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Abstract: Diodes with an erbium and nitrogen codoped magnesium zinc oxide (MgZnO:Er,N) active
layer were fabricated by spray pyrolysis on Si substrate with aqueous solutions including magnesium
nitrate, zinc acetate, erbium acetate, ammonium acetate, and indium nitrate precursors. Diodes with
different nitrogen content in their precursor were prepared and their properties were investigated.
With scanning electron microscopy, film surface with mixed hexagonal flakes and tiny blocks was
characterized for all samples. Certain morphologies varied for samples with different N contents.
In the photoluminescence analyses, the intensity of the oxygen-related defects peak increased with
the increasing of nitrogen content. The diodes were fabricated with an Au and In deposition on the
top and backside. The diode current–voltage as well as capacitance–voltage characteristics were
examined. An ununiformed n-type concentration distribution with high concentration near the
interface in the MgZnO:Er,N layer was characterized for all samples. Diodes with high nitrogen
content exhibit reduced breakdown voltage and higher interface concentration characteristics. Under
reversed bias conditions with an injection current of 50 mA, a light spectrum with two distinct
green emissions around wavelengths 532 and 553 nm was observed. A small spectrum variation
was characterized for diodes prepared from different nitrogen content. The diode luminescence
characteristics were examined and the diode prepared from N/Zn=1 in the precursor showed an
optimal injection current-to-luminescence property. The current and luminescence properties of the
diode were characterized and discussed.
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1. Introduction

Zinc oxide (ZnO), a group II–VI material, has been widely investigated in the past decades. Many
zinc oxide based devices, such as sensors [1,2], electronic [3,4], optoelectronic [5,6], and mechanic
electronic [7,8] have been studied and applied. One of the optoelectronic diodes, the n-type erbium
(Er) doped ZnO on a p-type Si substrate, demonstrates green light luminescence ability [9]. As the
emission wavelength is just under the low transmission loss window of the PMMA (Poly(methyl
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methacrylate) core optical fiber [10], the Er doped ZnO diode shows the developing potential for
Si-based photonic devices.

In the Er doped diode, the energy transformation of carriers from impact ionization to Er ions
was the origin of diode luminescence. The avalanched breakdown operation conditions for achieving
carrier impact ionization herein becomes important. On the other hand, the Er shows an n-type
dopant in ZnO with the substation of the Zn site. Thus for the active layer with Er doping, the n-type
concentration increases with the increasing of the Er doping. As the Er doped region in the pn diode
dominates the diode breakdown conditions, controlled carrier concentrations in the Er doped diode
under sufficient Er doping becomes important. In regarding the dopings with the Er-containing
materials, much work was performed on their energy transfer mechanism [11–15], but there was less
discussion regarding the carrier concentration. Zhong [16] prepared Er doped and Er,N codoped
ZnO by implantation and found the luminescence difference by forming Er-O-N complexes. In our
previous studies, diode performance improved with Mg incorporated in the pn diode structure [17].
In this diode, the Er-related luminescence was operated under reverse bias with the impact ionization
occurring in the depletion region. As the Er (III) doping in ZnO and MgZnO (II–VI) shows an n-type
contributor, sufficient Er doping could imply that the depletion width decreased with the increase of
n-type concentration. On the other hand, the N shows p-type doping in ZnO [18] and MgZnO [19].
The N doping in the Er content pn diode may compensate for the electron concentration and for the
extending of the depletion width of the diode. In this work, the effect of nitrogen doping on the diode
was studied. The Er and N codoped MgZnO diode was prepared with different N contents, and we
compared the luminescence and diode properties.

2. Experimental Section

The MgZnO:Er,N active layer followed by a ZnO:In layer were deposited on p-type
Si substrate (concentration 5 × 1018cm−3) at 450 ◦C using a spray pyrolysis deposition
system with zinc acetate dehydrate (Zn(CH3COO)2·2H2O,0.2M), magnesium acetate tetrahydrate
(Mg(CH3COO)2·4H2O)(Mg/Zn=25%), erbium acetate hydrate (Er(CH3COO)3·4H2O)(Er/Zn=5%),
and ammonium acetate (CH3COONH3) aqueous solution precursors. Before deposition, the Si
wafer was cleaned with acetone, rinsed in DI water, dried by N2 gas, dipped in diluted HF, rinsed in
DI water, and dried by N2 gas sequentially. The Si substrate was transferred to the deposition chamber
and an approximately 350 nm MgZnO:Er,N layer followed by an approximately 140 nm ZnO:In layer
were deposited sequentially. The circular Au electrode with a diameter of 0.8 mm was defined on the
ZnO:In side with a metal mask by sputtering. The In contact was formed over the Si backside using a
thermal process. Samples with different N/Zn atomic ratios of 0,1,4, and 8 in precursor were prepared
and the sample codes were ME, ME1, ME4, and ME8, respectively.

The surface morphology of the samples was examined by scanning electron microscopy (SEM,
Hitachi S-4300N, Tokyo, Japan). The elements of the film were analyzed by an energy dispersive X-ray
spectrometer (EDS, JEOL JSM-6700F, Tokyo, Japan). The crystalline structure was obtained using X-ray
diffraction (XRD, Bruker D8, Billerica, MA, USA). The photoluminescence (PL) spectrum was obtained
by an optical system with a spectrometer (HR2000+, Ocean Optics, Largo, FL, USA), He-Cd laser
(325 nm wavelength), and a cryostat. The diode current–voltage (I–V), electroluminescence (EL) and
capacitance–voltage (C–V) characteristics were examined by a source meter (Keithley 2400, Solon, OH,
USA), a spectrometer, and an impedance analyzer (Agilent 4294A, Lexington, MA, USA), respectively.

3. Results and Discussions

Figure 1 shows the surface morphology of the MgZnO:Er,N diodes: (a) ME, (b) ME1, (c) ME4,
and (d) ME8. Granular morphology with stacked hexagonal flakes combined with small blocks can be
observed. With the increase of N content in the MgZnO:Er,N layer, the hexagonal flakes become large
and the density of the small blocks increases. This surface texture shows a general morphology which
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is similar to film prepared by spray pyrolysis with zinc acetate precursor [20]. Figure 2 shows the EDS
analysis of the MgZnO layer of sample ME. A Mg/Zn atomic ratio of around 10% was achieved.

Figure 1. Surface morphology of MgZnO:Er,N diodes: (a) ME, (b) ME1, (c) ME4, and (d) ME8.

Figure 2. EDS of the MgZnO layer of sample ME.
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Figure 3 shows the XRD pattern of the samples. The observed peaks at 34.64, 36.39, 47.76,
and 63.01 degrees were attributed to wurtzite ZnO-related (002), (101), (102), and (103) planes,
respectively. The full width half maximum (FWHM) is broad for all peaks. This is caused by the
granular size effect [21] and the incorporated Mg species [22]. With the increase in N content, the
intensity of (002) increased slightly and the little crystalline property varied.

Figure 3. The XRD patterns of samples ME, ME1, ME4, and ME8.

Figure 4 shows the PL spectrum of the samples measured at room temperature. A broad peak
around 377 nm can be observed. This is attributed to the near band edge signals of ZnO. In the
examined structures, as the band gap of ZnO is less than that of MgZnO, carriers excited by high energy
photons under photoluminescence analysis transfer thermally and recombine in the low bandgap
ZnO region. The ZnO-related emissions were then characterized. With the increase of N content in
the active layer, blue emission with a wavelength around 480–540 nm can be observed. This broad
signal is attributed to oxygen-related defects as well as oxygen-interstitial defects, oxygen deficiencies,
and a singly ionized oxygen vacancy center [23,24]. Thus, the oxygen-related defects arise in the
structure with the introduction of N incorporated in the Er doped layer. On the other hand, the
Er-related electroluminescence is attributed to the carrier impact excitation of Er ions [25]. As the
photoluminescence emissions originate from the energy transformation by the electron-hole pairs
generated after photon excitation, no Er-related photoluminescence emissions in the visible band were
observed in the PL measurement [9].

Figure 5 shows the diode current–voltage (I–V) characteristics of the diodes ME, ME1, ME4,
and ME8. In the forward bias region, a threshold voltage based on the built-in potential between p-Si
and n-MgZnO can be observed. The breakdown characteristics can be observed in the reverse bias
region. The operation voltage with reverse biased 30 mA is 6.8 V, 7.0 V, 6.3 V, and 6.5 V for samples
ME, ME1, ME4, and ME8, respectively. For samples ME and ME1, the increase of operation voltage
is attributed to the n-type concentration reduction in the MgZnO layer caused by introducing the
N doping. However, further analysis is necessary to clarify the operation voltage decrease with the
continued increase of N content in the MgZnO layer.
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Figure 4. Photoluminescence spectrum for samples ME, ME1, ME4, and ME8 measured at
room temperature.

Figure 5. Diode current (I) and voltage (V) characteristics of the diodes ME, ME1, ME4, and ME8.

Figure 6 shows the capacitance per area (C) and voltage (V) characteristics of the samples. As the
concentration of p-type Si is known (5 × 1019 cm−3), the n-type concentration in MgZnO can thus
be characterized from the CV analysis [26]. The inset of the figure shows the concentration (conc.)
distribution in the MgZnO layer of the samples while the point of origin (x = 0) is at the p-Si/n-MgZnO
interface. It can be seen that the concentration distribution in the MgZnO region is not uniform for all
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samples, although the supply of precursors for each species remained unchanged in the deposition
process. Higher concentration was observed in the MgZnO layer near the Si/MgZnO interface.

Figure 6. The diode capacitance (C) and voltage (V) characteristics of the diodes ME, ME1, ME4,
and ME8. The inset shows the corresponded carrier concentration (conc.)–position (x) characteristics.

In the deposition of the MgZnO:Er,(N) layer, although the Si substrate was cleaned and the surface
oxide was remove using a wet etching process before deposition, a ultrathin oxide layer may have
formed during the subsequent deposition of the MgZnO:Er,(N) layer. Interface traps were thus formed
by the dangling bonds on the thin oxide layer [27]. Pau et al. examined the ZnO quality spatially
on Si substrate. They found that the ZnO near the Si–ZnO interface exhibits higher defect states [28].
For an undoped ZnO, the complex states originate from the pairing of oxygen vacancy (VO) and zinc
vacancy (VZn), which takes effect in the carrier concentration [29,30]. In an unintentionally doped
ZnO, high n-type concentration may originate from the donor-type of such complex states [30]. In the
Si-MgZnO:Er,(N) interface, interface traps with complex states may exist and cause the accumulation
of n-type concentration.

In considering the concentration difference in different samples, the concentration decreases with
the increasing of N doping in the region far away from interface (x > 0.15). This is due to the carrier
compensation effect of N doping [31]. On the other hand, the concentration accumulation characteristics
near the interface region were enhanced with the increasing of N doping. As the ammonium acetate
aqueous solution precursor was used as the supplier of N dopant, species from thermally decomposed
ammonium acetate radicals in deposition process may take effect on the dangling bonds on thin oxide
and thus enhance the donor-type defects on the close interface region in the MgZnO:Er,N layer. With
more donor-type defects near the interface, a high reverse bias leakage current with a reverse bias
excess of −2 V for ME4 and ME8 was realized.

Figure 7 shows the room temperature electroluminescence spectrum of these diodes under an
injection current of 50 mA in reverse bias. The inset shows the normalized intensity (I/Imax.) of each
diode. For the Er-contained diode, the electrons and holes which were generated and accelerated in the
depletion due to a high reverse biased condition may transfer the energy to Er3+ via impact ionization
and cause the emissions. Two emission bands around 532 and 553 nm can be observed. The emissions
are correlated to the energy state transitions of Er3+ of 2H11/2→

4I15/2 and 4S3/2→
4I15/2, respectively,
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after the impact of the carriers in the MgZnO:Er(,N) layer. When comparing the spectrum of these
diodes, little spectrum difference can be observed. Thus some host material variation occurred [32] for
the MgZnO:Er,N with nitrogen doping.

Figure 7. Electroluminescence emissions of the diodes under a reverse biased 50 mA injection current
at room temperature.

Figure 8 shows the intensity (L)–injection current (I) characteristics of the diodes. The light
intensity arose after a certain current injection. This may have been caused by the leakage current
before the avalanche breakdown. The leakage current originated from the defect states that may have
concentrated around the grain boundaries shown in Figure 1. With the further increase in the current,
the light intensity increases due to the increase of the impact ionization current in the depletion region.
The light intensity decreased as the current increased further. This originated from the joule heat
generated under the high injection current.

Figure 8. The intensity (L)–injection current (I) characteristics of the diodes ME, ME1, ME4, and ME8.
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The maximum light intensity of these diodes showed an increasing-decreasing behavior with the
increasing of N in the active layer. For ME1 and ME4, as the n-type concentration in MgZnO:Er,N
reduced, carriers accumulated and transfer energy to the Er ion effectively and caused the light intensity
increase. On the other hand, as the varied surface granular morphology and the high donor-like states
arise around the Si-MgZnO interface for ME4 and ME8, the increase of leakage current for ME4 and
ME8 can be realized.

4. Conclusions

The p-type Si/n-type MgZnO:Er,N/n-type ZnO:In diodes with different N content were prepared
by spray pyrolysis. The film surface morphology remained and the O-related defects increased with
the increase of N content. The n-type concentration in MgZnO:Er,N layer compensated in the region
far away from the Si interface and accumulated in the region near the Si interface with the increase of N
content. With high N content, concentration accumulation around the interface, which may originate
from donor-type defects, was enhanced and dominated the diode performance with a raised leakage
current. The diode luminescence spectrum was examined. Improved luminescence was characterized
for the diode prepared with a suitable N/Zn ratio.
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