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Materials

4-methoxyaniline, oleic acid, and 4-hydroxybenzaldehyde were obtained from Sigma-Aldrich
(Hamburg, Germany). N,N’-dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP),
dichloromethane ethanol and methanol were purchased from Aldrich (Wisconsin, USA). All
chemicals were used without further purification.

Characterization of synthesized compound

The purity of the prepared samples was checked with TLC (Thin Layer Chromatography)
sheets coated with silica gel (Sigma, Homburg)

Infrared spectra were measured using Perkin-Elmer B25 (Perkin-Elmer, Inc., Shelton, CT
USA) spectrophotometer. 'HNMR spectra were recorded using a Varian EM 350L 300 MHz
spectrometer (Oxford, UK) using tetramethylsilane as internal standard and CDCls as solvent;
the chemical shift values recorded as é (ppm units).

Elemental analyses for final products were carried out on Thermo Scientific Flash 2000
CHS/O Elemental Analyzer, Milan, Italy.

Calorimetric measurements were carried out using a TA Instruments Co. Q20 Differential
Scanning Calorimeter (DSC; USA). The DSC was calibrated using the melting temperature
and enthalpy of indium and lead. DSC investigation was carried out for small samples (2-3
mg) placed in aluminum pans. All measurements were achieved at a heating rate of 10 °C/min
in inert atmosphere of nitrogen gas (30 mL/min) and all transition recorded from the second
heating scan.

Transition temperatures were checked and types of mesophases identified, for all
compounds prepared and their binary mixtures, with a standard polarized light microscope
(PLM, Wild, Germany) attached with Mettler FP82HT hot stage.

NMR measurements
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The NMR have been recoded for compound I that was prepared by dissolving in 600 uL of
deuterated solvents DMSO-d6 inside a 3mL glass vial, then vigorously vortexed until completely
dissolved. Then, 500 puL was transferred to 5 mm NMR tubes. A Bruker 600 NMR spectrometer
(Bruker BioSpin, Rheinstetten, Germany) operating at 600.13 MHz for proton equipped with a triple
resonance probe was used to record all NMR spectra. The '"H NMR spectrum was recorded by
collecting 64 scans with a recycle delay time of 10 s, using one pulse sequence through a standard
(zg) program from the Bruker pulse library. The *C NMR spectra were recoded using the reported
methods and parameters [1]. Chemical shifts were corrected using the TMS signal at 0.0 pp as an
internal chemical shift reference for both *C and 'H NMR spectra. Bruker Topspin 3.5pl7 software
(Bruker BioSpin, Rheinstetten, Germany) was used to collect and analysis the data.

Computational Method

Gaussian 09 software was used for DFT calculations for the studied compounds [2].
DFT/B3LYP methods using 6-31G (d,p) basis set was selected for the calculations. The
geometries were optimized by minimizing the energies with respect to all geometrical
parameters without imposing any molecular symmetry constraints. The structures of the
optimized geometries had been drawn with Gauss View [3]. Moreover, calculations
frequencies were carried out by the same level of theory. The frequency calculations showed
that all structures were stationary points in the geometry optimization method with non-
imaginary frequencies.

Table S1. H-INMR chemical shifts.

Temperature 305 310 315 320 325 335 345 355 365
CH3 0.87 0.88 0.89 0.89 0.9 0.9 0.91 0.92 0.93
CH2 1.33 1.29 1.29 1.3 1.3 1.31 1.31 1.32 1.33
CH2 1.34 1.34 1.35 1.35 1.36 141 1.55 1.59 1.59
CH2 1.75 1.75 1.75 1.75 1.77 1.77 1.77 1.79 1.79
CH2 2.55 2.55 2.56 2.03 2.04 2.05 2.05 2.06 2.07

CH20 3.87 3.87 3.88 3.88 3.88 3.88 3.89 3.9 3.9
OCH3 5.36 5.36 5.36 5.36 5.38 5.38 5.38 54 5.4
2CH= 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98
CH Ar 6.99 6.99 7 7 7 7 7.01 7.01 7.01
CH Ar 7.09 7.09 7.1 7.1 7.1 7.11 7.11 7.12 7.12
CH Ar 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
CH Ar 7.85 7.85 7.86 7.86 7.86 7.86 7.86 7.87 7.87

CH=N E isomer 8.37 8.37 8.38 8.38 8.38 8.39 8.39 8.4 8.4
CH=N Z isomer - - - - - - 9.9 9.9 9.9
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Figure S1. 'H-NMR of (4-methoxybenzylideneamino)phenyl oleate at 305 K.
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Figure S2. ' C-NMR of (4-methoxybenzylideneamino)phenyl oleate at 305 K.
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Figure S3. HSQC-NMR of (4-methoxybenzylideneamino)phenyl oleate at 305 K.
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Figure S4. 'H-NMR of (4-methoxybenzylideneamino)phenyl oleate at 310 K.
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Figure S5. 'TH-NMR of (4-methoxybenzylideneamino)phenyl oleate at 315 K.

7 of 13

1300
1280
1260
1240
1220
1200
1180
1160
1140
L120

(100




Crystals 2020, 10, x

Marius_Hudal HMSO_1Npwd9 SRR

Had-1 sample in DMso‘\;‘tast RV

600 MHz |
1 November 2019

ola @ 2 szl ong
444444 28 a 8 8338 28R
i 4 ] SN N
v SN S

0.91
0.90
0.89

£

A L

9.0 8.5 8.0

T T T T T T T T T T T T T
7.5 7.0 6.5 6.0 55 5.0 45 4.0 35 3.0 25 20 15
f1 (ppm)

Figure S6. TH-NMR of (4-methoxybenzylideneamino)phenyl oleate at 320 K.
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Figure S7. 'TH-NMR of (4-methoxybenzylideneamino)phenyl oleate at 325 K.
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Figure S8. 'TH-NMR of (4-methoxybenzylideneamino)phenyl oleate at 335 K.
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Figure S9. 'TH-NMR of (4-methoxybenzylideneamino)phenyl oleate at 345 K.
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Figure S10. 'H-NMR of (4-methoxybenzylideneamino)phenyl oleate at 355 K.
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Figure S11. 'H-NMR of (4-methoxybenzylideneamino)phenyl oleate at 365 K.
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