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Abstract: The aim of this study is to investigate a characteristic deformation behavior of a precipitation
strengthening-type Cu-Ni-Si alloy (Cu-2.4Ni-0.51Si-9.3Zn-0.15Sn-0.13Mg) by microcompression
specimens. Three micropillars with a square cross-section of 20 × 20 × 40 µm3 were fabricated by
focused ion beam (FIB) micromachining apparatus and tested by a machine specially designed for
microsized specimens. The three pillars were deformed complicatedly and showed different yield
strengths depending on the crystal orientation. The micromechanical tests revealed work hardening
by the precipitation clearly. Electron backscattered diffraction analysis of a deformed specimen
showed a gradual rotation of grain axis at the grain boundaries after the compression test.
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1. Introduction

When size of materials decreases from bulk size to micrometer scale, the dislocations could easily
escape to the free surface before having interaction with each other, and the dislocation density would
decrease, which leads to a dislocation starved condition and causes increased strength. This is a widely
accepted explanation of size-dependent deformation behavior known as the “size effect” observed in
crystalline metallic materials [1]. The investigation expands to variety of metallic materials such as
noncubic metals [2,3] and nanocrystalline materials [4,5]. The dislocation motion could be affected by
several internal defects such as vacancies [6], grain boundaries [5] and precipitations [7].

Uchic et al. [8] reported a microcompression testing method to effectively investigate mechanical
property of small materials. Yet, in a compression test, the specimen is collapsed into a flat shape during
the testing, and the rupture strength cannot be measured. Furthermore, buckling occurs easily and
high aspect ratio specimens cannot be used. In this technique, the constraint between the specimen and
indenter is only in one axis along the yield direction, so friction between the specimen and the indenter
occurs and leads to heterogeneous stress distribution in the specimen [9]. To resolve this problem,
Kiener et al. [10] developed a way to conduct microtensile testing. In this technique, the specimen’s
gripper part and the indenter are constrained in two directions [11], so homogeneity deformation of
the specimen can be gained.

In this study, micromechanical properties of a precipitation-hardened copper alloy, Cu-Ni-Si
alloy, are investigated. Cu-Ni-Si alloy is a precipitation strengthening-type alloy including δ-Ni2Si
precipitates and receives a lot of attention for its applications for electronic components thanks to its
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low cost, high strength and good electrical and thermal conductivity [12–14]. These properties are
also beneficial for use in microelectromechanical systems (MEMS). However, effects of the precipitates
in microscale are not yet thoroughly investigated. In our previous studies, we reported microtensile
tests of a pure copper and a Cu-Ni-Si alloy with microtensile specimens fabricated by focused ion
beam (FIB) milling system. In the microtensile tests, both of the specimens showed characteristic large
serrations during deformation, which were not observed in the bulk samples, and the obvious necking
deformation led to a decrease in the flow stress [15]. For deep understanding of micromechanical
behavior in precipitate strengthened metals, comparisons of the results obtained from compression and
tensile tests would be valuable to understand mechanical properties of the alloys in microscale in order
to utilize them to the micro- or nano-electromechanical systems. In this study, the micromechanical
property of Cu-2.4Ni-0.51Si-9.3Zn-0.15Sn-0.13Mg alloy under microcompression testing is discussed.

2. Materials and Methods

2.1. Sample Composition and Heat Treatment Process

The material investigated in this study was supplied by Furukawa Electric Inc. in a sheet form
(1.2mm thickness) with the chemical composition Cu-2.4Ni-0.51Si-9.3Zn-0.15Sn-0.13Mg (mass%).
For the Cu-Ni-Si alloy, a heat treatment process was conducted first. The heat treatment process
involved homogenization at 1223 K for 18 ks, cold rolling for 90% in thickness reduction rate and
solution treatment process at 1123 K for 600 s. In order to reveal the effect of the precipitation, aging at
723 K for 300 s was performed, where the temperature and time needed for the precipitation hardening
were determined in previous studies [13,15]. The grain size of the Cu-Ni-Si alloy was about 30 µm.

2.2. Fabrication Process

The microsized specimens were fabricated by a FIB (FB2100, Hitachi, Tokyo, Japan) from the
bulk sample described in former Section 2.1 [16,17]. In the beginning, the sliced sample with the
thickness of about 50 m was fabricated from middle part of the bulk sample. For fabrication of the
pillar, the specimen was tilted at −45 ± 2 degrees to avoid tapering of the pillar. For the compression
test, three micropillars (specimens A, B and C) with different grain geometry as shown in Figure 1,
having the identical size of 20 × 20 µm2 in cross section and 40 µm in length were fabricated.Crystals 2020, 10, x FOR PEER REVIEW 3 of 8 
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Figure 1a–c. SIM is the imaging technique using FIB in which crystallographic difference enhanced 
in their contrast thus can easily reveal grains and twin boundaries on surface of the micropillars. 
Figure 1d–f shows images of the three pillars after the microcompression test. The results indicated 
the deformation took place in all of the grains in the pillar. In SIM images of all of the deformed 
micropillars, thin, curvy and numerous slip lines with some small protrusion were observed. This 
tendency was also observed in pure Cu specimen which grains were constrained by grain boundaries 
[15].  

Furthermore, after the deformation as shown in Figure 1d–f, the specimens were twisted a little. 
This shows grains in the microcompression specimen are constrained by grain boundaries causing 
the specimen to deform heterogeneously. Especially the black circle as shown in Figure 1d could be 
originated from the rotation deformation of a grain under microdiamond indenter. On the other 
hand, in a microtensile specimen of Cu-Ni-Si alloy as previous reported, the specimen was 
constrained in one direction only hence each grains had more freedom to deform, and the 
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Figure 2 shows the engineering stress-engineering strain (SE-SE) curves of the three specimens 
A, B and C. The yield strengths of specimens A, B and C were 278, 303 and 206 MPa, respectively. 
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boundary, grain size and specimen size effect. In our previous work, the influence of orientations on 
mechanical properties of the microsized specimens of pure Cu was magnified with reduction of the 

Figure 1. Scanning ion microscopy images of the three microcompression specimen AA: (a,d), specimen
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2.3. Micromechanical Testing

A testing machine specially designed for microsized specimens was developed in our group [18].
The displacement was controlled at 0.1 µm/s by a piezoactuator. The test temperature was 295 ± 2K.
The specimen was observed before and after the mechanical tests by a scanning electron microscope
(SEM, S-4300 SE, Hitachi, Tokyo, Japan). After the test, a micropillar of the Cu-Ni-Si alloy was milled
by the FIB to show cross-section of the deformed part and then observed by a scanning ion microscope
(SIM) equipped in the FIB and analyzed by electron backscattered diffraction (EBSD, Bruker AXS
GmbH, Karlsruhe, Germany and S-4300 SE, Hitachi, Tokyo, Japan).

3. Results and Discussion

3.1. Mechanical Behavior by Microcompression Test

SIM images of the three Cu-Ni-Si alloy micropillars before the compression test are shown in
Figure 1a–c. SIM is the imaging technique using FIB in which crystallographic difference enhanced
in their contrast thus can easily reveal grains and twin boundaries on surface of the micropillars.
Figure 1d–f shows images of the three pillars after the microcompression test. The results indicated the
deformation took place in all of the grains in the pillar. In SIM images of all of the deformed micropillars,
thin, curvy and numerous slip lines with some small protrusion were observed. This tendency was
also observed in pure Cu specimen which grains were constrained by grain boundaries [15].

Furthermore, after the deformation as shown in Figure 1d–f, the specimens were twisted a little.
This shows grains in the microcompression specimen are constrained by grain boundaries causing
the specimen to deform heterogeneously. Especially the black circle as shown in Figure 1d could be
originated from the rotation deformation of a grain under microdiamond indenter. On the other hand,
in a microtensile specimen of Cu-Ni-Si alloy as previous reported, the specimen was constrained in
one direction only hence each grains had more freedom to deform, and the microtensile specimen
deformed homogeneity [16].

Figure 2 shows the engineering stress-engineering strain (SE-SE) curves of the three specimens
A, B and C. The yield strengths of specimens A, B and C were 278, 303 and 206 MPa, respectively.
The difference in the yield stress was caused by dominantly crystal orientation difference, grain
boundary, grain size and specimen size effect. In our previous work, the influence of orientations
on mechanical properties of the microsized specimens of pure Cu was magnified with reduction
of the number of grains inside a sample [15]. This size effect leads to scatter of experimental data
of mechanical properties and can be quantified by the ratio between the specimen size: S and
average grain size: G, denoted as S/G [19,20]. In this case, S/G ratio of single crystal specimen is “1”.
The deformation behavior of a single grain is strongly dependent on crystallographic orientation.
On the other hand, the deformation of the bulk polycrystalline materials with large S/G ratio is isotropic
because orientations of crystals are evenly and randomly distributed within the specimen. When the
number of grains within a specimen becomes lower, it means with a S/G ratio smaller than 30, the effect
of orientations of each grain and geometry of them becomes stronger in deformation behavior and the
S/G ratio of the micropillars in this study was below 30. Thus the yield strength can be different in
each pillar. In specimen C, the grains at the top of the pillar were relatively large and yielded in single
grains thus having low yield strength and limited work hardening. The detailed effects of the crystal
orientation and grain boundary on the grain deformation are discussed below.

The SE-SE curves of the microcompression pillar also show work hardening during plastic
deformation. Especially in the compression test, the pillar deformed into the shape of a barrel,
which is another cause of the work hardening behavior in the engineering stress–strain behavior.
In the microtensile study [15], typical serrations during the plastic deformation were observed in
the SE-SE curve. However, in the compression test, serrations were not observed and the curve is
similar to the results obtained with a bulk specimen. The SEM image in Figure 1 showed that the
microcompression specimen has smaller and more slip steps than that of the microtensile specimen.
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Flat and heterogeneous deformation without any load drop in the microcompression specimen indicates
that each grain deformed with small and many slip system activities. On the other hand, in the
microtensile test, the deformation was homogeneous and the grains deformed with large slip, and this
behavior led to large load drops during the plastic deformation.
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Figure 2. Engineering stress–engineering strain curves of microcompression tests for Cu-Ni-Si alloy
specimens A, B and C.

3.2. Work Hardening Behavior of MicroCompression Test

Figure 3 shows work hardening behavior of specimen A in the microcompression test and indicates
the enhanced work hardening. The work hardening rate was calculated by the following equation:

Θ = ∆σ/∆ε (1)

using the true stress ε; and true strain σ; which were reduced from the engineering stress and the
engineering strain observed, respectively. In the compression test, repetition of large bursts and drops
could not be observed unlike the microtensile test reported in a previous study [15]. The steady state
of work hardening rate curve observed at about 600 MPa may have been caused by the precipitation.
The precipitates of δ-Ni2Si forms as disc on (110) matrix plane and the orientation relationship between
Ni2Si and matrix is (110)Cu//(001) Ni2Si, [001]Cu//[010] Ni2Si [12,13]. They are reported to work as
strong obstacles against the dislocation motion [12,13]. Nonshearable obstacles facilitate the dislocation
multiplication by the Orowan mechanism, and generated dislocations are accumulated on the strong
grain boundary which may lead to the enhanced work hardening in the Cu-Ni-Si alloy resulted in the
steady state of work hardening rate curve.

Figure 4 shows three SIM images of specimen A taken from different directions. In the middle
section of the edge part, complex distorted deformations with many shear lines were observed in
Figure 4a. Figure 4b,c shows the side view of the distorted deformations, which are from the side plane
of the pillar with a square cross section. These findings imply strain concentrates at the grain boundaries
and/or near the grain boundaries, and the grain axis rotated gradually during the deformation. Figure 5
shows the crystal characteristic of the Cu-Ni-Si alloy specimen A after the compression test. The color
in Figure 5b represents the orientations in inverse pole figure (IPF) against pillar axis shown in the
inset. The orientations of grains α and β are plotted in IPF shown in Figure 5c and d. Grain α and β
had near <110> and <111> orientations at surface, respectively. Both grains deformed heterogeneously
and grain β showed gradual rotation with many slip lines in the side plane. This gradual rotation
could come from the different compressive strength values of two or more grains with strong grain
boundaries in the pillar. δ-Ni2Si forms as disc on (110) matrix plane and the orientation relationship
between Ni2Si and matrix is (110)Cu//(001) Ni2Si, [001]Cu//[010] Ni2Si [12,13].
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Figure 4. Scanning ion microscope (SIM) images of sample A in Cu-Ni-Si alloy specimens after
microcompression test, observed taken from the front (a) and sides (b,c).

Figure 6 shows EBSD mapping of the longitudinal section (Figure 5a) of the deformed specimens.
The change in color inside the grains shows gradual rotation of the crystal orientation and the
orientation near grain boundaries not determined due to the distorted crystals by high density of
dislocation at the boundary, which indicates high strength of the grain boundary in this alloy. In the
compression test, stress concentrates at grain boundaries, and, near the grain boundaries, the grain
axis rotated gradually. This result suggests that the grain boundary could be strengthened by the
δ-Ni2Si precipitates. The precipitates are reported to have formed in a shape of disk lying on {110}
planes and are not shearable by dislocations, thus, they work as strong obstacles against the dislocation
motion [12,13].
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4. Conclusions

Microcompression tests of Cu-Ni-Si alloys were conducted. The mechanical tests of three
micropillars showed different yield strength values ranged from 200 to 300 MPa, and this difference
is considered to be contributed by the size effect. All of the work hardening curves exhibit plateau
regimes, which is similar to the bulk specimen, and the specimen deformed heterogeneously. In the
microcompression test, the SIM images showed small slip steps, which mean heterogeneous deformation
by less restriction between the indenter and the specimen. EBSD analysis indicated a typical gradual
rotation of crystal orientation and high accumulation of dislocation at the grain boundaries which
imply enhanced dislocation multiplication at precipitates by the Orowan mechanism. The study
showed precipitation effectively strengthened the metals and enhanced work hardening even in
the microspecimens with few grains inside. The findings indicate the practical applications of
precipitation-hardened materials for microcomponents used in MEMS.
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