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Abstract: Electrochemical reduction of CO2 to useful chemical and fuels in an energy efficient way is
currently an expensive and inefficient process. Recently, low-cost transition metal-carbides (TMCs)
have been proven to exhibit similar electronic structure similarities to Platinum-Group-Metal (PGM)
catalysts and hence, can be good substitutes for some important reduction reactions. In this work,
we test graphene-supported WC (Tungsten Carbide) nanoclusters as an electrocatalyst for the CO2

reduction reaction. Specifically, we perform density functional theory (DFT) studies to understand
various possible reaction mechanisms and determine the lowest thermodynamic energy landscape of
CO2 reduction to various products, such as CO, HCOOH, CH3OH, and CH4. This in-depth study of
reaction energetics could lead to improvements and development of more efficient electrocatalysts
for CO2 reduction.

Keywords: electrochemical reduction; electrocatalyst; energy landscape; CO2RR; Tungsten Carbide;
graphene; DFT

1. Introduction

The carbon dioxide (CO2) is very stable under environmental conditions, and reduction to some
hydrocarbon products is an endothermic (or endergonic) process. The process requires a moderate
to highly negative potential combined with excellent catalyst kinetic barrier efficiency to minimize
the combined energy barriers for this reduction reaction. Among various methods of CO2 reduction,
photocatalytic and electrocatalytic processes are predominantly studied. In the case of electrocatalysis,
the reaction rate and products can be controlled by tuning the external potential, whereas the driving
force for photocatalysis is solar energy. Although this work does not focus on studying photocatalytic
reduction of CO2, it is well worth understanding this process and reduction mechanism while discussing
electrochemical CO2 reduction and its state-of-the-art catalysts.

Photocatalysis involves photon absorption by a semiconductor photocatalyst followed by
electron-hole pair excitation, charge transfer, and surface (redox) chemistry. The surface reaction
pathways in CO2 photocatalytic reduction are similar to electrocatalytic reduction. However, the
oxidation and reduction reactions occur on different sides of the catalyst, and the driving force
for this process is from solar energy. It still remains as a significant challenge to fabricate a
semiconductor photocatalyst which can efficiently separate the electron-hole pairs generated and
prevent recombination, transfer electrons to the surface, and provide a catalytic surface for the reaction
to occur [1–3]. There have been continuous improvements in design and engineering towards the
development of a novel photocatalyst in various ways hoping to overcome the above challenges. Some
of them are by:

1. Adjusting bandgap and band position to capture solar energy effectively, thereby improving the
efficiency of CO2 reduction. For example, the potential of the valence band of various metal oxide
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catalysts is around 3 eV vs. NHE (normal hydrogen electrode), utilizing only ultraviolet light.
Replacing the O atom with N or C will narrow the bandgap thereby efficiently absorbing the
solar radiations [4,5].

2. Modifying surface structure and electronic properties by addition of oxygen vacancies, which
can lower the energy barrier due to the attraction between CO2 molecules and oxygen vacancy.
DFT calculations on TiO2 surface with oxygen vacancies is more effective for CO2 activation than
TiO2 [6,7].

3. The use of nanostructured semiconductors in the form of nanorods, nanowires, nanotubes,
nanobelts, etc. decreases the electron-hole recombination rate as these are usually in a single
crystalline phase that eliminates the possibility of grain boundaries and defects in the materials
as they act as recombination sites for the electron-hole pair in polycrystalline materials. At
the same time, one-dimensional nanostructures improve electron transport by improving the
separation of electron-hole pairs. For instance, Zn2GeO4 nanoribbons are proven to show
improved photocatalytic activity towards CH4 formation when compared to bulk Zn2GeO4 [8,9]

4. Use of co-catalysts in the process to promote the separation and movement of charge carriers. This
will minimize the recombination of electron-hole pairs due to the barrier between semiconductor
and co-catalyst. Metal nanoparticles, such as Pt, Rh, Pd, Cu, Ag, Au, supported on semiconductor
are proven to work efficiently when compared to pure semiconducting photocatalysts [10,11].

Several electrocatalysts are being studied to convert CO2 to useful chemicals and fuels, but they
are either limited by high overpotentials or poor product selectivity. In 1985, Hori et al. reported that
Cu is a unique metal catalyst which can reduce CO2 to hydrocarbons efficiently, and further studies
described that a Cu catalyst could electrochemically reduce CO2 to 16 different products among which
CH4 and C2H4 showed higher current densities but at larger overpotentials of up to 1V [12–14]. To
overcome this obstacle and make the CO2 reduction reaction more viable, we require more complex
and tailored materials than simple, pure transition metals.

Recently, low-cost transition metal-carbides (TMCs) have received special attention as
electrocatalysts as they have shown improved catalyst stability, activity, and selectivity when compared
to their parent metal/elements [15,16]. Formation of carbides (with C in the crystal lattice or nanoparticle
surface) modifies the metal–atom bonding, increasing the metal–metal distance, thereby causing a
contraction in the metal atoms’d-band. These d-band contractions would give a better density of
states near the Fermi level than their parent metal. In particular, non-noble metal-carbides, such as Mo
and W, display a similar electronic structure to noble metals due to their metal-covalent binding and
hence, can be significant substitutes for precious catalysts in various important catalytic reactions [16].
Additional to electronic and magnetic properties similar to transition metals, they exhibit high melting
points as in ionic compounds and hardness similar to covalent solids. Therefore, the bonding in TMCs
can be explained as a combination of metallic, covalent, and ionic components [17].

Theoretical and experimental studies proved that TMCs show better catalyst activity
in“hydrogen-participating” reactions [18]. For example, metal terminated WC exhibited good activity
for hydrogen evolution reaction (HER) and WC coated with Fe when tested for CO2 reduction are
selective towards methane formation. This is because electronic properties of W atoms surrounding
Fe are modified, thereby modifying the selectivity. Another interesting phenomenon of TMCs is
they do not follow scaling relations that correlate binding energies of intermediates in a reaction
network as with other transition metals mainly because of their oxygen affinity, i.e., their tendency
to bind carbon-bound species weakly compared to oxygen-bound species. This will open up several
possibilities to improve their catalyst activity, selectivity compared to metal catalysts [19,20]. In the
same way, in the density functional theory (DFT) study of Fe and Co carbides for Fischer–Tropsch
synthesis, it was found that FeC (iron carbide) is more active than pure Fe for CO hydrogenation and
methane selectivity is higher on Co carbide compared to pure Co [21].

Among different metal-carbides, tungsten carbide (WC) based compounds are widely studied
electrocatalysts [22]. They are investigated in various forms, such as:
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1. Alloys to combine the electronic properties of WC with other metal(s), for example, Tantalum
doped WC displayed better activity towards hydrogen evolution (HER) when compared to
unmodified WC [23].

2. The specific shape and structural arrangement, such as core—shell structures of WC with
monolayer metal coatings which are stable against CO poisoning, thereby improving the activity
of methanol electro-oxidation [24–27].

3. Catalyst support to increase the electrocatalytic activity leading to better performance of fuel cells,
such as WC supported Pt which is found to be more thermally and electrochemically stable than
Pt/C for oxygen reduction reaction [28,29].

4. Co-catalyst to the catalytic system where strong electronic interactions between them might
modify (maximize) the electrocatalytic activity. As an example, Ni with WC nanocluster for
urea electro-oxidation showed high tolerance towards CO poisoning, and high stability thereby
enhancing catalyst activity [30].

All these studies explain that TMCs have the potential to work as better catalysts making them
an attractive alternative for traditional metallic catalysts in some of the industrially relevant catalytic
reactions. Nanocatalysts in the form of nanoclusters where the atoms are structurally quasi-defined
to well-defined help in experimental and theoretical investigations of important electronic structure
properties in CO2 electroreduction reactions (CO2RR). Additionally, graphene as a catalyst support
further improves the active surface area for the catalyst systems by providing a minimal adsorption
footprint for the TMC nanoparticles (NP). Other unique properties of this two-dimensional structure,
such as high stability and electrical conductivity which can modify the TMC NP electronic structure,
help in selectivity and cost reduction of catalysts playing a pivotal role in most of the heterogeneous
catalyst systems [31].

Motivated by all the above aspects, in this study, we test graphene supported WC nanocluster as
an electrocatalyst for CO2RR. This work determines the performance of WC/graphene as a catalyst
system for CO2 reduction to various products, such as CO, HCOOH, CH3OH, and CH4, which possibly
could be the platform for designing new and improved TMC electrocatalysts for this important
reduction reaction. To achieve this, we have calculated binding free energies of all possible reaction
intermediates and analyzed the reaction mechanisms in detail by focusing on understanding the effect
solvation energies on product selectivity and catalyst activity and lastly determined the lowest energy
pathways for all the products mentioned above. We inferred that CH4 is favored over CH3OH on
WC/graphene at lower reducing potentials. From literature, CH3OH formation is less preferred on
WC and metal-coated WC because of the stronger binding of O* and OH* bound species [20,27,32].
Results from the current work explain that the reduction to CH3OH on graphene supported WC is
thermodynamically favorable at higher negative potentials compared to reduction to CH4, which is in
qualitative agreement with the results from the literature.

2. Results and Discussion

We studied several possible reaction intermediates and plotted free energy diagrams for various
possible reaction mechanisms to determine the lowest energy pathway for each product. The stability
of these adsorbed species can be determined in terms of the difference in binding free energies between
intermediates formed along the reaction pathway and reactants. That is, when the adsorption of an
intermediate is unstable (∆G is positive), the downhill reaction is possible by applying an external
potential. Intermediate species with net positive ∆G formation in the current study are COH*, C*, CH*,
CHOH*. At this point, it cannot be decoupled as to how much of this energy is purely attributed to the
adsorbed intermediate and how much to the catalyst system. However, as we did not observe any
significant changes to the catalyst morphology after adsorption of these intermediates, we assume
that contribution to the net positive ∆G formation of adsorbed intermediates is mostly due to the net
instability or metastability of the adsorbate/intermediate itself relative to the reactant. We expect to
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fully address this area in the follow-up work when we can locate experimental collaboration to further
validate the optimization of this catalytic system.

As we apply higher (larger magnitude) negative voltages to different reaction pathways, the
pathway with the smallest positive rate-limiting step will be the first pathway to become entirely
exergonic across all steps in the pathway. This pathway will be the best lowest energy reaction pathway
for CO2RR. These free energy diagrams (FEDs) provide an overall understanding of the reaction
mechanism, electrocatalytic activity for CO2RR as well as selectivity of products. Here, we focus on
the lowest ∆G pathway for CO2RR to CO, HCOOH, CH3OH, and CH4.

2.1. CO and HCOOH as Products

Figures 1 and 2 show the lowest energy pathway for CO2 reduction to HCOOH and CO at 0 V vs.
RHE (reversible hydrogen electrode) on graphene supported WC. These products are obtained by two
proton–electron transfers along the reaction pathway. CO2 is first protonated to form either COOH* or
OCHO*. The limiting potential for HCOOH and CO formation depends on how strongly or weakly
COOH* and OCHO* bind to the surface. When we compare binding free energies, the formation
of COOH* is less exergonic compared to OCHO*. A second proton–electron transfer results in the
formation of HCOOH and CO. Although OCHO* is more stable compared to COOH*, the pathway via
COOH* will minimize the rate-limiting step by around 1.9 V for HCOOH formation and 2.5 V for CO
formation. This larger difference in binding free energies of COOH* and OCHO* is due to the fact that
COOH tries to bind to the surface of the catalyst via C and O atom and OCHO binds to the surface of
the catalyst via two oxygen atoms and WC has strong oxygen affinity, i.e., it binds O* and OH* bound
intermediate species very strongly, creating significant energy barriers.
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Figure 1 shows the lowest energy pathway for HCOOH formation. The calculated limiting
potential for HCOOH formation is −2.45 V, and the potential determining step, i.e., the rate-limiting
step is the formation of HCOOH from COOH*. Figure 2 shows the lowest energy pathway for CO
formation. The calculated limiting potential for CO formation is −1.36 V, and the rate-limiting step is
the formation of CO from COOH*. This is in agreement with previous experimental and theoretical
studies showing the reduction potential for CO2 to CO is in the range of −0.72 V to −1.5 V on pure
metal surfaces, such as Ag, Au, Zn. This comparison also confirms that WC/graphene can be used as an
alternative for precious electrocatalysts for CO2 reduction to CO. Further reduction of CO* to CH3OH
and CH4 as products is determined by the binding energy of CO*. Stronger binding of CO* results
in hydrogen evolution due to CO poisoning and weaker binding of CO* results in CO desorption
before further reduction to products. It is proven from previous work that metals, such as Ag, Au, and
Zn, that bind CO weakly during CO2 reduction can further reduce to CH3OH and CH4 but at higher
negative potentials. Therefore, in the next section, we will discuss CO2 reduction to CH3OH and CH4

on graphene supported WC.

2.2. CH3OH and CH4 as Products

This section discusses the lowest energy pathways for CO2 reduction to CH3OH and CH4 at 0 V
on graphene supported WC. These products are obtained by six and eight proton–electron transfers,
respectively, along the reaction pathway. The first two steps up to CO* formation are described in detail
in the previous section. However, complexity arises when CO* is further protonated. As the number of
protons–electrons transferred increase, the number of required intermediates in each reaction network
increases. This is one of the reasons why the CO2 electrochemical reduction reaction mechanism and
its thermodynamics is more complex to study when compared to oxygen reduction reaction (ORR),
hydrogen evolution reaction (HER), and other reactions involving the transfer of fewer proton–electron
pairs. Similar to CO and HCOOH formation, CH3OH and CH4 product formation follow a reaction
pathway via COOH*. The protonation of CO* in electrochemical reduction to CH3OH and CH4 can
follow either an oxophilic pathway (CO* is protonated at C atom to form HCO* and binds to the
surface of the catalyst via O atom) or a carbophilic pathway (CO* is protonated at O atom to form
COH* and binds to the surface of the catalyst via C atom).
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2.3. CH3OH as Product

Figures 3 and 4 display the lowest energy pathway for CH3OH formation with and without taking
solvation energies into account. Apart from the reaction mechanism, these free energy diagrams also
guide us in understanding the effect of solvation on the reaction thermodynamics in CH3OH formation.
In Figure 3, we have shown the lowest energy pathway for CH3OH formation when solvation energies
are excluded. Real aqueous phase electrochemical CO2RR has water molecules present around the
TMC NP, and these water molecules can stabilize the reactants, products, and intermediates through
H-bonding. The protonation of CO* in this product formation is via the oxophilic pathway, i.e., via
HCO* species. If the solvation effect is not considered, the calculated limiting potential for the product
formation is −0.56 V with the rate-limiting step of CH3O* to CH3OH formation. Figure 4 shows the
lowest energy pathway with the addition of solvation energies. Inclusion of solvation energies in
electrochemical reduction to CH3OH modified not only the reducing potential but also the lowest
energy reaction pathway and the rate-limiting step. The limiting potential is increased from −0.56
V to −1.79 V, and the reaction pathway is shifted from an oxophilic to the carbophilic pathway, i.e.,
the pathway is shifted from HCO* to COH*. The new rate-limiting step is the formation of CHOH*
from COH*. It is worth noting that these changes in the reaction pathway, rate-limiting step, and its
corresponding potential is due to the following reason: WC has strong oxygen affinity; therefore, it
strongly binds all O* and OH* bound intermediate species. Inclusion of the solvent effect has further
stabilized these O*, and OH* bound intermediate species altering the electronic binding free energies,
thereby creating huge energy barriers in the reaction network.
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For additional comparison, in Figure 4, we have included the carbophilic pathway without
solvation energies (red pathway). The calculated limiting potential for the product formation is
−1.73 V with rate-limiting step COH* to CHOH*. Inclusion of solvation energies (blue pathway) has
stabilized the adsorbate species and minimized the reducing potential by ~0.06 V without modifying
the rate-limiting step of the carbophilic pathway.

2.4. CH4 as Product

Figure 5, red pathway, shows the lowest energy pathway without the solvation energy correction
factor and the calculated limiting potential for the CH4 formation is −1.58 V with the same rate-limiting
step, i.e., CO* to COH*. The blue pathway is the lowest energy pathway after adding the solvation
correction factor and the calculated limiting potential for product formation is −0.84 V, and the
rate-limiting step is the formation of CO* from COH*. The key point here is the inclusion of solvation
energies minimized the reducing potential by around 0.75V but did not modify the lowest energy
reaction pathway. This may be due to the fact that CH4 formation pathway is via the carbophilic
pathway and carbon bound species. Therefore, the effect of solvation stabilized the COOH*, CO*, and
COH* binding free energies modifying just the first four steps in the reaction pathway.

Figures 6 and 7 show the calculated lowest energy profiles, including solvation energies for a
complete series of elementary steps leading to CH3OH and CH4 formation, respectively. We have also
included the free energy profile of product formation at the thermodynamic limiting potential/reducing
potential, i.e., the potential at which all the elementary steps are downhill (exergonic) in free energy.
This is used to determine the overpotentials of the reaction on a particular electrocatalyst.

Overpotentials can be directly related to the catalyst activity and energy efficiency and can be
obtained by the difference between the equilibrium potential and limiting potential. On our catalyst
system, CO2 can reduce to CH3OH with an overpotential of 1.81 V and CH4 with an overpotential of
0.67 V. For additional comparison we have shown free energy profile at the equilibrium potentials, and
the maximum potential allowed by the thermodynamics.
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2.5. Comparison of CO2 Reduction to CH4 and CH3OH on Graphene Supported WC Nanocluster and
WC (0001)

In this section, we compare CO2 reduction on WC/ graphene to that on WC (0001). Our analysis
and comparison are based on the reaction free energy profile. From the work of Wannakao S. et al.,
the limiting potential for CO2 reduction to CH4 on WC (0001) is −0.35 V (no solvation) which is 0.5 V
(with solvation) lower than the potential achieved in the current work. Similarly, the limiting potential
for CH3OH formation on WC (0001) is around −0.39 V (no solvation), which is around 1.5 V (with
solvation) lower than the potential achieved in the current work. This difference in potential could be
due to the following reasons:

1. Employing different functionals in the DFT calculations would result in differences in binding
free energies of intermediates. In the work of Wannakao S. et al., it is proven that

2. Another reason is predicted to be due to the coverage of adsorbed intermediates on the surface of
the catalyst. Our catalyst system is designed by placing only one adsorbate species on a single
nanocluster which is approximately equal to 1/6 or 1/9 monolayer (ML) coverage of adsorbate
species on the surface (assuming each side of the cluster mimics 3 × 2 or 3 × 3 slab surface).
However, in the work of Wannakao S. et al., WC (0001) was modeled by 1/6 to 1/9 ML coverage of
adsorbate species which means these are placed comparatively closer than our adsorbate species
arrangement. We predict that the influence of lateral interactions between adsorbed intermediates
could also lead to a difference in reaction free energies. To investigate this, we vary (increase) the
surface coverage of intermediate species by placing two species instead of one in our catalyst
system as neighboring atoms/moieties near the active site. In other words, this system is modified
to try to approximate the effects of 1/6 to 1/9 ML coverage of adsorbate species in their work.
Figure 8 shows how the reaction free energies vary when the proportion of adsorbate coverage
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on the catalyst system varies. Here, we have computed the free energies of initial steps in the
reaction network (COOH*, CO*, COH*) as these are the pathway determining intermediates.
Co-adsorption of these species generated an upward shift of binding free energies of all the initial
three steps. Consequently, the rate-limiting step in the case of co-adsorbed species shifted to
the COOH* protonation step from the CO* protonation step. This analysis also explains that
the surface coverage of the adsorbed species plays an equally important role in determining the
energetics of CO2 reduction reaction.
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2.6. Role of Graphene

In the WC-graphene system, the energy barrier of the rate-limiting step is 0.85 V, whereas the
energy barrier of the rate-limiting step for the WC nanocluster is 1.04 V. In other words, CO* and COH*
are further stabilized on graphene supported WC. Therefore, graphene as a support for WC catalyst
enhances the energy efficiency of CO2 reduction reaction by lowering the limiting potential by ~0.2 V.
Figure 9 compares the free energies of initial steps in the reaction network (COOH*, CO*, COH*) on
graphene supported WC and plain WC nanocluster. Therefore, instead of a numerical comparison of
binding free energies and reduction potentials on graphene supported WC and WC (0001), we have
compared the reaction pathways and potential determining steps. We have graphically represented
the reaction pathways of CH4 formation on WC/graphene and WC (0001) in Figure 10 to show the
similarities between them.

From literature, CH4 formation on WC (0001) follows a reaction pathway via COOH* and COH*
with CO* protonation to COH* as the potential determining step. Similarly, current work shows
that the lowest energy pathway for CO2 reduction follows the carbophilic pathway with an identical
rate-limiting step and binding site (binds to W through C from COH*). In addition, while comparing
COH* and HCO* binding energies, both on WC/graphene and WC (0001), HCO* (via C and O atoms)
binds more strongly than COH* (via C atom) and in both the cases’ pathway via COH* minimizes the
reducing potential when compared to HCO*.
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2.7. HER

There are various studies explaining that the catalysts for CO2 electrochemical reduction are also
good catalysts for HER as thermodynamically both HER and CO2RR require approximately 0 V (RHE)
for the reaction to take place and this is one of the major challenges in CO2RR. As HER is an unwanted
side reaction, we need to design a catalyst which can suppress this reaction and further reduce CO2

to various products. Hence, in this study, we have considered understanding HER in parallel. This
is a straightforward reaction where 2 proton electrons are required to form H2. This is a two-step
mechanism, and the lowest energy reaction pathway at U = 0 V is shown in Figure 11. The limiting
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potential required for HER to take place is −0.98 V, which is higher than the limiting potential required
to form CH4. A recent theoretical study explained that CO* formed along the CO2 reduction can
occupy the adsorption sites preventing H* contact to the surface and eventually H2 formation [33].
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To further understand if WC/graphene system favors HER or CO2RR or both, we have compared
binding free energies of H* and CO* at a range of applied potentials (from 0 V to 1 V vs. RHE) as
shown in Figure 12. At the range of potentials studied, CO* formation is thermodynamically more
preferred than H* formation at higher negative potentials. In other words, CO* becomes more stable
(higher negative binding free energy) than H* at higher negative potentials preventing HER and at the
same time opening up pathways for further reduction to products with C–H bonds.
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3. (Computational) Materials and Methods

We used density functional theory (DFT) to understand catalyst surface reaction pathways in detail.
We performed plane wave DFT calculations with VASP (Vienna Ab Initio Simulation Package) to find
optimized surface structures and calculate electronic structure properties, such as ground state energies,
binding energies, charge densities, and perform Bader charge analysis [34–38]. Throughout this work,
all the electronic structure calculations were performed using Van Der Waals, opt-PBE functional as
they are proven to show high accuracy to study adsorption properties [38–40]. A Fermi smearing of
0.2 eV is used, and calculations were performed with gamma centered k-points mesh of 2 × 2 × 1 with a
convergence of ground state energies up to 10−5eV/mol-unit cell with respect to k-point sampling [41].
A vacuum space of 12 Å was defined to minimize the interactions between repeated structures in the
direction parallel to the surface normal of the graphene plane. All the reaction energy calculations
were completed using the lowest energy conformation of the intermediate species. Detailed images of
the structure and some adsorbate snapshots are provided in the Supporting Information (Figure S1)
submitted with this manuscript. We took advantage of the computational hydrogen electrode (CHE)
approach for screening and designing electrocatalysts primarily to understand reaction mechanisms
for CO2 electroreduction to CH4 and CH3OH [42–44]. Possible reaction pathways for electrochemical
reduction of CO2 to CO, CH4, and CH3OH are shown in Figure 13. We used RHE (reversible hydrogen
electrode) as a reference electrode throughout this work. Since RHE is the reference for all the reactions,
it can be set to zero.
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The overall reactions of CO2 reduction to products and their corresponding thermodynamic
equilibrium potentials are shown in Table 1 below.

Table 1. Overall reactions for CO2 reduction to different products and their equilibrium potentials (U,
V vs. RHE) [45].

Reaction U (V vs. RHE)

2(H+ + e−)→ H2 0
CO2 + 2(H+ + e−)→ CO + H2O −0.10
CO2 + 2(H+ + e−)→ HCOOH −0.20
CO2 + 6(H+ + e−)→ CH3OH + H2O −0.03
CO2 + 8(H+ + e−)→ CH4 + H2O 0.17

The Binding energy of each intermediate species in the reaction network can be calculated using
Equation (1). This is the difference between the DFT energy of the adsorbed intermediate and the sum
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of the DFT energy of the bare surface and the formation energies of C, H, O w.r.t gaseous CO, H2, and
H2O, where x,y, and z denote stoichiometries of each element.

∆Ebinding = EDFT − (Esurface + xEC + yEH + zEO) (1)

Similarly, the free energy of each electrochemical step in the reaction pathway corrected by
zero-point energies (ZPE) with enthalpy and entropy contributions at potentials other than 0 V can be
estimated using Equation (2) given below.

∆G(U) = ∆Erxn + ∆ZPE +

∫
CpdT− T∆S− neU (2)

U is the applied potential to make the elementary step exergonic (known as the limiting potential,
UL) and n is the number of proton–electron pairs consumed in each step. The ZPE, enthalpy, and
entropy of adsorbed species are obtained from previously determined values as they are assumed to
be largely independent of catalyst surface and therefore can be approximated to be the same for all
structures [42,46]. Since an explicit treatment of a number of water molecules is tedious to carry out
using DFT methods, we have used the implicit method in VASP with the default dielectric constant of
H2O to calculate solvation energies. These are generally much less computationally demanding than
explicit methods but can reproduce significant results as with explicit methods for O*, OH* bound
intermediate species [47,48].

4. Conclusions and Future Work

This work provides theoretical evidence that graphene supported WC nanoparticles could be
a useful catalyst system for CO2 reduction to light hydrocarbons and fuels. We have presented an
improved understanding of CO2 reduction reaction mechanisms and provided the lowest energy
pathway for various products. The results imply that CH4 is favored over CH3OH on this catalyst
system because of the strong oxygen affinity towards WC. It is also worth noting that the solvation
effect plays an important role in determining the reaction pathway. We have shown how the addition
of the solvation effect has shifted the rate-limiting step from CH3OH formation step to the COH*
protonation step on the lowest energy pathway for CO2 reduction to CH3OH. At the same time, we
have also shown how the binding free energies are overestimated in the CH4 reduction reaction when
the effect of solvation is not considered, thus resulting in higher limiting potentials. The addition of
the solvation effect to the CH4 reduction pathway has minimized the limiting potential by ~0.75 V. In
our catalyst system, CO2 can reduce to CH4 with an overpotential of 0.67 V and to CH3OH at higher
negative potentials, i.e., with an overpotential of 1.81 V. We have also qualitatively compared results
from current work with the work of Wannakao S. et al. and explained the effect of adsorbate coverage
in determining the energetics of CO2 reduction reaction. Furthermore, we have compared the binding
free energies of H* and CO* to explain that HER is possible along the CO2RR, but at higher applied
negative potentials, our catalyst system suppresses HER thus promoting CO2 reduction to CH4. Future
work needs to focus on two main tasks: (i) further studies on CO2 reduction to C2 products and
(ii) improving the efficiency of current catalyst system by further minimizing the reduction potential.
This can be achieved by introducing catalytically active dopants, thereby tuning the electronic structure
properties or by varying the WC nanoparticle size and interaction with the graphene support. Both
these tasks are currently the subject of consideration for future work to build on the results from
this manuscript.
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