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Abstract: The band gap controlled photocatalyst (Zn0.74Cu0.13In2S3.805) was prepared via a simple
one-step solvothermal method. The effects of doping of Cu+ and excess In on the photocatalytic activity
of ZnIn2S4 photocatalyst were investigated. In addition, optical properties, surface morphology and
crystal structure were evaluated. The maximum H2 evolution rate (2370 µmol h−1 g−1) was achieved
with Zn0.74Cu0.13In2S3.805, which was about five times higher than that of untreated ZnIn2S4 under
visible light (λ ≥ 420 nm). The band gap of Zn0.74Cu0.13In2S3.805 decreased to 1.98 eV by raising the
maximum position of the valence band, compared to ZnIn2S4. Furthermore, the recombination of
electron hole pairs was effectively reduced. This research contributes to the development of highly
active photocatalysts under visible light.
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1. Introduction

Hydrogen is one of the more demanded synthetic energy carriers. Until now, hydrogen can be
produced chemically, thermochemically, biologically, biochemically, biophotochemically, etc. [1–4].
Among these techniques, hydrogen generation by water splitting using a photocatalyst has been
expected as a clean and sustainable energy technology, because it can directly convert solar energy into
chemical energy by using only water as a raw material [5–7]. It is important to develop highly efficient
photocatalysts to replace the current hydrogen generation technology with the photocatalytic water
splitting process. Sunlight contains ultraviolet light, visible light and infrared light, and it is ideal to
use all the wavelengths when using sunlight. It is known that the wavelength ranges of light, in which
the photocatalyst reacts, is dependent on the size of the band gap of the photocatalyst [8–10]. Therefore,
photocatalytic activity can be exhibited even under longer wavelength light [11–13]. The addition
of foreign elements, which is one of the ways to change photocatalytic ability, greatly affects the
characteristics of the catalyst. Specific requirements to improve the activity of the photocatalytic
material generally include efficient light absorption, effective separation of photogenerated charge
carriers, and better efficiency of the interface for direct release of hydrogen and/or oxygen from
water [14–16]. In efficient light absorption, the size of the band gap formed by the conduction band
(CB) and the valence band (VB) of the semiconductor photocatalyst is the most important issue [17–19].
With regard to the effective separation of photogenerated charge carriers, many elements such as
defects in the crystal structure and band structure are involved in a complex manner [20–22].

Sulfide photocatalysts are advantageous for visible light driven photocatalysts, because they
have narrow band gaps and negative valence bands due to the electron orbit of S, compared
to oxide based photocatalysts [23–25]. ZnIn2S4 has been tested to have a suitable band gap
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corresponding to the visible-light absorption region, high photocatalytic activity and considerable
chemical stability for photocatalytic H2 evolution [26–28]. Yao et al. described the fabrication of
Z-scheme PtS–ZnIn2S4/WO3-MnO2 for overall photo-catalytic water splitting [29]. It was reported by
Zhao et al. that the combined effects of octahedron NH2-UiO-66 and flowerlike ZnIn2S4 microspheres
for photocatalytic hydrogen evolution [30]. However, the absorption wavelength of pure ZnIn2S4

is limited to about 500 nm. Cu species such as Cu+ and Cu2+ affected the valence band of ZnIn2S4

and formed an advantageous band structure for photocatalysts [31–33]. In In-Zn-S compounds,
the [Zn2+]/[In3+] ratio changes the structural and optoelectronic properties, and greatly affects the
composition of In–Zn–S [34]. Thus far, there are few reports that ZnIn2S4 is co-doped with Cu+ and
excess indium. In this study, we investigated photocatalytic activity, optical properties and surface
morphology of ZnIn2S4 simultaneously doped with Cu+ and excess indium.

2. Results and Discussion

2.1. Structural Characterization

The XRD patterns of ZnIn2S4, Zn0.87Cu0.13In2S3.935, Zn0.87In2S3.87 and Zn0.74Cu0.13In2S3.805 are
shown in Figure 1. The XRD pattern of ZnIn2S4 could be indexed as the hexagonal structure (JCPDS
No. 65-2023). The three diffraction peaks at around 20.8◦, 27.5◦, 47.2◦ and 56.4◦ could be assigned to the
(006), (101), (110) and (202) planes, respectively [35,36]. The XRD patterns of other Zn0.87Cu0.13In2S3.935,
Zn0.87In2S3.87 and Zn0.74Cu0.13In2S3.805 photocatalysts also showed similar results. These XRD patterns
were in agreement with those reported in previous studies [35], which revealed that Zn0.74Cu0.13In2S3.805

is a hexagonal structure and contains almost no impurities of ZnS. The reason that the Cu and In
derived peaks were not observed could be due to the very low doping amount. In addition, with respect
to the peak of the (006) plane, a slight shift toward the high angle was observed when doping Cu and
increasing In. This means that the interplanar spacing was reduced by doping, suggesting that Cu and
excess In may be incorporated into the crystal structure of ZnIn2S4 and exist as a solid solution.
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Figure 1. XRD patterns of (a) ZnIn2S4, (b) Zn0.87In2S3.87, (c) Zn0.87Cu0.13In2S3.935 and (d)
Zn0.74Cu0.13In2S3.805.

The results of the X-ray photoelectron spectroscopy (XPS) measurement for further structural
analysis of photocatalysts are shown in Figure 2. The elemental ratios determined from the XPS
spectrum are shown in Table S2. XPS survey spectra of Zn0.87In2S3.87, Zn0.87Cu0.13In2S3.935 and
Zn0.74Cu0.13In2S3.805 matched the material ZnIn2S4. This indicates that the impurities were not
contained regardless of the doping Cu+ and excess In. Furthermore, from the result of elemental
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ratio analysis of XPS, it could be confirmed that the elemental ratio of the prepared catalysts were
substantially in agreement with the theoretical ratio. Typical narrow spectra of Zn0.74Cu0.13In2S3.805

are shown in Figure 2a. In the XPS spectrum of Zn 2p, the peak of Zn 2p3/2 (1020.4 eV) was observed.
This peak was derived from the ZnIn2S4 component in Zn0.74Cu0.13In2S3.805. In the XPS spectrum of In
3d from ZnIn2S4 and In2S3, binding energies of 443.7 (In 3d5/2) and 451.0 eV (In 3d3/2) were observed.
The peaks of S 2p were at 161.3 eV (S 2p3/2) and 162.6 eV (S 2p1/2) [37,38]. In addition, since the peak
position of Cu 2p3/2 is observed only at 932 eV and Cu 2p3/2 satellite peak derived from Cu2+ was not
present at 942 eV, it can be seen that Cu was doped in a monovalent state [39,40]. Both results of XRD
and XPS show that the basic structure of Zn0.74Cu0.13In2S3.805 is hexagonal ZnIn2S4, doped with Cu+

and excess In.
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(a) survey, (b) Zn, (c) In, (d) Cu and (e) S.

2.2. Morphological Analysis

In order to investigate the influence of Cu and excess In doping on the characteristic surface
morphology, SEM images of the prepared photocatalysts were observed. The results are shown in
Figure 3. In pure ZnIn2S4, a microsphere structure formed by the overlapping of nanosheets was
observed [41]. When Cu and excess In was doped, the spherical structure was destroyed. The nanosheet
structure also collapsed and aggregated. The shapes of pure ZnIn2S4 and Zn0.74Cu0.13In2S3.805 were
very different. Maybe, Cu+ and excess In formed a solid solution with ZnIn2S4.
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Figure 3. SEM images of (a) ZnIn2S4 and (b) Zn0.74Cu0.13In2S3.805.

2.3. Optical Analysis

Figure 4 shows the absorption wavelength region of light using the UV-visible diffuse reflectance
spectrum. Furthermore, a Tauc plot calculated from the UV-vis diffuse reflectance spectra (DRS)
spectrum is shown in Figure S1, in order to obtain a band gap. As shown in the results of DRS
and Tauc plot, the absorption edge of pure ZnIn2S4 was 480 nm, and the size of the band gap
was 2.67 eV. When [Zn2+]/[In3+] mole ratio was changed (Zn0.87In2S3.87), the absorption tendencies
were almost similar to ZnIn2S4. However, when Cu+ doping (Zn0.87Cu0.13In2S3.935) and excess In
doping (Zn0.74Cu0.13In2S3.805) were performed, the absorption edges were extended to about 700 nm.
Consequently, the band gap of ZnIn2S4 similarly decreased in the case of the doping Cu and excess In.
So as to analyze the band structure, valence band edge measurement for the prepared photocatalysts
was performed by XPS. It is clear from the results in Figure S2 that the doping of Cu+ shifted the
valence band edge to the negative side. It has been reported that the doping of In3+ forms a sub-band
on the positive side of the conduction band of ZnIn2S4 [36]. Therefore, it is reasonable that the doping
of Cu+ and In into the photocatalyst reduce the band gap energy of ZnIn2S4.
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Figure 4. UV-visible spectra of (a) ZnIn2S4, (b) Zn0.87In2S3.87, (c) Zn0.87Cu0.13In2S3.935 and (d)
Zn0.74Cu0.13In2S3.805.
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We investigated the photoluminescence spectra in order to investigate the electron–hole pair
separation efficiency, and the results are shown in Figure 5. Luminescence in ultraviolet and visible
regions was observed in the photoluminescence spectrum. In general, ultraviolet emission is associated
with exciton transition and recombination from the conduction band level to the valence band,
and visible light emission is mainly associated with intrinsic or extrinsic defects in the catalyst.
The photoluminescence spectra of ZnIn2S4 was approximately close to Zn0.87In2S3.87. On the other
hand, the spectra from Zn0.87Cu0.13In2S3.935 and Zn0.74Cu0.13In2S3.805 were lowered by doping of
Cu+ and excess In. This may have been due to the decrease of the recombination rate between the
photogenerated holes and the electrons photogenerated in the valence band. The photogenerated
electrons may have been trapped in the oxygen vacancies generated in the photocatalyst by doping.
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Figure 5. Photoluminescence spectra for (a) ZnIn2S4, (b) Zn0.87In2S3.87, (c) Zn0.87Cu0.13In2S3.935 and
(d) Zn0.74Cu0.13In2S3.805. Excitation: 350 nm.

2.4. Photocatalytic Activity

Hydrogen generation was conducted using the photocatalyst Zn0.74Cu0.13In2S3.805. ZnIn2S4,
Zn0.87In2S3.87 and Zn0.87Cu0.13In2S3.935 were used as comparative objects. All catalysts were loaded
with 1wt% Pt as a cocatalyst. The results are shown in Figure 6. The photocatalyst ZnIn2S4 mono-doped
with excess In showed slightly higher hydrogen generation activity than that of pure ZnIn2S4. On the
other hand, ZnIn2S4 doped only with Cu+ greatly improved the photocatalytic activity. Furthermore,
the photocatalyst doped with Cu+ and excess In showed the highest hydrogen generation activity.
The maximum H2 evolution rate was 2370 µmol h−1 g−1, which showed about five times better results
than that of untreated ZnIn2S4. The reproducibility of the H2 production (relative standard deviation
(RSD), for hydrogen amounts) was better than RSD 4% for three repeated measurements.

The TEM images before and after the hydrogen generation of Zn0.74Cu0.13In2S3.805 photocatalyst
are shown in Figure S3. Only after hydrogen generation, a 3–4 nm spot was observed on the sample
surface. The spot deposition was Pt, which was reduced during the hydrogen production.
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2.5. Proposed Hydrogenation Mechanism

The reaction mechanism is shown in Scheme 1. Irradiation of light having a wavelength
corresponding to the band gap energy of the Zn0.74Cu0.13In2S3.805 photocatalyst excites electrons in
the valence band to the conduction band to produce an electron–hole pair (Formula (1)). From the
results of DRS and photoluminescence (PL), it could be considered that Cu+ and excess In doping
enhanced charge separation by forming an impurity level on the negative side of the valence band of
ZnIn2S4 and the positive side of the conduction band, narrowing the band gap. In Formula (2), a part
of electrons excited in the conduction band is consumed for photodeposition of Pt. The deposited Pt
reduces H+ by using electrons transferred from the photocatalyst to generate H2 (Formula (3)). On the
other hand, sulfite ions and sulfide ions consume the holes for promoting a hydrogen generation
reaction. The presence of Na2S is very important in enhancing the photocatalytic activity, as Na2S
stabilizes the surface of the metal sulfide by suppressing the formation of surface defects as a scavenger
of holes. However, when the concentration of Na2S is high, the pH becomes high. High pH values are
thermodynamically disadvantageous in the reaction represented by Formula (4). As described in the
Formulas (5)–(7), SO3

2− and S2− consume holes. According to the Formula (6), S2
2− ions are generated

and act as an optical filter. If S2
2− is not consumed, it interferes with light absorption. As shown in

Formula (8), the reaction between S2
2− and SO3

2− forms S2O3
2−, which is colorless and can hardly

affect to light absorption.
Photocatalyst + hν→ e− + h+ (1)

Pt2+ + 2e−CB→ Pt (2)

2H+ + 2e−CB→ H2 (3)

2H2O + 2e−CB→ H2 + 2OH− (4)

SO3
2− + H2O + 2h+

VB→ SO4
2− + 2H+ (5)

2S2− + 2h+
VB→ S2

2− (6)

SO3
2− + S2− + 2h+

VB→ S2O3
2− (7)

S2
2− + SO3

2−
→ S2O3

2− + S2− (8)
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3. Materials and Methods

3.1. Preparation of Photocatalysts

All chemicals were analytical grade and used as received without further purification.
Zn0.74Cu0.13In2S3.805 was prepared by a simple hydrothermal method. Cetyltrimethylammonium
bromide (CTAB, 3.76 mmol) (Wako Pure Chemical Industries, Ltd., Osaka, Japan), stoichiometric
mole of ZnSO4·7H2O (Nacalai Tesque, Inc., Kyoto, Japan), InCl3·4H2O and CuCl (I) and an excess of
thioacetamide (TAA) (Wako Pure Chemical Industries, Ltd., Osaka, Japan) were dissolved in 50 mL
of distilled water. At the same time, in order to keep Cu monovalent, nitrogen was purged into the
solution for 10 min to remove dissolved oxygen. The mixed solution was then transferred into a 100 mL
Teflon autoclave. The autoclave was sealed, kept at 160 ◦C for 1 h and cooled to room temperature
naturally. After cooling, the product was dried in a vacuum at 40 ◦C for 4 h and was ground for 30 min.
ZnIn2S4 (not doped), Zn0.87Cu0.13In2S3.935 (Cu+ doped) and Zn0.87In2S3.87 (change of Zn2+/In3+) were
also prepared by the same method as reference materials. The prepared photocatalysts are shown in F1.

3.2. Characterization of Samples

X-ray powder diffraction (XRD) measurements were performed using a Rigaku RINT Ultima-IV
diffractometer. It was carried out by using Cu radiation at a scan rate of 0.04◦/s in a scan range of 10◦–80◦.
X-ray photoelectron spectroscopy (XPS) measurements were carried out with a PHI Quantera SXM
photoelectron spectrometer using Al Kα radiation. To compensate for surface charge effects, binding
energies were calibrated using the C1s peak at 284 eV as the reference. Scanning electron microscope
(SEM) observations were performed using a Hitachi S-4000 SEM. The transmission electron microscopy
(TEM) images were taken on JEOL product JEM1011. The UV–vis diffuse reflectance spectra (DRS) of the
photocatalysts were recorded using a Shimadzu UV-2450 spectrophotometer equipped with an integral
sphere assembly, using BaSO4 as a reflectance standard. Photoluminescence (PL) spectra were obtained
at an excitation wavelength of 350 nm by using a Shimadzu RF-5300PC spectrofluorophotometer.

3.3. Photocatalytic Hydrogen Generation

A Pyrex column vessel reactor (inner volume: 123 mL) was used for the photocatalytic production
of hydrogen from aqueous sulfide solution. In all experiments, 40 mL of solution containing 40 mg
of catalyst, 10 mL of 0.04 ppm H2PtCl6 solution and 0.25 M Na2SO3/0.35 M Na2S mixed sacrificial
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agent was added into the reaction cell. The light source was a 4000–4500 µW/cm2 Xe-lamp (300 W),
with a cut-off filter (λ ≥ 420 nm). Nitrogen was purged into the system for 30 min before the reaction to
remove oxygen. The concentrations of H2 were measured with an online gas chromatograph (GC).
Injection, column and detector in GC were 50 ◦C. A thermal conductivity detector (TCD) was used as
detector. The hydrogen generation experimental conditions are shown in Table 1.

Table 1. Hydrogen generation experimental conditions.

Photocatalyst ZnIn2S4, Zn0.87In2S3.87, Zn0.87Cu0.13In2S3.935, Zn0.74Cu0.13In2S3.805
Cocatalyst 0.04 ppm H2PtCl6 10 mL (1.0 wt%)
Medium 0.25 M Na2SO3 / 0.35 M Na2S 40 mL
Reactor Pyrex glass vessel (volume: 123 mL)

Temperature Room temperature (25 ◦C)
Light source Xenon lamp (λ ≥ 420 nm, 4500 µW/cm2)

Irradiation time 6 h
Analysis Gas chromatography (TCD)

4. Conclusions

The Zn0.74Cu0.13In2S3.805 photocatalyst, in which ZnIn2S4 was doped with Cu+ and excess In, was
prepared by a simple one-pot solvothermal method. From the SEM, XRD and XPS results, it is highly
possible that Zn0.74Cu0.13In2S3.805 is a solid solution with a hexagonal ZnIn2S4 as a basic structure.
Control of the band gap and suppression of electron–hole recombination were confirmed by doping
ZnIn2S4 with Cu+ and excess In. In addition, an increase in the absorption wavelength range and
improved catalytic activity were observed. The hydrogen generation rate by Zn0.74Cu0.13In2S3.805 was
2370 µmol g-1 h-1, which was almost five times larger compared with that obtained with ZnIn2S4.
The present work provides a strategy for water splitting systems consisting of sulfide materials with
narrow band gaps for efficient hydrogen production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/8/681/s1.
Table S1: Expected composite components of photocatalyst (molar ratio), Table S2: Elemental ratios of ZnIn2S4,
Zn0.87In2S3.87, Zn0.87Cu0.13In2S3.935 and Zn0.74Cu0.13In2S3.805 from XPS results, Figure S1: Tauc plots of (a) ZnIn2S4,
(b) Zn0.87In2S3.87, (c) Zn0.87Cu0.13In2S3.935 and (d) Zn0.74Cu0.13In2S3.805, Figure S2: Valence-band XPS spectra of
(a) ZnIn2S4, (b) Zn0.87In2S3.87, (c) Zn0.87Cu0.13In2S3.935 and (d) Zn0.74Cu0.13In2S3.805, Figure S3: TEM images of
Zn0.74Cu0.13In2S3.805 (a) before and (b) after irradiation.
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