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Abstract: The mainstream strategy for designing hydrogen electrocatalysts is to adjust their surface
electronic structure; however, the conductivity of the electrocatalyst and the synergy with its
substrate are still challenges to overcome. In this work, we report a carbon-doped Co-FeS2/CoS2

(C/Co-FeS2/CoS2) electrode, prepared via a hydrothermal process with carbon cloth (CC) as the
substrate and carbon doping. The C/Co-FeS2/CoS2 electrode shows excellent catalytic activity in
the hydrogen evolution reaction (HER) with an overpotential of 88 mV at a current density of
−10 mA·cm−2 in 0.5 M H2SO4 solution. The Tafel slope is 66 mV·dec−1. Such superior performance is
attributed to the high electrical conductivity of the electrocatalyst and its synergy with the substrate.
Our study provides an efficient alternative in the field of electrocatalysis.
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1. Introduction

Sustainable energy played a crucial role in the past few decades. In contrast with the traditional
energy industry, clean energy attracts attention for its environmentally friendly nature, abundance,
and renewability [1–9]. Water splitting is the most promising method for sustainable hydrogen
preparation [4,10–12]. The current status of platinum-based and palladium-based electrocatalysis for
water splitting exhibits good hydrogen evolution performance; however, the high cost and low earth
abundance seriously hinder the large-scale application of precious metal electrocatalysts [1,12–17].
Non-precious metal electrocatalysts received great attention, but the catalytic performance of
non-precious metal electrocatalysts is still far from that of noble metal catalysts [18–23].

Non-precious metal chalcogenides are considered a class of very promising candidates for the
hydrogen evolution reaction (HER) due to their high abundance, low cost, and thermal and mechanical
stability [13–16]. However, practical applications of non-precious metal chalcogenides as HER cathode
materials are limited by their low electrical conductivity and lack of active sites. In our previous
research, we demonstrated good electrocatalytic properties of Co-doped FeS2, and CoS2 formed
heterostructures on Co-FeS2 petals that can be attributed to the unique three-dimensional hierarchy.
For example, the use of carbon materials solely as conductive substrates does not significantly improve
the performance of the electrocatalysts [11,24]. If the carbon-doped non-precious metal catalyst is
grown on the conductive substrate, its catalytic performance will be greatly improved due to the
improvement of the conductivity of Co-FeS2/CoS2 and its interaction with the substrate [25–27].
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In this study, we used glucose as a carbon source to synthesize carbon doped Co-FeS2/CoS2

(C/Co-FeS2/CoS2) on carbon cloth via a one-step hydrothermal method. The resulting electrode shows
excellent HER catalytic activity with an overpotential of 88 mV at a current density −10 mA·cm−2 in
0.5 M H2SO4 solution; this is 15 mV lower than the overpotential of our previous research [19]. Because
of the incorporation of carbon that results in synergistic catalysis between carbon and Co-aFeS2/CoS2,
the performance of the catalyst is significantly improved due to the improvement in conductivity of
C/Co-FeS2/CoS2 and the reduction of resistance between C/Co-FeS2/CoS2 and the substrate [27–32].
This study of doping non-metallic elements into non-precious catalysts provides a simple and efficient
way to improve performance in the field of electrocatalysis.

2. Result and Discussion

In this work, we obtained C/Co-FeS2/CoS2 with better performance by incorporating carbon
on the basis of our previous research. The typical morphology of C/Co-FeS2/CoS2 was revealed by
scanning electron microscopy images, as presented in Figure 1. The micro-spherical structure of
C/Co-FeS2/CoS2 shown in Figure 1a,b typically ranged from 500 nm to 1 µm in diameter. Figure 1c,d
show the SEM images and energy-dispersive spectrometry (EDS) elemental mapping of C, Fe, Co, and
S for C/Co-FeS2/CoS2, which confirmed the existence of these elements and also suggested that carbon
existed in the C/Co-FeS2/CoS2 [11]. Figure S1 (Supplementary Materials) shows a larger-scale element
distribution, which further demonstrates the uniformity of the electrocatalyst on the whole carbon
fiber. Figure S2 (Supplementary Materials) shows the SEM images of C/CoS2, C/FeS2, and carbon (C)
with particle sizes of 10 to 13 µm, 300 to 400 nm, and 150 to 250 nm, respectively. The addition of
carbon led to the micro-spherical morphology of C/FeS2 and C/CoS2.
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dispersive spectroscopy (EDS) elemental mapping images of C, Fe, Co, and S for C/Co-FeS2/CoS2. 

In addition, we further examined the crystal structure of the sample by X-ray diffraction (XRD) 
and Raman spectroscopy. Figure 2a is the XRD pattern for C/Co-FeS2/CoS2, where the diffraction 
peaks at 28.4°, 32.9°, 37°, 40.7°, 47.3°, and 56.1° can be precisely indexed to planes of FeS2 (JCPDS#42-
1340) at (111), (200), (210), (211), (220), and (311). Only some weaker peaks belong to CoS2 (JCPDS#41-
1471) [13,22,23]. The peak at 26.5° corresponds to the bare carbon fiber, which is supplied in the XRD 

Figure 1. (a–c) Scanning electron microscopy images of C/Co-FeS2/CoS2; (d) corresponding
energy-dispersive spectroscopy (EDS) elemental mapping images of C, Fe, Co, and S for C/Co-FeS2/CoS2.

In addition, we further examined the crystal structure of the sample by X-ray diffraction
(XRD) and Raman spectroscopy. Figure 2a is the XRD pattern for C/Co-FeS2/CoS2, where the
diffraction peaks at 28.4◦, 32.9◦, 37◦, 40.7◦, 47.3◦, and 56.1◦ can be precisely indexed to planes of FeS2

(JCPDS#42-1340) at (111), (200), (210), (211), (220), and (311). Only some weaker peaks belong to CoS2
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(JCPDS#41-1471) [13,22,23]. The peak at 26.5◦ corresponds to the bare carbon fiber, which is supplied
in the XRD text. The XRD results clearly reveal that C/Co-FeS2/CoS2 has a complete nanocrystalline
phase. Figure 2b is the Raman spectrum of the C/Co-FeS2/CoS2. The two peaks at 335 cm−1 and
371 cm−1 exhibited by C/Co-FeS2/CoS2 are due to the incorporation of carbon into Co-FeS2/CoS2. Two
carbon peaks were also observed at the D peak (1351 cm−1) and G peak (1490 cm−1), where the position
of the G peak is determined by the amount of hydrogen from the carbon–hydrogen bond [33]. To
further demonstrate the structure of C/Co-FeS2/CoS2, transmission electron microscopy (TEM) was
employed, as shown in Figure 2c,d and Figure S3 (Supplementary Materials) are high-resolution TEM
(HRTEM) images, indicating that the carbon element was mainly located at the outer edge of the
C/Co-FeS2/CoS2 nanostructure, while the inset shows the selected area electron diffraction (SAED)
patterns of C/Co-FeS2/CoS2, indicating the formation of a good crystal structure. The inter-planar
spacing (210) of FeS2 was 0.24 nm and the spacing (210) of CoS2 was 0.25 nm. The existence of carbon
can be proven from this pattern that had inter-planar spacing of about 0.34 nm.

Catalysts 2018, 8, x FOR PEER REVIEW  3 of 8 

 

text. The XRD results clearly reveal that C/Co-FeS2/CoS2 has a complete nanocrystalline phase. Figure 
2b is the Raman spectrum of the C/Co-FeS2/CoS2. The two peaks at 335 cm−1 and 371 cm−1 exhibited 
by C/Co-FeS2/CoS2 are due to the incorporation of carbon into Co-FeS2/CoS2. Two carbon peaks were 
also observed at the D peak (1351 cm−1) and G peak (1490 cm−1), where the position of the G peak is 
determined by the amount of hydrogen from the carbon–hydrogen bond [33]. To further demonstrate 
the structure of C/Co-FeS2/CoS2, transmission electron microscopy (TEM) was employed, as shown 
in Figure 2c. Figure 2d and Figure S3 (Supplementary Materials) are high-resolution TEM (HRTEM) 
images, indicating that the carbon element was mainly located at the outer edge of the C/Co-FeS2/CoS2 
nanostructure, while the inset shows the selected area electron diffraction (SAED) patterns of C/Co-
FeS2/CoS2, indicating the formation of a good crystal structure. The inter-planar spacing (210) of FeS2 
was 0.24 nm and the spacing (210) of CoS2 was 0.25 nm. The existence of carbon can be proven from 
this pattern that had inter-planar spacing of about 0.34 nm. 

 
Figure 2. (a) X-ray diffraction (XRD) pattern of C/Co-FeS2/CoS2; (b) Raman spectroscopy pattern of 
C/Co-FeS2/CoS2; (c) transmission electron microscopy (TEM) image of C/Co-FeS2/CoS2; (d) high-
resolution TEM (HRTEM) image of C/Co-FeS2/CoS2 (the insets show the SAED patterns). 

To understand the elemental valence and chemical composition of C/Co-FeS2/CoS2, we 
conducted X-ray photoelectron spectroscopy (XPS) measurements. Figure 3a shows the full XPS 
survey spectra of C/Co-FeS2/CoS2. Figure 3b is the XPS spectrum of the C element. In Figure 3c, the 
two peaks at 708 eV and 720 eV correspond to Fe 2p3/2 and Fe 2p1/2. The other peaks at 712 and 726.6 
eV correspond to Fe 2p3/2 and Fe 2p1/2 of C/Co-FeS2/CoS2, which had a positive shift as compared 
with FeS2, due to the formation of an interface between FeS2 and CoS2 [15]. The XPS spectrum of Co 
shown in Figure 3d consists of two peaks at 778.8 eV for Co 2p3/2 and 793.5 eV for Co 2p1/2, with two 
shake-up satellites [16]. The binding energies of S 2p3/2 at 162.6 eV belong to S22− of CoS2, whereas the 
binding energies of S 2p1/2 at around 163.8 eV correspond to S22− of Co-FeS2, and the peak at around 
168.3 eV is attributed to oxidized S species [16,18,19].  

Figure 2. (a) X-ray diffraction (XRD) pattern of C/Co-FeS2/CoS2; (b) Raman spectroscopy
pattern of C/Co-FeS2/CoS2; (c) transmission electron microscopy (TEM) image of C/Co-FeS2/CoS2;
(d) high-resolution TEM (HRTEM) image of C/Co-FeS2/CoS2 (the insets show the SAED patterns).

To understand the elemental valence and chemical composition of C/Co-FeS2/CoS2, we conducted
X-ray photoelectron spectroscopy (XPS) measurements. Figure 3a shows the full XPS survey spectra of
C/Co-FeS2/CoS2. Figure 3b is the XPS spectrum of the C element. In Figure 3c, the two peaks at 708 eV
and 720 eV correspond to Fe 2p3/2 and Fe 2p1/2. The other peaks at 712 and 726.6 eV correspond to Fe
2p3/2 and Fe 2p1/2 of C/Co-FeS2/CoS2, which had a positive shift as compared with FeS2, due to the
formation of an interface between FeS2 and CoS2 [15]. The XPS spectrum of Co shown in Figure 3d
consists of two peaks at 778.8 eV for Co 2p3/2 and 793.5 eV for Co 2p1/2, with two shake-up satellites [16].
The binding energies of S 2p3/2 at 162.6 eV belong to S2

2− of CoS2, whereas the binding energies of S
2p1/2 at around 163.8 eV correspond to S2

2− of Co-FeS2, and the peak at around 168.3 eV is attributed to
oxidized S species [16,18,19].
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HER activity was analyzed by measuring the linear sweep voltammetry (LSV) curve of
C/Co-FeS2/CoS2 in a 0.5 M H2SO4 solution. The performances of C/CoS2, C/FeS2, C, and bare
CC were also analyzed under the same conditions as shown in Figure 4a. The bare CC showed
almost no catalytic activity. However, C/Co-FeS2/CoS2 grown on CC substrates showed excellent
HER activity, and had a lower overpotential (η = 88 mV) at a current density of −10 mA·cm−2, much
smaller than C/CoS2 (113 mV) and C/FeS2 (177 mV), as shown in Figure 4a. We summarized the
opening voltage of the hydrogen evolution reaction of similar catalysts that were published so far,
and found that C/Co-FeS2/CoS2 had the best performance, as shown in Figure S4 (Supplementary
Materials) [18,19,22,34,35]. The Tafel slope of C/Co-FeS2/CoS2 (66 mV·dec−1) was smaller than that of
C/CoS2 (77 mV·dec−1) and C/FeS2 (119 mV·dec−1), as shown in Figure 4b. It is worth noting that the
electrocatalyst formed on the carbon cloth after the simple glucose reaction showed significant catalytic
activity compared with the blank carbon cloth. The [R(C(RW)] circuit can be obtained by simulating
the electrochemical impedance spectroscopy (EIS) data in Figure S6 (Supplementary Materials). As
shown in the circuit diagram of Figure S6b (Supplementary Materials), Rs, Rct, C, and W represent bulk
solution resistance, charge-transfer resistance, capacitance, and Warburg resistance, respectively. By
comparing the simulated data, it can be found that C/Co-FeS2/CoS2 (0.14 Ω) showed a much smaller
resistance in the Nyquist diagram than C/CoS2 (0.19 Ω) and C/FeS2 (0.54 Ω). Figure 4c indicates
the stability of C/Co-FeS2/CoS2; 8 mV of the overpotential was lost after 500 cycles. In addition,
as shown in Figure S7 (Supplementary Materials), C/Co-FeS2/CoS2 hardly changed its microscopic
morphology after 500 cycles of cyclic voltammetry (CV). It can be seen from the comparison that there
was no significant change in the overall surface of the C/Co-FeS2/CoS2 nanosphere after a 500-cycle
durability test in an acidic solution, with only slight corrosion marks. To analyze the activity of
C/Co-FeS2/CoS2, we calculated non-faradaic double-layer capacitance (Cdl) by cyclic voltammetry
measurements at different scan rates (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mV·s−1) to obtain
the electrochemical surface area (ECSA). The catalytic performances of the working electrode were
normalized to 1 cm2. Data of the cyclic voltammetry measurements at different scan rates are shown in
Figure S5 (Supplementary Materials). It was calculated that the Cdl of C/Co-FeS2/CoS2 was 129 mF·cm−2,
which is much larger than the 43 mF·cm−2 of C/FeS2 and 23 mF·cm−2 of C/CoS2. Although the Cdl

of C was only 1.2 mF·cm−2, it can be said that the carbon obtained after the glucose reaction had a
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certain catalytic activity. Figure S6a,b (Supplementary Materials) show the EIS patterns, whereby
C/Co-FeS2/CoS2 had a better conductivity with an improvement in performance.Catalysts 2018, 8, x FOR PEER REVIEW  5 of 8 
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3. Experimental Section

3.1. Chemicals and Materials

The carbon cloth (CC) model purchased from CeTech Co., Ltd. was WOS1009 (Taiwan, China).
The FeSO4·7H2O reagent used was sold by Shanghai Titan Technology Co., Ltd. (Shanghai, China).
Co(NO3)2·6H2O, sulfur powder (S), thiourea (SC(NH2)2), Na2S·9H2O, C2H5OH, and H2SO4 were
obtained from Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). Deionized water was obtained
using a Millipore filter (Millipore Q, Raleigh, CA, USA).

3.2. Synthesis of C/Co-FeS2/CoS2

Firstly, the appropriate size of carbon cloth (CC) was prepared, cleaned with deionized water and
absolute ethanol, and then dried. Subsequently, FeSO4·7H2O (1.2 mM), Co(NO3)2·6H2O (0.156 mM),
SC(NH2)2 (1.8 mM), and C6H12O6 (0.24 mM) were weighed out. The weighed reagent was added
to a Teflon-lined autoclave (50 mL), and an appropriate amount of deionized water (25 mL) was
added and stirred (15 min). After the first stirring, the sulfur powder (0.72 mM) was weighed and
uniformly added into the reaction vessel and then slowly stirred (15 min). After the second stirring
was completed, the prepared CC was inserted into the solution vertically. The reaction kettle was
heated at 180 ◦C for 8 h. After the reaction was completed and cooled, the sample was taken out and
cleaned with deionized water and absolute ethanol.
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3.3. Synthesis of C/CoS2, C/FeS2, and C

Co(NO3)2·6H2O (1.2 mM), SC(NH2)2 (1.8 mM), and C6H12O6 (0.24 mM) were prepared for
C/CoS2. FeSO4·7H2O (1.2 mM), SC(NH2)2 (1.8 mM), and C6H12O6 (0.24 mM) were prepared for C/FeS2.
C6H12O6 (1.2 mM) and SC(NH2)2 (1.8 mM) were added to synthesis C. They were added to a 50-mL
Teflon-lined autoclave; then, deionized water (25 mL) was added and stirred (15 min). Sulfur powder
(0.72 mM) was then added and stirred (15 min) slowly for C/CoS2 and C/FeS2. Stirring was stopped
and the magnetic stirrer was removed. The cleaned and dried carbon fiber paper was inserted into
the reactor solution vertically, and the reactor was heated at 180 ◦C for 8 h. After the reaction was
completed and cooled, the sample was washed repeatedly with deionized water and ethanol.

3.4. Material Characterization

X-ray diffraction (XRD) patterns were collected using a Bruker D8 Advance X-ray diffractometer
(XRD) with Cu-Kα radiation (15◦ to 75◦, 0.1◦·s−1) (Bruker Daltonics Inc., Karlsruhe, Germany). Raman
measurements were conducted using a Horiba LabRAM system (HORIBA, Ltd., Kyoto, Japan). SEM
images were recorded on a field-emission scanning electron microscope (FE-SEM; JSM-7000F, JEOL
Ltd., Tokyo, Japan). The elemental composition and distribution of the sample were investigated
with an energy-dispersive spectrometer (EDS; Inca x-stream 034A0, Oxford Instruments KK, Tokyo,
Japan). TEM and HRTEM images were recorded on a JEOL type JEM2100 instrument (JEOL Ltd.,
Tokyo, Japan). XPS was performed on the as-synthesized C/Co-FeS2/CoS2 using a PHI5000 Versaprobe
(Ulvac-Phi Inc., Kanagawa, Japan).

3.5. Electrochemical Measurements

The CHI760E electrochemical analyzer (CH Instruments, Chenhua Co., Shanghai, China) was
used to analyze the performance of samples. The test uses a three-electrode system with the sample, a
platinum electrode, and a saturated calomel electrode as the working electrode, counter electrode, and
reference electrode, respectively. The measured potentials were converted to a reversible hydrogen
electrode (RHE) (E(RHE) = EHg/Hg2Cl2 + 0.241 + 0.0591 pH). The electrolyte solution used H2SO4

solution (0.5 M). Prior to testing, nitrogen needed to be bubbled into H2SO4 solution to remove oxygen
from the solution. LSV was measured from −0.8 to 0 V at 2 mV·s−1. The Tafel slope was obtained by
computing the LSV data. The CV was tested at different scan rates with a potential range of 0 to 0.20 V
vs. RHE for HER, and the resulting data were used to calculate the ECSA. EIS measurements were
carried on in a frequency range from 105 to 0.01 Hz with an alternating current (AC) voltage of 5 mV.

4. Conclusions

In summary, C/Co-FeS2/CoS2 with superior performance was prepared successfully by doping
carbon in a one-step hydrothermal method. The synergy between non-metallic elemental carbon and
C/Co-FeS2/CoS2, as well as the optimization of conductivity, further enhanced the catalytic efficiency.
We believe that the doping of non-metallic elements in the catalyst provides a simple, feasible, and
effective direction for the preparation of highly efficient non-precious metal catalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/6/556/s1:
Figure S1. (a) SEM image of C/Co-FeS2/CoS2; (b–e) corresponding EDS elemental mapping images; Figure S2.
(a,d) SEM images of C/FeS2; (b,e) SEM images of C/CoS2; (c,f) SEM images of C; Figure S4. Contrast of HER
activity using electrocatalysts of similar materials; Figure S5. (a–d) cyclic voltammograms of C/Co-FeS2/CoS2,
C/FeS2, C/CoS2, and C were measured in the non-faradaic capacitance current range at scan rates of 5, 10, 20, 30,
40, 50, 60, 70, 80, 90, and 100 mV·s−1; Figure S6. EIS Nyquist plots of C/Co-FeS2/CoS2, C/FeS2, C/CoS2, and C;
Figure S7. (a,b) SEM images of C/Co-FeS2/CoS2; (c,d) SEM images of C/Co-FeS2/CoS2 after 500 cycles.
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