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Abstract: The conversion of CO2 to valuable substances (methane, methanol, formic acid, etc.) by
photocatalytic reduction has important significance for both the sustainable energy supply and clean
environment technologies. This review systematically summarized recent progress in this field
and pointed out the current challenges of photocatalytic CO2 reduction while using metal-organic
frameworks (MOFs)-based materials. Firstly, we described the unique advantages of MOFs based
materials for photocatalytic reduction of CO2 and its capacity to solve the existing problems.
Subsequently, the latest research progress in photocatalytic CO2 reduction has been documented
in detail. The catalytic reaction process, conversion efficiency, as well as the product selectivity of
photocatalytic CO2 reduction while using MOFs based materials are thoroughly discussed. Specifically,
in this review paper, we provide the catalytic mechanism of CO2 reduction with the aid of electronic
structure investigations. Finally, the future development trend and prospect of photocatalytic CO2

reduction are anticipated.
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1. Introduction

Energy shortages and environment issues are global problems and challenges that are faced
by human beings today [1–6]. The development of renewable energy technologies to reduce the
pollutants emission has become an important research topic to maintain the sustainable development
of our planet [7–12]. Artificial photosynthesis is an ideal way to effectively solve the energy and
environmental problems by decomposing water to produce hydrogen or reducing CO2 to high
value-added chemicals or fuels [13–16]. Accordingly, searching for highly efficient materials that can
convert solar energy and store it in chemicals is desired. Metal-organic frameworks (MOFs), which
are known as coordination porous polymer, is a class of crystalline porous materials constructed by
the coordination bond between metal ions or metal cluster nodes [17–21]. These materials have been
widely used in gas separation/storage, catalysis, sensing, proton conductors, and drug delivery because
of their structural diversity, design/modification, and ultra-high specific surface areas [22–25]. Based on
the previous results, it is proven that the multifunctional organic ligands in the MOFs structure can
play the role of “light capture antenna” [26,27]. It can effectively accept photons, generate band gap
transition, and transfer electrons to metal center units. Thus, MOFs are usually used as efficient
photocatalysts [28–30]. When comparing to other photocatalytic materials, MOFs exhibit big specific
surface area, high porosity, and supervised capturing capability of CO2 molecules, which endows
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them with great application prospect in the field of photocatalysis for CO2 reduction. In recent years,
MOFs and their composite materials are widely used in water decomposition, hydrogen production,
CO2 reduction, and photocatalytic organic conversion [31].

Yaghi group first proposed the concept of the metal-organic frameworks in 1995, and MOFs
materials were then intensively explored as new functional materials [32]. In 1997, Kitagawa group
reported a three-dimensional MOF material and found its ability to adsorb gas at room temperature [33].
After that, two landmark cases of MOFs, MOF-5 and HKUST-1, were reported by Yaghi group and
Williams group in 1999 [34–36]. Among them, MOF-5 is a three-dimensional skeleton that formed
by coordination of Zn4O(CO2)6 clusters and terephthalic acid ligands. Through the gas adsorption
experiments, the authors found that MOFs-5 showed high specific surface area, large pore size, and a
certain adsorption capacity for hydrogen. HKUST-1, as reported, is a three-dimensional skeleton that
is formed by the coordination of Cu2(CO2)4 clusters with benzotriformic acid ligands [37]. The authors
found that HUKST-1 with unsaturated ligand sites can be obtained by heating water molecules that
can be removed and coordinated on metal clusters [38]. Jinhee et al. report the the OCS-activation
ability of chloromethanes to remove precoordinated solvent molecules from open coordination sites
(OCSs) in MOFs [39]. A water molecule in HKUST-1 can easily access open metal site (OMS)with high
coordination strength due to the specific coordination geometry around Cu2+ [40]. In particular, MOFs
with OCSs have potential applications in chemical separation, molecular sorption, catalysis, ionic
conduction, and sensing areas [39,41]. Since these two MOF structures were reported, the synthesis
and potential applications of MOFs in gas separation, storage, catalysis, sensing, drug transportation,
and so on have become hot research topics [42,43].

MOFs are extensively studied for the capture and conversion of CO2 due to their high porosity
and strong interaction with CO2 molecules. At present, some MOFs have already been explored for
their high catalytic performance in the field of photocatalysis for CO2 reduction [44]. As photocatalysts,
MOFs exhibit the following advantages. Firstly, the high specific surface area of MOFs is helpful
for the gas reactants adsorption around the active site. This is beneficial to the molecule activation
and catalytic transformation in the subsequent process [45,46]. Secondly, the metal-oxygen units in
MOFs exhibit semiconductor-like structure due to the existence of organic ligands. MOFs with larger
energy than the band gap can be excited by photons to create electron and hole pairs [47,48]. Through
selectively choosing different organic ligands and metal centers, one can improve the absorption and
utilization efficiency of sunlight via MOFs as light absorbing agents [49]. Besides, the separation and
transfer of electrons can be promoted by changing the crystal structure, thereby which thereby inhibits
the recombination of photo-induced electrons and holes [50]. In addition, MOFs, as heterogeneous
catalysts, can be easily separated and recycled from the reaction system, which is beneficial for
prolonging the service life of the catalyst and avoiding any pollution to the environment [51–53].

In this paper, the advances of MOFs materials for photocatalytic CO2 reduction is systematically
reviewed. This review paper starts from the research background why CO2 reduction is important,
and the mechanism studies on the photocatalytic CO2 reduction process were then summarized. After
that, the research progress of photocatalytic CO2 reduction using MOFs were reviewed, followed by
the summary of the applications of MOFs-based composite materials for photocatalytic reduction
of CO2. Finally, the current challenges and future development trend of MOFs-based materials for
photocatalytic CO2 reduction are anticipated.

2. Necessity

A large amount of fossil fuels has been combusted since the eighteenth century, so that the
atmospheric CO2 concentration increased gradually. According to the data of the National Oceanic
and Atmospheric Administration (NOOA), the CO2 concentration has exceeded 400 ppm in May, 2013,
and it reached 402 ppm in May 2014 [54]. It is believed that the atmospheric CO2 concentration will
exceed 550 ppm at the end of this century [55,56]. The sudden increase of CO2 concentration in the
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atmosphere can be attributed to the over-use of the fossil fuels. Currently, more than 80% of the global
energy supply origins from fossil fuels, which generates a large amount of CO2 in the atmosphere.

A hundred years ago, Arrhenius suggested that CO2 emissions from the burning of fossil raw
materials would lead to an increase in global temperatures [57,58]. Today, CO2 has been widely accepted
as the chief culprit causing global warming, climate upheaval, and many other environmental problems.
Various environmental problems will become much sharper if there are no effective measures are taken
to curb CO2 emissions [59]. When the atmospheric CO2 content rises to 450 ppm, the accompanying
increase in global temperature will seriously aggravate the cessation of the hot salt circulation, and
environmental problems, like melting of glaciers, will take place [60].

In the 21st century, in addition to serious environmental problems, the energy crisis is also a global
issue affecting human society. In 2008, the total global energy consumption was 132,000 megawatts.
According to the U.S. [61] Energy Information Administration, this number will continuously grow,
and the total energy consumption in 2040 is expected to be twice of that in 2020. Although the over
exploitation and use of fossil energy has caused global warming and energy crisis, we can still find
some opportunities and challenges to debate these issues [62]. For example, while using a suitable
method to convert CO2 into energy materials or valuable industrial raw materials is a promising
solution to close the carbon loop, and can alleviate the dependence of human beings on fossil energy
and solve environmental problems that are caused by CO2 emissions [63,64].

3. Mechanisms

Photocatalytic CO2 reduction involves three basic processes. Under light irradiation, the electron-hole
pairs could be generated in semiconductor materials upon the absorption of photons with larger
energy than the forbidden band gap [65]. Subsequently, the photoexcited electron-hole pairs separate
and migrate to the active sites on the surface of the semiconductor. In this process, it is necessary to
reduce the bulk phase and surface recombination of photogenerated electron-hole pairs. This is the
major factor limiting the efficiency of photocatalytic reduction of CO2 [66,67]. After that, oxidation
and reduction reactions occur on the surface of the semiconductor. At this time, electrons with
strong enough reducing ability can reduce CO2 molecules into hydrocarbons, such as CO, CH4,
and CH3OH, and holes with oxidizing ability oxidize H2O molecules to release O2, O2-, and other
substances [68]. The conversion efficiency of photocatalytic CO2 reduction depends on the capacity
of the light-trapping ability of the semiconductor material, the efficiency of photo-generated carrier
generation and separation, and the thermodynamic equilibrium of the surface catalytic reactions.
From the kinetic point of view, the effective absorption of light, the efficient separation and migration
of photo-generated electron-hole pairs, and the sufficient reactive sites on the catalyst surface are
an important prerequisite for the high-efficiency photocatalytic conversion of CO2 while using
semiconductor materials [69].

The detailed mechanisms for photocatalytic CO2 reduction process have not been discovered so far.
However, mechanism studies in recent years provide valuable information to unravel this process [70].
At present, it is commonly accepted that photocatalytic CO2 reduction is a multi-electron reduction
process, as described in the Equations (2)–(8). It can be seen that the reaction process is accompanied by
some unstable substances, namely intermediates. The corresponding products are different due to the
specific reaction route and the number of electrons obtained during the reaction [71,72]. According to
the number of electrons that were obtained by C atom, the products can be carbon monoxide, methane,
formic acid, methanol, etc. [73]. In some special reaction system, some multi-carbon compounds
such as ethane, acetic acid, and other compounds can also be obtained. From the perspective of
Gibbs free energy, photocatalytic reduction of CO2 is an uphill reaction, that is ∆G > 0. If the reaction
proceeds, a large amount of energy injection (such as incident photons) is required.
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Reaction Eredox/ (V vs NHE,PH=7)

CO2 + e−→CO− − 1.90 (1)

CO2 + H+ + 2e−→HCO2
−

−0.49 (2)

CO2 + 2H+ + 2e−→CO + H2O −0.53 (3)

CO2 + 4H+ + 4e−→HCHO + H2O −0.48 (4)

CO2 + 6H+ + 6e−→CH3OH + H2O −0.38 (5)

CO2 + 8H+ + 8e−→CH4 + 2H2O −0.24 (6)

2H+ + 2e−→H2 −0.41 (7)

H2O→0.5 O2 + 2H+ + 2e− 0.82 (8)

Hendon et al. [74] elucidated the electronic structure of MIL-125 with aminated linkers through a
combination of synthesis and computation. They also discussed the band gap modification of MIL-125,
a TiO2/1,4-benzenedicarboxylate (bdc) MOF, and the possible mechanism for the photocatalytic CO2

reduction was proposed (Figure 1).
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theoretical 10%-MIL-125-(NH2)2 (green). (d) HSE06-calculated VB and CB energies of MIL-125-NH2 
models containing increasing numbers of bdc-NH2 linkers [i.e. 0 (MIL-125) to 12 (100%-MIL-125-
NH2)] per unit cell. MOFs materials for photocatalytic CO2 reduction. Reprinted from ref. 74 with 
permission by the American Chemical Society. 
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research interests in recent years. It is easy to design MOFs materials with accessible metal sites, 
specific hetero-atoms, and the ordered structure of functionalized organic ligands. This can 
effectively improve the efficiency of electron-hole separation and the photocatalytic performance. 
Porosity can make MOFs expose more active sites and channels for reactant adsorption. This can 
improve the charge transfer efficiency as well as improve its utilization efficiency of solar energy 
while inhibiting the recombination of the photo-induced electron-hole pairs in the bulk phase. Based 
on the above merits, people try to use different MOFs for photocatalytic CO2 reduction. In the 
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Figure 1. (a) the valence band is composed of the bdc C 2p orbitals (shown on the right), making
these favorable for linker-based band gap modifications; (b) the conduction band is composed ofO
2p orbitals and Ti 3d orbitals (shown on the right). (c) PBEsol band structures for synthetic MIL-125
(black), 10%-MIL-125-NH2 (blue), 10%-MIL-125-(NH2)2/90%-MIL-125-NH2 (orange) and the theoretical
10%-MIL-125-(NH2)2 (green). (d) HSE06-calculated VB and CB energies of MIL-125-NH2 models
containing increasing numbers of bdc-NH2 linkers [i.e. 0 (MIL-125) to 12 (100%-MIL-125-NH2)] per
unit cell. MOFs materials for photocatalytic CO2 reduction. Reprinted from ref. 74 with permission by
the American Chemical Society.

Photocatalytic CO2 reduction using MOFs-based materials as catalysts has drawn dramatic
research interests in recent years. It is easy to design MOFs materials with accessible metal sites, specific
hetero-atoms, and the ordered structure of functionalized organic ligands. This can effectively improve
the efficiency of electron-hole separation and the photocatalytic performance. Porosity can make MOFs
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expose more active sites and channels for reactant adsorption. This can improve the charge transfer
efficiency as well as improve its utilization efficiency of solar energy while inhibiting the recombination
of the photo-induced electron-hole pairs in the bulk phase. Based on the above merits, people try to
use different MOFs for photocatalytic CO2 reduction. In the following text, we will introduce three
typical MOFs for photocatalytic CO2 reduction and their catalytic performances. New insights for the
dominating factors on activity and selectivity of product will also be discussed. Table 1 summarizes the
research progress of several typical MOF materials for photocatalytic CO2 reduction in recent years.

Table 1. the research progress of several typical metal-organic frameworks (MOF) materials for
photocatalytic CO2 reduction.

Sample Light Source
Conditions

Product Productivity Ref.

Zr6O4(OH)4(bpdc)6 Visible light CO - 75
MIL-101(Fe) Visible light HCOO− 7.375µmol/h 76

PCN-222 Visible light HCOO− 3.12µmol/h 77
NNU-28 Visible light dicarboxylic acid 183.3µmol/h 78

Zr6O4(OH)4(L)•6DMF Visible light HCOO− 96.2µmol/ h 79
NH2-Uio-66(Zr) Visible light HCOO− 1.32µmol/h 80

Ag-Ren-MOF Visible light CO - 81
UiO-66-CAT
MOF-525-Co

Cd0.2Zn0.8S@UiO-66-NH2
Co-ZIF-9

ZIF-67

Visible light
Visible light
Visible light
Visible light
Visible light

HCOOH
CO

CH3OH
CO
CO

9µmo/h
36.67µmol/h

-
28.54µmol/h
3.89µmol/h

82
83
84
85
86

Ag@Co-ZIF-9 Visible light CO 28.4µmol/h 87
Zn-MOF nanoliths

Zn2GeO4/Mg-MOF-74
TiO2-ZIF-8
Zn/PMOF

Co-ZIF-9/TiO2
Cu-TiO2/ZIF-8
CsPbBr3@ZIFs

Ti8O8(OH)4(bdc)6(MIL-125(Ti))

Visible light
Visible light
Visible light
Visible light
Visible light

UV-light
Visible light

365nm UV-light

CO
CO

MeOH
CH4
CH4
CO
CO

HCOO−

-
1.43µmol/h
1.21µmol/h

10.43µmol/h
-
-

29.630µmol/h
0.814µmol/ h

88
89
90
91
92
93
94
95

3.1. Zr MOFs

In 2011, Wang et al. [75] chelated metal ions (such as Ir, Re, and Ru) with 4,4-biphenyldicarboxylic
acid derivatives as organic ligands to construct MOFs, and the Zr-based MOF (UiO-67) systems with
different metal doping were obtained. A similar synthesis strategy has also been adopted by Wang et al.
who used ligand H2L4 for photocatalytic reduction of CO2 to CO [76]. The total conversion number
(TON) of CO2 reduction can reach 10.9. The photocatalytic activity can be improved by doping a variety
of photoactive metal nanoparticles inside MOFs. Subsequently, the authors observed a significant
decrease in photocatalytic activity through a series of comparison experiments, which proved that the
metal nanoparticles themselves are the real active sites that are involved in the photocatalytic reaction.

In 2015, Xu et al. [77] chose Zr-MOF (PCN-222) containing porphyrin as catalysts and found
that it could be used as a stable photocatalyst to reduce CO2 to formate ion under visible light.
It was found that PCN-222 exhibited broad-spectrum absorption properties. There existed a series
of extremely long lifetime electron trap states in the material, which could inhibit the recombination
of photogenerated charge carriers and improve the photoreduction efficiency of CO2. In 2016,
Chen et al. [78] synthesized a new microporous stable zirconium-based metal organic skeleton
(NNU-28) from 4,4’-(anthracene-9,10-bis (2,1-ethynylphenyl) dicarboxylic acid, which was used
to reduce CO2 to formate while using triethanolamine as the sacrifice agent. Under visible light
irradiation, the rate of catalytic conversion of CO2 to formate ion was 183.3 µmol/h. It was found
that, in the catalytic reaction, the ligands produced about 27.3% formate ions, while the metal clusters
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produced about 77.7% formate ions. Under light irradiation, anthracene derivative ligands not only
acted as an effective light collector, but it also sensitized Zr6 oxygen clusters through the LMCT
(linker-to-metal charge transfer) process. At the same time, the ligand itself can also be stimulated to
form free radicals and produce photogenerated electrons. Figure 2 shows two catalytic pathways for
the reduction of CO2 to formate. This strategy is helpful for the design and development of MOFs
materials with efficient visible light response [78].
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In 2018, Sun et al. [79] synthesized a porous zirconium based metal-organic framework
[(Zr6O4(OH)4(L)·6DMF) while using dicarboxyl ligands (H2L=2,2’-diamino -4,4’-stilbene dicarboxylic
acid, DMF) with conjugated imine function. The materials showed high chemical stability and
remarkable visible light absorption properties. The average rate of HCOO- formation of MOFs is about
96.2 µmol/h.

Sun et al. [80] compared the activity of NH2-UiO-66(Zr) and NH2-MIL-125(Ti) for photocatalytic
reduction of CO2 under visible light. The results showed that the catalytic performance of NH2-UiO-66(Zr)
was higher than that of NH2-MIL-125(Ti) under the same reaction conditions. This is ascribed to the
effective transfer of photogenerated electrons from ATA to Zr-O clusters, and made Zr-O clusters efficient
photocatalytic active sites. Furthermore, some ATA ligands were replaced by 2,5-diamino terephthalic
acid (DTA) and the mixed ligand NH2-UiO-66(Zr) was obtained. It was found that the CO2 conversion
of mixed NH2-UiO-66(Zr) was 50% higher than that of pure NH2-UiO-66(Zr). This may be because the
mixed NH2-UiO-66(Zr) showed strong photoabsorption capacity and large CO2 adsorption capacity,
so its photocatalytic activity is obviously improved.

Choi et al. [81] reported the synthesis of composited catalysts by covalently binding
ReI(CO)3(bpydc)Cl(as Re TC) to UiO-67 to Ren-MOFs (n is the density of Re TC in the pores of MOF).
Subsequently, the MOF was further modified with cubic silver nanoparticles to obtain Ag-Ren-MOF,
thus the photocatalytic activity of CO2 conversion was significantly improved (Figure 3A, [81]).
The PXRD (powder X-ray diffraction) patterns showed that the single crystal Re3-MOF structure is
preserved when different amount of Re TC is introduced into Ren-MOF (Figure 3B, [81]). By studying
the process of photocatalytic conversion of CO2 by Ren-MOF (Figure 3C, [81]), it was found that the
catalytic activity of Re3-MOF was the highest. In addition, under visible light irradiation, the activity
of AgRe3-MOF was five times higher than that of Re3-MOF, and the conversion efficiency of CO2 to
CO was increased by seven times. This is mainly because MOF has large porosity and CO2 adsorption
capacity, which is conducive to the occurrence of catalytic reduction reaction. On the other hand,
precious metals have a wide range of photo absorption and are easier to trap photogenerated electrons
due to the lower Fermi levels. At the same time, their stability could be further improved due to the
strong covalent bond between Re TC and MOF.



Catalysts 2019, 9, 658 7 of 16

Catalysts 2019, 9, 658 7 of 16 

 

electrons due to the lower Fermi levels. At the same time, their stability could be further improved 
due to the strong covalent bond between Re TC and MOF.  

 

 

Figure 3. Structures of Ren-MOF and Ag Ren-MOF based catalysts (A), PXRD of Ren-MOFs (B), and 
the photocatalytic activity of Ren-MOF (C). Reprinted from ref. 81 with permission by the American 
Chemical Society. 

Lee et al. [82] used UiO-66 (Zirconium 1,4-Carboxybenzene) as a precursor to obtain UiO-66-
CAT with Cr3+ or Ga3+ sites as catalysts for photocatalytic CO2 reduction. In the presence of TEOA 
and BNAH, the TON (turnover number) values of UiO-66-Cr CAT and UiO-66- Ga CAT are 11.22 
±0.37 and 6.14±0.22, and the amount of HCOOH that is produced by catalytic reduction of CO2 after 
visible light irradiation for 6h were (51.73±2.64) and (28.78 ±2.52) μmol, respectively. The activity of 
UiO-66-Cr CAT is about twice higher than that of UiO-66-Ga CAT, which is mainly attributed to the 
fact that Cr3+ is more efficient than Ga3+ for the rapid transfer of electrons. At the same time, Cr 
derivatives show higher reduction efficiency than Ga derivatives due to their open shell structure. 

Zhang et al. [83] reported Zr- porphyrin MOF (MOF-525-Co) as efficient catalysts for CO2 
conversion. Using TEOA as a sacrificial agent, MOF-525-Co could efficiently catalyze the reduction 
of CO2 to CO and CH4 under visible light irradiation. When compared with Zn-MOF-525 and MOF-
525, MOF-525-Co showed the highest catalytic activity and CO2 adsorption capacity. The metallized 
MOFs is obviously improved, and exhibited strong charge separation ability and energy conversion 
efficiency. The highest catalytic performance of cobalt metallized MOFs is mainly due to the fact that 
the introduction of monoatomic Co into MOF-525 can significantly improve the electron-hole 
separation efficiency in porphyrin ligands. At the same time, the photogenerated electrons rapidly 
migrated from the porphyrin center to the surface of the catalyst, thus the electrons with long lifetime 
were obtained, which effectively activated the CO2 molecules that were adsorbed on the Co center. 
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Lee et al. [82] used UiO-66 (Zirconium 1,4-Carboxybenzene) as a precursor to obtain UiO-66-CAT
with Cr3+ or Ga3+ sites as catalysts for photocatalytic CO2 reduction. In the presence of TEOA and
BNAH, the TON (turnover number) values of UiO-66-Cr CAT and UiO-66- Ga CAT are 11.22 ±0.37 and
6.14±0.22, and the amount of HCOOH that is produced by catalytic reduction of CO2 after visible light
irradiation for 6h were (51.73±2.64) and (28.78 ±2.52) µmol, respectively. The activity of UiO-66-Cr
CAT is about twice higher than that of UiO-66-Ga CAT, which is mainly attributed to the fact that Cr3+

is more efficient than Ga3+ for the rapid transfer of electrons. At the same time, Cr derivatives show
higher reduction efficiency than Ga derivatives due to their open shell structure.

Zhang et al. [83] reported Zr- porphyrin MOF (MOF-525-Co) as efficient catalysts for CO2

conversion. Using TEOA as a sacrificial agent, MOF-525-Co could efficiently catalyze the reduction of
CO2 to CO and CH4 under visible light irradiation. When compared with Zn-MOF-525 and MOF-525,
MOF-525-Co showed the highest catalytic activity and CO2 adsorption capacity. The metallized
MOFs is obviously improved, and exhibited strong charge separation ability and energy conversion
efficiency. The highest catalytic performance of cobalt metallized MOFs is mainly due to the fact
that the introduction of monoatomic Co into MOF-525 can significantly improve the electron-hole
separation efficiency in porphyrin ligands. At the same time, the photogenerated electrons rapidly
migrated from the porphyrin center to the surface of the catalyst, thus the electrons with long lifetime
were obtained, which effectively activated the CO2 molecules that were adsorbed on the Co center.

Su et al. [84] prepared a series of Cd0.2Zn0.8S@UiO-66-NH2 composites with different UiO-66-NH2

content by solvothermal method, which were used for photocatalytic reduction of CO2 to CH3OH.
The results showed that the single UiO-66-NH2 showed no activity for photocatalytic CO2 reduction,
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but CdxZn1-xS with adjustable composition and band gap could be efficiently excited by visible light.
All of the Cd0.2Zn0.8S@UiO-66-NH2 samples showed excellent photocatalytic activity when compared
with Cd0.2Zn0.8S. When the content of UiO-66-NH2 was 20% (mass fraction), the catalyst showed the
best photocatalytic activity, and the formation rate of CH3OH is 3.4 times higher than that of single
structure Cd0.2Zn0.8S. This is mainly due to the effective charge separation and transfer at the interface
between Cd0.2Zn0.8S and UiO-66-NH2. Thus, the photogenerated electrons that were absorbed by
Cd0.2Zn0.8S and UiO-66-NH2 can be quickly transferred to the surface for CO2 reduction. In addition,
Cd0.2Zn0.8S@UiO-66-NH2 photocatalyst showed excellent stability in the process of photocatalytic
reduction of CO2.

3.2. Zn MOFs

In 2015, Wang et al. [85] reported the establishment of CO2 photoreduction system while using
the CdS semiconductor and Co-ZIF-9 as catalyst and co-catalyst, respectively. Under mild reaction
conditions, the reaction system of bipyridine and triethanolamine showed high catalytic activity when
CO2 was deoxidized to CO under visible light irradiation. Under the irradiation of monochromatic
light at a wavelength of 420 nm, the quantum efficiency could reach 1.93%.

In 2018, Wang et al. [86] synthesized a series of ZIF-67 nanocrystals with a different morphology
by the solvent induction method. Taking the advantages of MOF, the capture of CO2 was controlled by
controlling its morphology, and their photocatalytic performance was further improved. In the same
year, Chen [87] and co-workers fabricated the Ag-Co-ZIF-9 nanocomposited materials with different
Ag loading by the photo deposition method to study the effect of Ag NPs on the reaction performance
of Co-ZIF-9 in CO2 photo reduction reaction. In this study, Co-ZIF-9, with a rod structure was
obtained by the reflux method, and ultra-small Ag nanoparticles (< 5 nm) were doped into Co-ZIF-9 by
photodeposition. With the help of photosensitizer, the Ag@Co-ZIF-9 composite showed the catalytic
performance of converting CO2 to CO under the irradiation of visible light. With the increase of Ag
nanoparticles, the formation of CO obviously increased while the amount of H2 decreased. When
compared with pure Co-ZIF-9, the photocatalytic activity of Ag@Co-ZIF-9 can be improved by two
times (about 28.4 µmol CO), and selectivity about 20% (22.9 µmol H2). The experimental results
showed that Ag NPs in Co-ZIF-9 could act as an electron trap and active site for CO2 reduction, thus
the efficiency and selectivity of MOF materials in CO2 photo reduction were improved.

Subsequently, Ye et al. [88] developed and used the ultra-thin two-dimensional Zn-MOF nanoliths
to reduce CO2 to CO. They firstly tried to establish two novel non-precious metal mixed photocatalytic
systems. The catalyst showed excellent photocatalytic activity and selectivity under mild reaction
conditions. It was confirmed that the Zn-MOF nanoparticles show better charge transfer ability than
the Zn-MOF bulk materials via electrochemical impedance and PL (photoluminescence) spectroscopy
analysis, thus stronger photocatalytic efficiency and selectivity were obtained. This provides feasibility
for the application of photocatalysis in the development of various two-dimensional (2D) MOF materials.

In 2018, Zhao et al. [89] prepared Zn2GeO4/Mg-MOF-74 composites by the hydrothermal method
(Figure 4). When the water was used as agent, the photocatalytic activity of Zn2GeO4/Mg-MOF-74 for
CO2 reduction reaction is higher than that of pure Zn2Ge4 nanorods or the physical mixture of Zn2GeO4

and Mg-MOF-74. This is mainly due to the stronger CO2 adsorption performance of Mg-MOF-74,
the lower recombination probability of photogenerated electron-hole pair and more alkali metal sites
on the surface of Mg-MOF-74. In addition, the effect of H2O on the reaction was also studied and the
results show that H2O is the reducing agent and hydrogen source involved in the reaction. In the
process of reduction, the photogenerated electrons from the conduction band reduce CO2 to CO and
HCOOH, by the reaction of CO2+2e-+2H+

→HCOOH and CO2+2e-+2H+
→CO+H2O, in which the

content of HCOOH is very small.
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In 2018, Cardoso et al. [90] modified TiO2 nanotubes and formed a core-shell structure by layer
growth of ZIF-8 nanoparticles on the surfaces. The FT-IR spectra show that the host-guest interaction
depends on the pore structure and chemical properties of MOF connectors. Under UV irradiation
at room temperature, CO2 can be photocatalyzed to methanol and ethanol fuel on the electrode of
composited materials. Zinc-based MOF not only provided the adsorption/activation of CO2, but also
acted as a light absorber to transfer excited electrons for photocatalytic reduction.

Sadeghi et al. [91] synthesized zinc-based porphyrin (Zn/PMOF), which could catalytically reduce
CO2 to CH4 under light irradiation. The results showed that the yield of CH4 was 10.43 µmol when
Zn/PMOF was used as photocatalyst. After 4h irradiation, Zn/PMOF was much higher than that of
CH4 when ZnO was used as photocatalyst. At the same time, Zn/PMOF as photocatalyst showed high
selectivity for CO2 reduction, and it has better stability and repeatability when comparing to ZnO.

Yan et al. [92] loaded different amounts of TiO2 on Co-ZIF-9 to construct Co-ZIF-9/TiO2

nanostructure composites (ZIFx/T, x is the mass ratio of Co-ZIF-9 in the composites, T is TiO2).
The results showed that ZIF0.03/ T showed the best catalytic conversion efficiency of CO2, and the
yield of Ti/T is 2.1 times higher than that of pure TiO2 catalyst after irradiation for 10h. Linear sweep
voltammetry in CO2 saturated solution further reveals that Co-ZIF-9 can effectively activate CO2 and
reduce the CO2 reduction initiation potential of ZIFx/T (x ≤ 0.10). In addition, the photoluminescence
spectra show that the ZIFx/T composites that were prepared by in-situ synthesis showed higher
charge separation efficiency. Therefore, better CO2 adsorption capacity and charge separation rate are
beneficial to the high activity of ZIFx/T nanostructures in photocatalytic transformation.

Maina et al. [93] designed a catalytic system based on membrane reactor. The controllable
encapsulation of TiO2 and Cu2+ doped TiO2 nanoparticles (Cu-TiO2) in ZIF-8 film was realized by the
rapid thermal deposition (RTD) method (Figure 5A, [93]). Under ultraviolet irradiation, the Cu-TiO2/

ZIF-8 hybrid film showed high photocatalytic activity. The results show that, when compared with
the amount produced by the original ZIF-8 film alone, the yields of CO and CH3OH increased by
188% and 50%, respectively (Figure 5B, [93]). Further studies showed that the yields of photocatalytic
reduction of CO2 to CH3OH and CO depend on the content of Cu-TiO2 nanoparticles that are loaded
on MOF films (Figure 5C, [93]). When the loading of Cu-TiO2 nanoparticles is 7 µg, Cu-TiO2/ZIF-8
exhibited the best catalytic efficiency. When compared with the original ZIF-8 film, the yields of CO
and CH3OH increased by 23.3% and 70%, respectively. The sharp increase of product originated from
the synergistic effect between the ability of semiconductor nanoparticles to produce photoexcited
electrons under light irradiation and the high CO2 adsorption capacity of MOF.
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Kong et al. [94] prepared CsPbBr3@ ZIFs composites by in-situ synthesis used as CO2 reduction
photocatalyst with reinforcing activity (Figure 6A, [94]). The electron consumption rates of CsPbBr3@ZIF-8
and CsPbBr3@ZIF-67 are 15.498 and 29.630 µmol·g-1

·h-1, which is 1.39 and 2.66 times higher than that
of pure CsPbBr3, respectively. The comparison of photocatalytic CO2 reduction performance using
CsPbBr3 and CsPbBr3@ZIFs showed that the ZIF coating greatly improved the catalytic activity of
CsPbBr3 (Figure 6B, [94]). In addition, six cycle experiments have been carried out on CsPbBr3@ZIF, and
it was found that the electron consumption rate suffered from negligible decrease. This indicates that it
possessed good stability (Figure 6C, [94]). The synergistic effect of CsPbBr3 and ZIF coating improved the
stability of CsPbBr3 to water molecules and enhanced the CO2 capture ability and the charge separation
efficiency. All of these lead to a higher conversion efficiency. Moreover, the catalytic active center Co in
ZIF-67 could further accelerate the process of charge separation, activate CO2 molecules, and improve
the catalytic activity of CO2 reduction.
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3.3. Ti MOFs

In 2012, Fu et al. [95] reported a photosensitive MOF Ti8O8(OH)4(bdc)6(MIL-125(Ti)) for
photocatalytic CO2 reduction. The photocatalytic activity evaluation indicated that Ti-MOF could
efficiently reduce CO2 to HCOO- under 365 nm UV irradiation. When comparing to other MOFs,
MIL-125(Ti) showed slightly higher activity. The photocatalytic results of NH2-MIL-125 showed that
the concentration of HCOO- increased in the reaction system with the extension of irradiation time,
and the formation of HCOO- reached 8.14 µmol within 10 hours. On one hand, the introduction of
NH2 can promote the rapid transfer of electrons from O to Ti, in TiO5(OH) metal cluster. On the other
hand, NH2 can significantly improve the adsorption capacity of NH2-MIL-125 (Ti) to CO2, which is
beneficial for the adsorption and activation of CO2 in the process of photocatalytic reaction. In 2018,
He [96] designed an MOF-based ternal-composite photocatalyst (TiO2/Cu2O/Cu3(BTC)2) to increase the
density of charge carrier and promote the activation of CO2 molecules to improve the photoreduction
capacity of CO2. The experimental results showed that the addition of Cu2O and Cu3(BTC)2 not only
significantly improved the light conversion efficiency of CO2, but also facilitated the formation of CH4.
The increase of charge carrier density improved the overall performance of the catalyst. The PL, XPS,
and DRIFT analysis verified that the coordination of unsaturated metal sites were helpful in activating
CO2. This study provides a new way to solve the problems of low charge density and efficiency CO2

activation, and it also provides a reasonable design for in-depth understanding of CO2 photoreduction
and other applications of mixed nanomaterials based on MOF.

4. Prospect of Photocatalytic CO2 Reduction

The advantages of MOFs-based photocatalytic materials are obvious when comparing to
conventional semiconductor materials. Thus, they have attracted more and more research attentions
in photocatalysis. However, the low efficiency of this technology still hinders its wide applications
in industry. The following problems should be addressed in the future. Firstly, researchers need
to put forward effective strategies to improve the light absorption properties and charge separation
performances. Secondly, most MOFs are not as metal oxide for semiconductor photocatalysts, especially
in water or under ultraviolet light, which ultimately leads to the decreased catalyst life; hence, how to
enhance their robustness is another important topic. Thirdly, there are few studies on the mechanism
of photocatalytic CO2 reduction in MOFs, especially the current understanding of the catalytic reaction
path is still blurred. In addition, most of the reported photocatalytic CO2 reduction reactions are
carried out in organic solvents, requiring additional sacrificial agents. The future materials for catalytic
reduction of CO2 should be economical and environmentally friendly. Therefore, it is urgent to solve
the above problems of MOFs materials for photocatalytic CO2 reduction.

5. Conclusions

Artificial photosynthesis using catalysts to convert CO2 to high value-added chemicals or fuels is
an ideal way to effectively solve energy and environmental problems. The MOFs materials exhibit great
application prospects in the field of photocatalysis, due to its ultra-high specific surface area, porous
properties, modified/regulated textures, and high capture capability for CO2 molecules. The advantages
and significance of MOFs materials in CO2 catalytic reduction are described in detail. Meanwhile,
the application of typical MOFs in CO2 photoreduction, for example, Zr-MOFs, Zn-MOFs, and Ti-MOFs,
were introduced and summarized. Finally, the future development trend and prospect of photocatalytic
CO2 reduction are anticipated in this review.
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