
crystals

Article

Symmetry-Adapted Finite Strain Landau Theory
Applied to KMnF3

Andreas Tröster 1,* , Wilfried Schranz 1 , Sohaib Ehsan 2, Kamal Belbase 2 and Peter Blaha 2

1 Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria; wilfried.schranz@univie.ac.at
2 Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Wien, Austria;

sohaib.ehsan@tuwien.ac.at (S.E.); kamal.belbase@tuwien.ac.at (K.B.); peter.blaha@tuwien.ac.at (P.B.)
* Correspondence: andreas.troester@univie.ac.at

Received: 27 January 2020; Accepted: 11 February 2020; Published: 17 February 2020
����������
�������

Abstract: In recent years, finite strain Landau theory has been gradually developed as both a conceptual
as well as a quantitative framework to study high pressure phase transitions of the group-subgroup type.
In the current paper, we introduce a new version of this approach which is based on symmetry-adapted
finite strains. This results in a substantial simplification of the original formulation. Moreover, it allows
for replacing the clumsy use of truncated Taylor expansions by a convenient functional parametrization.
Both the weaknesses of the traditional Landau approach based on infinitesimal strains as well as the
major improvements made possible by our new parametrization are illustrated in great detail in an
application to the ambient temperature high pressure transition of the perovskite KMnF3.
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1. Introduction

Through many decades, the Landau theory (LT) of phase transitions [1,2] (PTs) has proven to be one
of the most valuable conceptual tools for understanding PTs of the group-subgroup type. In particular,
the field of structural PTs abounds even with successful quantitative applications, and, for many classes
of materials, complete collections of the corresponding coupling coefficients have been gathered in the
literature (for ferroelectrics see, e.g., Appendix A of Ref. [3]). Effects of spontaneous strain that generally
accompany temperature-driven structural PTs are sufficiently parameterized in terms of infinitesimal
strain tensor components defined with respect to a baseline, which is obtained by extrapolating the
generally small thermal expansion changes of the high symmetry reference phase. The corresponding
Landau potential then involves only terms up to harmonic order, and any temperature dependence of the
relevant parameters (high symmetry phase elastic constants and other coupling constants) can usually be
completely neglected [4].

The situation changes drastically for high pressure phase transitions (HPPTs). Spontaneous
strain components may still be numerically small, but they now must be defined with respect to a
P-dependent base line. The total strain measured with respect to the ambient pressure reference state
must then be calculated from a nonlinear superposition of finite background and spontaneous strain
(see Equation (11) below). Furthermore, the Landau potential may be truncated beyond harmonic order
only if calculated with respect to this P-dependent elastic background reference system. Therefore, neither
the elastic constants nor the other elastic couplings can be assumed to be P-independent. In a high pressure
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context, clinging to the familiar infinitesimal strain Landau toolbox may result not only in a quantitatively,
but also qualitatively completely erroneous description.

It is not easy to construct a mathematically consistent and yet practically useful version of Landau
theory taking into account the inherent nonlinearities and anharmonic effects that accompany HPPTs.
In recent years, however, such a theory, for which we have coined the name finite strain Landau theory
(FSLT), has been successfully developed. FSLT constitutes a careful extension of Landau theory beyond
coupling to infinitesimal strain, fully taking into account the nonlinear elastic effects at finite strain.
Its capabilities have been demonstrated in a number of applications to HPPTs [5–10]. However, as it stands,
the numerical scheme underlying FSLT is still quite involved, and many practical workers in the field of
HPPTs may be hesitant to go through the mathematical hardships it seems to pose. It is the purpose of this
paper to show that FSLT is drastically simplified by switching from a formulation in terms of Cartesian
Lagrangian strains to one in terms of symmetry-adapted finite strains. The enormous reduction of overall
complexity of the approach as well as the vastly reduced numerical requirements of our new version of
FSLT are demonstrated on the example of the HPPT in the perovskite KMnF3 (KMF).

2. Review of Experimental Results on the Cubic-to-Tetragonal Transition of KMF

In what follows, we focus on the antiferrodistortive high pressure phase transition of KMF from
the cubic perovskite aristophase Pm3̄m to a tetragonal I4/mcm phase at room temperature which was
experimentally investigated in Ref. [11] by X-ray diffraction up to 30 GPa. Since the ambient pressure
Landau theory also provides a limiting reference frame for the description of the high pressure transition,
we start our discussion with a detailed survey of the corresponding Landau theory.

According to Ref. [12], a similar transition observed at ambient pressure and temperature Tc = 186.5 K
is weakly first order but close to critical, and the mechanism underlying these transitions is the same as in
the well-studied T = 105 K cubic-to-tetragonal transition in strontium titanate, i.e., octahedral tilting with
a critical wavevector at the R-point of the cubic Brillouin zone. Furthermore, in Ref. [12], it is argued that,
even though a further structural transition to an orthorhombic phase related to further octahedral tilting at
the M-point of the Brillouin zone at TN = 87 K is accompanied by antiferromagnetism, this coincidence
between structural and magnetic transition temperatures may just be accidental, and actually there seems
to be essentially no coupling between structural and magnetic order parameters (OPs) for these transitions.
In passing we note that at T = 82 K there is a further transition to an orthorhombic canted ferromagnet [12].

As discussed in Ref. [12], the Pm3̄m → I4/mcm symmetry reduction corresponds to the isotropy
subgroup of the three-dimensional irreducible representation R+

4 of Pm3̄m with respect to the order
parameter direction (Q, 0, 0), the corresponding Landau expansion to sixth order being
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with volume and tetragonal symmetry-adapted strains ea = e11 + e22 + e33, et =
2e33−e11−e22√

3
and bulk and

longitudinal shear modulus related to the bare cubic elastic constants by K(0) = (C(0)
11 + C(0)

12 )/3, µ(0) =

(C(0)
11 − C(0)

12 )/2. Targeting a transition into a single tetragonal domain where (Q1, Q2, Q3) ≡ (Q, 0, 0) and
ε22 = ε33, we have
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In a standard Landau approach, the coefficients B, C, λ
(0)
a , λ

(0)
t are assumed to be independent of

temperature (and pressure), while for A the ansatz

A = A0(T − T0) (3)

with T-independent coefficients A0, T0 is made and quantum saturation has been neglected [13]. The elastic
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with a background volume strain
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3K(0)
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Performing a Legendre transform yields the Gibbs potential
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The values of coefficients A0 = 63.118 kPa/K, B̃ = −1.308 MPa and C = 13.032 MPa at P = 0,
which imply a first order phase transition at Tc = 186.15 K, have been determined from caloric
measurements by Salje and coworkers [13]. In principle, numerical values for the OP-strain coupling
coefficients λ

(0)
a , λ

(0)
t may be extracted from experimental data on the temperature evolution of spontaneous

strains ε̄a, ε̄t. Unfortunately, however, for KMF, this is easier said than done. At room temperature,
the thermal expansion data acubic(T) of Ref. [14] are observed to perfectly reproduce the value of the cubic
lattice constant acubic(TR) at ambient pressure as determined in Ref. [11]. However, the measurement data
of thermal lattice parameter irregularities a(T), c(T) around Tc ≈ 186 K (Refs. [15–18]) available in the
literature appear to be in rather poor mutual agreement. As Figure 1 illustrates, while a discontinuous
behavior of the lattice parameters is clearly visible in all three data sets, the absolute values of the measured
unit cell parameters differ considerably, yet none of the data sets seem to be compatible with extrapolating
the thermal expansion data of Ref. [14].

Not unexpectedly, the agreement in relative splitting between the a-and c-axis in the tetragonal phase
appears to be better, albeit far from perfect. Nevertheless, the cubic parts of the data of Refs. [15,18] exhibit
slopes similar to the low temperature extrapolation of the thermal expansion data of Ref. [14]. In order
to be able to collapse the data onto a common “master set”, we thus shifted the data of Refs. [15,18] by
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constant absolute offsets to match the extrapolated baseline of Ref. [14] in an optimal way, treating the
seemingly more precise measurements of Sakashita et al. (Refs. [16,17]) as an outlier. Figure 2 illustrates
our results for a corresponding effort.
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Figure 1. Compilation of experimental unit cell data from Refs. [15] (red) and [18] (green) (data range
restricted to T > 155 K) [16,17] (blue) and [14] (gray). For comparison, the value (including error bars)
of the room temperature (indicated by the vertical dashed line) lattice constant at ambient pressure as
measured in Ref. [11] is illustrated by the gray horizontal area.
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Å

]

a

c

Dormann et al.

Sakashita et al.

Ratuszna et al.

Gibaud et al.

Figure 2. Collapse of data from Refs. [15] (red) and [18] (green), onto the low temperature expansion
of the thermal expansion data of Ref. [14] (gray) by constant vertical shifts. The positive and negative
branches of the data correspond to values εt and εa from the various references, respectively. As in
Figure 1, the room temperature ambient pressure lattice constant of Ref. [11] is indicated by a horizontal
gray bar for comparison. The shifted data from Ref. [16,17] (blue) clearly appear to be at odds with the
other measurements.
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With a meaningful baseline acubic(T) for unit cell parameters a(T), c(T) in place, we calculate the
spontaneous strain components ε1 = a/acubic − 1 and ε3 = c/acubic − 1 and thus the (infinitesimal)
spontaneous volume and tetragonal strains

εa = 2ε1 + ε3 =
2a + c
acubic

− 3 , (8)

εt =
2(ε3 − ε1)√

3
=

2√
3

c− a
acubic

, (9)

respectively. According to Equation (4), when plotted against Q2(t) at P = 0, εa and εt should resemble
straight lines with slopes −λ

(0)
a /K(0) and −2λ

(0)
t /µ(0), respectively. Figure 3 illustrates corresponding fits

with results

λ
(0)
a /K(0) = 0.002, λ

(0)
t /µ(0) = −0.005 (10)
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Figure 3. Fits of εa(T) and εt(T) against Q2(T) according to Equations (4).

With the Landau theory of the temperature-driven transition at ambient pressure available, we are
tempted to analyze the ambient temperature HPPT based on the same framework. In Ref. [11], the variation
of the pseudo-/cubic lattice constants of KMF under pressure at room temperature was measured with
X-ray scattering (Figure 4) and the cubic part of the data was fitted to a simple Murnaghan equation of
state (EOS) with K0 = 64 GPa and V0 = 73.608 3. This provides a baseline to determine (Lagrangian)
spontaneous strains ε̂a ≈ εa, ε̂t ≈ εt (Figure 5).

Comparing the thermal and pressure-induced spontaneous strains shown in Figures 2 and 5,
respectively, we note that there is some spontaneous thermal volume strain εa while practically ε̂a ≈ 0 for
the pressure-induced case. Furthermore, even though it may be difficult to directly relate temperature
and pressure scales, the pressure-induced tetragonal spontaneous strain ε̂t is observed to be roughly one
order of magnitude larger than its thermal counterpart εt. From the perspective of traditional Landau
theory based on infinitesimal strain coupling, these findings are difficult to explain. Based on Equation (4),
there are in principle two ways to alter the magnitude of spontaneous strains. One may either change
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the value of the couplings λ
(0)
a /K(0) and λ

(0)
t /µ(0) or find a mechanism to increase the magnitude of Q̄2

which, of course, implicitly depends on all Landau coefficients. Since these are actually only known for
T = 186.5 K, one could assume a thermal drift in λ(0) towards zero to be responsible for the vanishing of ε̂a

at room temperature (more than counteracting against the thermal drift of K0 which is generally expected
to decrease with increasing T). For the tetragonal strain, a similar mechanism seems to be difficult to
conceive, however. On the one hand, we would need to increase λ

(0)
t dramatically to explain the large

values of ε̂t. On the other hand, Equation (7b) indicates that such an increase would send parameter B̃ to
negative values much larger than those found for the thermal transition, resulting in a pronounced first
order character of the HTTP. This, however, is not observed. The only remedy therefore seems to find a
way to increase Q̄2. Calculated from a standard 2–4 Landau potential, Q̄2 would be inversely proportional
to 1/B̃. This may explain why advocates of an orthodox Landau description frequently resort to assuming
HPPT’s to be near a tricritical point, explicitly postulating some ad-hoc pressure dependence B̃ = B̃(P)
induced somehow by unspecified higher order coupling effects.
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4.1
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c[
Å
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c

a

Figure 4. Pseudo-/cubic lattice constants of KMF under pressure at room temperature as measured in
Ref. [11] with X-ray scattering. The transition pressure estimate Ps ≈ 3.4 GPa put forward in Ref. [11],
which is indicated by the dashed vertical line, is clearly too low.

Further difficulties arise if we try to reconcile the observed value of Pc with the prediction of standard
Landau theory. In Ref. [11], a brute force fit based on the above assumptions of a second order transition
close to a tricitical point produced an estimate of Pc ≈ 3.4 GPa. In principle, for a second order or
slightly first order phase transition, this pressure should coincide or be somewhat lower than the pressure
value P0(TR) at which AR(TR, P0(TR)) vanishes at room temperature TR. Unfortunately, however, this is
incompatible with extrapolating the Landau parametrization of Hayward et al. [19] to room temperature.
In fact, inserting the parameter value (10) into Equation (7a) yields P0(TR) ≈ 1.7 GPa, which is completely
at odds with Pc ≈ 3.4 GPa as reported in Ref. [11]. To reach this transition pressure at room temperature
would require reducing our previous result λ

(0)
a /K(0) = 0.002 obtained at T = 186 K by a full factor of

2 (cf. Figure 6). However, even then, any unbiased reader should have a hard time believing that the
bare data of Figure 5 should indicate a continuous transition at Pc = 3.4 GPa. In summary, we hope to
have demonstrated that standard Landau theory is completely inadequate to describe the HPPT of KMF
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unless one is willing to sacrifice any numerical meaning to Landau theory, leaving us with all coupling
parameters as essentially unknown and with ad hoc pressure dependencies at room temperature.
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0.06
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,t
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Figure 5. Lagrangian strains ε̂a, ε̂t calculated from unit cell data and Murnaghan fit of cubic part according
to Ref. [11].
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Figure 6. AR(T = TR, P) as defined in Equation (10) for correct slope −2λ
(0)
a /K(0) = −0.004 in comparison

to a slope of −2λ
(0)
a /K(0) ≈ −0.002 assumed in Ref. [11].

3. A Quick Review of FSLT

In a nutshell, in a generic high pressure experiment, a given crystal is observed to change under
application of high hydrostatic pressure P from an ambient pressure “laboratory” state X to a deformed

state to be denoted as ̂̂X = ̂̂X(P) with an accompanying total (Lagrangian) strain ηij. Frequently, a high
pressure phase transition manifests itself in such an experiment through the observation of relatively
small strain anomalies on top of a much larger “background strain” that in itself is unrelated to the
actual transition. Recognizing that the concept of strain is always defined with respect to a chosen elastic
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reference state, in Ref. [5], a corresponding background system X̂ = X̂(P), defined as the (hypothetical)
equilibrium state of the system with the primary OP clamped to remain zero, was introduced. Let αik and
eik =

1
2 (∑n αniαnk − δik) denote the deformation and Lagrangian strain tensors from X to X̂, respectively.

The total strain ηij may then be disentangled as a nonlinear superposition

ηij = eij + αki ε̂klαl j (11)

of the—generally large—Lagrangian background strain and a relatively small spontaneous strain ε̂ij
measured relative to the floating “background” reference state X̂. Determining the proper background strain eij
in the resulting reference scheme

X
a,e
//

α,η

66X̂
α̂,ε̂
// ̂̂X (12)

is thus a crucial step in correctly identifying the actual spontaneous strain, which in turn is mandatory in
a successful application of the concepts of Landau theory. Effectively “subtracting” the elastic baseline,
the strategy of FSLT therefore consists of setting up Landau theory within the background reference system X̂.
Based on the reasonable assumption that a harmonic expansion with pressure-dependent elastic constants
Cijkl [X̂] suffices to capture the elastic energy originating exclusively from the relatively small spontaneous
strain ε̂kl , one arrives at the Landau free energy

F(Q, ε̂; X̂)

V[X̂]
= Φ(Q; X̂) + ∑

µ≥1
Q2nd(2µ)

ij [X̂]ε̂ij +
F0(ε̂; X̂)

V[X̂]
(13)

where we have assumed a scalar OP Q for simplicity, and

F0(ε̂; X̂)

V[X̂]
≈∑

ij
τij[X̂]ε̂ij +

1
2 ∑

ijkl
Cijkl [X̂]ε̂ij ε̂kl (14)

denotes the pure spontaneous strain-dependent elastic free energy at hydrostatic external stress
τij[X̂] = −δijP. For the pure OP potential part, we assume the traditional Landau expansion

Φ(Q; X̂) =
A[X̂]

2
Q2 +

B[X̂]

4
Q4 +

C[X̂]

6
Q6 + . . . (15)

with P-dependent coefficients yet to be determined. In Ref. [9], it was explicitly shown that the harmonic

structure of F0(ε̂;X̂)

V[X̂]
yields the equilibrium spontaneous strain

¯̂εmn = −
∞

∑
ν=1

Q̄2ν ∑
ij

d(2ν)
ij [X̂]Smnij[X̂] (16)

where the compliance tensor Smnij[X̂] is defined as the tensorial inverse of the so-called Birch
coefficients [20,21]

Bijkl [X̂] = Cijkl [X̂] +
1
2

(
τjk[X̂]δil + τik[X̂]δjl + τjl [X̂]δik + τil [X̂]δjk − 2τij[X̂]δkl

)
(17)
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of the background system X̂ which effectively take over the role of the elastic constants at finite strain.

Furthermore, if we eliminate ¯̂εmn from F(Q,ε̂;X̂)

V[X̂]
by this formula, we obtain the renormalized pure

OP potential

ΦR(Q; X̂) := Φ(Q; X̂)−
∞

∑
µ,ν=1

2µ

2µ + 2ν

(
∑
ijkl

d(2µ)
ij [X̂]Sijkl [X̂]d(2ν)

kl [X̂]

)
Q2(µ+ν)

≡ AR[X̂]

2
Q2 +

BR[X̂]

4
Q4 +

CR[X̂]

6
Q6 + . . . (18)

from which the equilibrium OP Q̄ can be determined by minimization.
Information on the P-dependence of elastic constants Cijkl [X̂] is usually available from density

functional theory (DFT) or may be extracted from experimental measurements. At this stage, it therefore
remains to relate the potential coefficients A[X̂], B[X̂], . . . and d(2µ)

ij [X̂], which are still defined with respect

to the reference system X̂ i.e., P-dependent. In a generic application of FSLT, however, one starts from
knowledge of an ambient pressure Landau potential, i.e., the lowest order coefficients of the free energy

F(Q, η; X)

V(X)
= Φ(Q; X) +

∞

∑
µ=1

Q2µ

∑
ij

d(2µ,1)
ij ηij +

1
2! ∑

ijkl
d(2µ,2)

ijkl ηijηkl +
1
3! ∑

ijklmn
d(2µ,3)

ijklmnηijηklηmn + . . .


+

1
2! ∑

ijkl
C(2)

ijklηijηkl +
1
3! ∑

ijklmn
C(3)

ijklmnηijηklηmn + . . . (19)

(defined at τij[X] ≡ 0) with P-independent coefficients are assumed to be known, which obviously places

constraints on the possible P-dependence of the above coefficients A[X̂], B[X̂], . . . and d(2µ)
ij [X̂]. To explore

the relations between the two set of coefficients defined in the P-dependent background system X̂ and the
laboratory system X, we insert the nonlinear superposition relation (11) into (19) and compare coefficients.
Following Ref. [9], we content ourselves to just include OP-strain couplings of type Q2ε̂ij and obtain

A[X̂] =
1

J(α)

[
A[X] + 2

(
∑
ij

d(2,0)
ij eij +

1
2! ∑

ijkl
d(2,1)

ijkl eijekl +
1
3! ∑

ijklmn
d(2,2)

ijklmneijeklemn + . . .

)]
(20a)

d(2)st [X̂] =
1

J(α)

(
∑
ij

αsid
(2,0)
ij αtj + ∑

ijkl
αsid

(2,1)
ijkl αtjekl + ∑

ijklmn
αsid

(2,2)
ijklmnαtjeklemn + . . .

)
(20b)

in addition to the trivial relations B[X̂] = B[X]/J(α), C[X̂] = C[X]/J(α), where J(α) = det(αil).
The above parametrization scheme, although mathematically correct, is certainly not very convenient

for applications in which the background reference state X̂ is of high symmetry. For the most important
example of a cubic high-symmetry phase, the above equations simplify considerable, since the deformation
tensor αij ≡ αδij is diagonal, and so is the Lagrangian background strain eij ≡ eδij with e = 1

2 (α
2 − 1),

which yields

A[X̂] =
1
α3

[
A[X] + 2

(
e ∑

i
d(2,0)

ii +
e2

2! ∑
ik

d(2,1)
iikk +

e3

3! ∑
ikm

d(2,2)
iikkmm + . . .

)]
(21a)

d(2)st [X̂] =
1
α

(
d(2,0)

st + e ∑
k

d(2,1)
stkk + e2 ∑

km
d(2,2)

stkkmm + . . .

)
(21b)
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These formulas are as far as we can get without committing to a specific set of irreducible
representations that determine the symmetry-allowed couplings in the Landau potential. Since the
background strains e(P) ∼ P + O(P2), they effectively represent a set of highly interrelated power series
in powers of P. Unfortunately, this also comes with all the inherent drawbacks. On the one hand,
going beyond the lowest order terms, which may be taken from an previously determined ambient
pressure Landau potential, we are forced to truncate the above series at rather low order to limit the
number of additional unknown parameters. Of course, such truncated series inevitable diverge for
increasing values of P. In addition, if we want to employ the theory for the purpose of fitting experimental
data, we would like to fix certain experimental observables, in particular the pressure P0 at which AR[X̂]

vanishes. Given the above parametrization, this is obviously difficult to do.
In Section 2, we have demonstrated the considerable structural simplification of a standard

ambient pressure Landau approach upon replacing Cartesian strain tensors by symmetry-adapted strains.
Remarkably, it turns out that, despite the additional complicated nonlinearities contained in formulas (21a)
and (21b), similar manipulations may also be carried out in FSLT and are found to yield equally substantial
structural simplifications. In the rest of the paper, the resulting scheme will be derived and illustrated by
describing the HPPT of KMF.

4. Symmetry-Adapted FSLT: The Cubic-to-Tetragonal HP Phase Transition of KMF

For ν = 0, 1, 2 . . . , we set

λ
(ν)
a ≡ 1

3 ∑
k1 ...kν

∑
i

d(2,ν)
iik1k1 ...kνkν

(22a)

λ
(ν)
t ≡ ∑

k1 ...kν

d(2,ν+1)
33k1k1 ...kνkν

− d(2,ν)
11k1k1 ...kνkν

2
√

3
(22b)

in accordance with

λa[X̂] ≡ λa(e) ≡
1
3 ∑

s
d(2)ss [X̂] (23a)

λt[X̂] ≡ λt(e) ≡
d(2)33 [X̂]− d(2)11 [X̂]

2
√

3
(23b)

Equations (21a) and (21b) are then replaced by

α3 A[X̂] = A[X] + 6
∞

∑
ν=0

λ
(ν)
a

(ν + 1)!
eν+1 (24a)

αλa,t[X̂] =
∞

∑
ν=0

λ
(ν)
a,t eν (24b)

Furthermore, we recall from nonlinear elasticity theory [20] that for a cubic system the compliance
tensor Sijkl [X̂] and the bulk modulus K[X̂] = (B1111[X̂] + 2B1122[X̂])/3 at finite pressure are related
by ∑i Siijj[X̂] = S1111[X̂] + 2S1122[X̂] = 1/3K[X̂], while, for the longitudinal shear modulus, µ[X̂] =

(B1111[X̂] − B1122[X̂])/2 the relation S1111[X̂] − S1122[X̂] = 1/2µ[X̂] holds. If we replace the Cartesian
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equilibrium spontaneous strain components (16) by their symmetry-adapted volume and tetragonal
counterparts using these relations, they acquire the representations

¯̂εa = −
λa[X̂]

K[X̂]
Q̄2, ¯̂εt = −

2λt[X̂]

µ[X̂]
Q̄2 (25)

Furthermore, it is easy to check the identity

∑
ijkl

d(2)ij [X̂]Sijkl [X̂]d(2)kl [X̂] =
λ2

a[X̂]

K[X̂]
(26)

which allows for similarly rewriting the renormalized potential ΦR(Q; X̂) as

ΦR(Q; X̂) = Φ(Q; X̂)− Q4

4

(
2λ2

a[X̂]

K[X̂]
+

8λ2
t [X̂]

µ[X̂]

)
(27)

Combining these equations with Equations (24a) and (24b), we can summarize the symmetry-adapted
parametrization of the coefficients of the renormalized Landau potential (18), whose minimization
determines the equilibrium OP Q̄ with

AR[X̂] =
A[X]

α3 +
6∆a[X̂]

α3 (28a)

BR[X̂] =
B[X]

α3 −
2(λ(2)

a [X̂])2

K[X̂]
− 8λ2

t [X̂]

µ[X̂]
(28b)

in addition to CR[X̂] = C̃[X̂], where we introduced the function

∆a[X̂] ≡ ∆a(e) ≡
∞

∑
ν=0

λ
(ν)
a

(ν + 1)!
eν+1 (29)

Note the close formal similarity of Equations (28a), (28b) and (29) with their infinitesimal
counterparts (7a) and (7b). In a generic application of this theory with cubic high symmetry, the lowest
order Landau coefficients A[X], B[X], C[X] and the lowest order strain-OP coupling coefficients λ

(0)
a,t can

be taken from an existing ambient pressure Landau theory. Furthermore, the (diagonal) background
deformation components α = α(P) and the resulting Lagrangian strain e = e(P) may be determined
by fitting a suitable EOS to the cubic unit cell volume data. Such a fit also immediately yields the
pressure-dependent bulk modulus K[X̂] ≡ K(P). It is only for the pressure-dependence of the longitudinal
shear modules µ[X̂] = µ(P) that we are truly forced to resort to additional input from DFT. To determine
the EOS and the elastic constants of KMnF3, we have performed a series of fairly standard DFT calculations.
We refer to Appendix A for further details of these simulations.

Since we do not need to maintain the highest possible precision in determining µ(P) at room
temperature but can content ourselves with a reasonable approximation, we use the following heuristic
strategy to promote the DFT result µDFT(P) from T = 0 to ambient temperature. Figure 7 shows a
comparison of the bulk moduli KDFT(P) calculated from DFT to the result for K(P) obtained from the
Murnaghan fit of the data published in Ref. [11]. Numerically, one finds the fraction of these moduli stays
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entirely within the narrow bounds 0.918 ≤ K(P)/KDFT(P) ≤ 0.92 over the whole interval 0 ≤ P ≤ 20 GPa.
We therefore postulate a similar behavior for µ(P), setting

µ(P) ≡ K(P)
KDFT(P)

· µDFT(P) (30)

Figure 8 illustrates the resulting behavior of µ(P).

0 5 10 15 20
P[GPa]

60

80

100

120

140

160

K
[G

P
a]

T=0
T=TR

Figure 7. Comparison of pressure-dependent bulk modulus K(P) at room temperature T = TR extracted
from the Murnaghan fit of the cubic part of the unit cell data of Ref. [11] to the T = 0 result obtained
from DFT.

0 5 10 15 20
P[GPa]

40

60
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100

µ
[G

P
a]

T=0
T=TR

Figure 8. Pressure-dependent longitudinal shear modulus µ(P) at room temperature T = TR as determined
by extrapolating the corresponding DFT result from T = 0 to T = TR based on Formula (30).
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With all other ingredients in place, this leaves only the higher order coefficients λ
(ν)
a,t , ν > 0 as the

remaining undetermined parameters of FSLT. It therefore seems that these parameters must be treated as
unknown fit parameters in a practical application. In the next section, however, we will introduce a much
more convenient and powerful approach.

5. Efficient Parametrization

Comparing the above symmetry-adapted system of equations to what we had before, a considerable
structural simplification is obvious. However, the following drawbacks seem to persist:

• Truncating the functions λa,t[X̂] defined by Equation (24b) at finite order eν = eν(P) still results in
divergent behavior with increasing P.

• In addition to a given set of strain measurements which we would want to feed to least squares fits
based on Landau theory, rather accurate experimental information on the critical temperature Tc

or the critical pressure Pc is frequently available from complementary experimental measurements.
Unfortunately, least squares fitting procedures of strain measurements with an unconstrained value
of Tc or Pc frequently tend to displace Tc or Pc and thus degrade the accuracy of the fit in the transition
region. At least for a second order transition, the critical point is, of course, determined by the zero of
the quadratic coefficient AR of the Landau expansion. Therefore, we would like to be able to explicitly
constrain the behavior of AR, possibly fixing both its zero and/or slope at zero as a function of T or P.
Unfortunately, based on a set of interrelated truncated power series, this is still hard to do.

In what follows, we propose a new scheme which finally allows for practically overcoming all of these
problems in a single push. Let us start by taking a second look at Figure 6. Of course, the correct functional
form of AR[X̂] ≡ AR(TR, P) that we are looking for should be that of a well-behaved function passing
through zero around Pc ≈ 4 GPa. At P = 0, however, it should start out with roughly twice the initial slope
of the purely linear yellow curve if we are to retain the ambient pressure Landau parameters. The pressure
dependence of the correct function AR(TR, P) must therefore be far from linear. Experimentally, there is no
indication of a re-entrant behavior below 25GPa, so we do not expect any second crossing point in this
pressure range. Unfortunately, our numerical tests quickly revealed that, using a truncated version of
∆a(e(P)) as defined in (29), it seems virtually impossible to meet these requirements unless one is willing
to go to prohibitively high truncation order, thus introducing a plethora of unknown fit parameters and
the accompanying horrific numerical problems.

A way out is to propose a reasonable function ∆a(e(P)) in closed form that meets all of the above
requirements while still containing some adjustable parameters that offer a certain amount of variational
flexibility to allow improvement by least squares fitting. Of course, there are many ways to do this, and the
choices are only limited by the reader’s ingenuity. In fact, since the summand ν = 0 of ∆a(x) contributes
the lowest order coefficient xλ

(0)
a , which is usually fixed from knowledge of an existing ambient pressure

Landau theory, all candidate functions ∆a(x) that start out like

∆a(x) = λ
(0)
a x + O(x2) (31)

qualify as candidates for a meaningful function ∆a(x). In our current application to KMF, we parametrize

AR ≡ AR(TR, e(P)) =
AR(TR) + 6∆(e(P); b, c, d)

α3(P)
(32)

by introducing the function

∆(e; b, c, d) := ce + 2b fd(e) (33)



Crystals 2020, 10, 124 14 of 22

with parameters b, c, d combining a linear part with slope c and a nonlinear contribution fd(e), which
remains yet to be specified. Our general parametrization strategy is then as follows:

• As a function of e, AR(TR, e) should start out with slope s = −6λ
(0)
a ≡ c + 2b f ′d(0), so parameter b

can be traded for the slope s of ∆(e; b, c, d) at e = 0.
• Suppose further that AR(TR, e) should vanish at a critical value e0 = e(P0) of the background strain

e. For ∆(e; b, c, d), this implies the constraint equation α + ∆(e0; b, c, d) ≡ 0 where α ≡ AR(TR, 0)/6,
which may be solved for parameter c.

These steps eliminate parameters b, c in favor of the constants α and e0, leaving d as the single
remaining free variational parameter. We still need to reconcile this parametrization of AR with that of the
function λa[X̂] as defined in Equation (24b). We focus on the power series part

Λ(x) ≡
∞

∑
ν=0

λ
(ν)
a xν (34)

which is based on the same set of coefficients λ
(ν)
a as ∆a(x) but lacks the accompanying factorials 1/ν!.

These factorials can, however, easily be taken care of. Observe that

∫ ∞

0
dt e−t (tx)

ν+1

(ν + 1)!
= xν+1 (35)

Therefore, using the Borel transform

(B∆)(x) ≡
∫ ∞

0
dt e−tx∆(tx) (36)

we may relate

Λ(x) =
(B∆)(x)

x
(37)

It remains to specify a suitable function fd(x). Beyond producing a reasonable function AR(TR, e),
the job profile for recruiting such a function includes at least two basic requirements:

• It would be highly desirable to be able to compute the corresponding Borel transform (B fd)(x) in
closed form.

• fd(x) should also allow for solving the equation α + ∆(e0; b, c, d) ≡ 0 explicitly.

For the present goal of understanding the HPPT in KMF, we came up with the choice

fd(e) := −1 +
√

1− d2e (38)

(note that e(P) < 0 for P > 0) which meets both of these minimal requirements, since, in this case,
b = (c− s)/d2 and

c =
s
(√

1− d2e0 − 1
)
− αd2/2

d2e0/2 +
√

1− d2e0 − 1
(39)

In this way, we have completely bypassed Taylor series expansions and their various accompanying
drawbacks. Figure 9 illustrates the remaining variational freedom in our chosen parametrization.
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Figure 9. Illustration of the remaining d-dependence of the parametrization of AR(TR, e(P)) by
Equation (32) (upper panel) and the resulting function Λ(e(P)) as given by the Borel transform Equation (37)

(lower panel). Parameters b and c were eliminated in favor of parameter λ
(0)
a = 0.128 GPa as prescribed

from ambient pressure LT and a chosen pressure parameter P0 = 6.0 GPa.

In summary, at this stage, the function ∆a[X̂] which governs the behavior of AR[X̂] and—through a
Borel transform—also provides the coupling function λa[X̂] between the spontaneous volume strain ¯̂εa and
Q̄2 according to Equation (25) has been specified up to a single free parameter d. The remaining coupling
function λa[X̂] ≡ λa(P) explicitly determines the proportionality between the spontaneous tetragonal
strain ¯̂εa and Q̄2, However, both λa[X̂] and λt[X̂] also enter implicitly into the spontaneous strain via its
implicit dependence on the quartic coefficient BR[X̂] of the renormalized Landau potential as given by
Equation (28b), and, apart from the reasonable requirement limP→0 λt[X̂] = λ

(0)
t , nothing is known in

advance about its pressure dependence, such that introducing a truncated Taylor series and least squares
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fitting seems unavoidable. However, we can actually do a lot better than this. Let us consider experimental
high pressure spontaneous strain data in the form of n data points (Pi, ε̂a,exp(Pi), ε̂a,exp(Pi))

n
i=1. In fact,

at a given prescribed pressure value Pi and with all other parameters in place, we can regard the room
temperature values ε̂a = ε̂a(λt(Pi)) and ε̂t = ε̂t(λt(Pi)) as functions of the-unknown-function values
λt(Pi). The “best” value λt(Pi) matching the data point (Pi, ε̂a,exp(Pi), ε̂a,exp(Pi)) may then be determined
by numerically minimizing the function

si(λt(Pi)) := wa
[
ε̂a,exp(Pi)− ε̂a(λt(Pi))

]2
+wt

[
ε̂t,exp(Pi)− ε̂t(λt(Pi))

]2 (40)

with weights wa, wt suitable adjusted to counterbalance size differences between ε̂a and ε̂t. Carried out for
all i = 1, . . . , n, this prescription results in a collection of n “optimal” values λt(Pi) from which one may
hope to recover the full function λt(P) by interpolation. Figure 10 shows the result of our corresponding
effort for KMF. Amazingly, we observe that all values λt(Pi) seem to accumulate on a straight line whose
extrapolation P→ 0 perfectly passes through the point (0, λ

(0)
t ), which is just the limiting value imposed

by ambient pressure Landau theory. We believe that this behavior is not coincidental but a strong indication
that the present parametrization is internally consistent and correct.
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P[Gpa]

−1.0

−0.8

−0.6

−0.4

−0.2

λ
t[

G
P

a]

Figure 10. Results of minimizing the sum (40) using the relative weights (wa, wt) = (10, 1) and pressure

parameters P0 = 6GPa, d = 40. The dashed horizontal line indicates the limiting value λt(P = 0) ≡ λ
(0)
t .

A simple linear fit of λt(P) therefore completes our Landau parametrization. Our results for the
pressure dependence of the couplings AR(P), B̃(P), λa,t(P) and the resulting pressure dependence of the
equilibrium OP Q̄(P) are illustrated in Figure 11. Note that in the present description the transition
appears to be of first rather than second order, with P0 = 6 GPa yielding a transition pressure Pc ≈ 4.5 GPa.
Finally, the resulting parametrization of the spontaneous strain is compared to experiment in Figure 12.
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Figure 11. Upper left panel: pressure dependence of Landau parameters AR(P) as compared to the
simple linear behavior of infinitesimal strain LT assumed in Equation (7a). Upper right panel: pressure
dependence of B̃(P). The dashed horizontal line indicates the corresponding value from the parametrization
of Hayward et al. [19] taken at T = 186.5 K, which is slightly displaced from our limiting value at P = 0
since we are taking into account thermal softening of K(P) and µ(P) for room temperature. Lower left
panel: pressure dependence of coupling parameters λa(P)/K(P) and λt(P)/µ(P). Lower right panel:
resulting behavior of the equilibrium order parameter Q̄(P) (right).
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Figure 12. Parametrization of spontaneous strains ε̂a, ε̂t in comparison to experimental data from Ref. [11].
The thin vertical line indicates the pressure parameter P0 = 6 GPa.
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6. Discussion

For the high pressure community, our present paper contains some good news and some bad
news—first, the bad news. We hope to have demonstrated convincingly that classical Landau theory is
usually completely inadequate for “explaining” experimental findings in the field of high pressure phase
transitions, and the conclusions drawn from it will often be misleading at best. Taking the example of KMF,
both the first order character of the transition and the correct value of the transition pressure are completely
obscured by sticking to Landau theory with infinitesimal strain coupling, even if one is willing to distort
a pre-existing ambient pressure Landau parametrization beyond recognition. The good news, however,
is that with the development of FSLT a mathematically consistent alternative incorporating nonlinear
elasticity has recently become available. Up to now, however, FSLT has been rather complicated in structure,
which quite likely scared off many potential users and thus did not lead to the widespread use that its
developers were initially hoping for. The present paper, which exploits the enormous simplifications that
arise by passing (i) from Cartesian to symmetry-adapted finite strains and (ii) by virtue of (i), from truncated
Taylor expansions to a functional parametrization. These improvements should pave the way for routine
use of our theory in successfully describing HPPTs. In particular, the present paper illustrates that, while
the former version of FSLT involved delicate least-squares fitting procedures with a large number of
unknown fit parameters and dealing with all the inadequacies implicit in the use of truncated Taylor
expansions, in the present scheme, the unknown pressure dependencies can be systematically determined
one-by-one in a step-wise, almost “deterministic” manner.

Admittedly, even the present parametrization of the HPPT in KMF is still less than perfect.
For instance, the coupling function λa(P)/K(P) shown in the lower left panel of Figure 11 exhibits
a steep initial decrease with increasing pressure. Since no spontaneous strain data are available for this
pressure region, this does not change the physical values produced by the theory. However, it hints at a
sub-optimal choice Equation (38) for the auxiliary function fd(x). The reader is invited to come up with an
improved candidate function.

More importantly, in a full-blown application of FSLT, we should be able to predict e.g., the (P, T)
cubic-to-tetragonal phase boundary of KMF and compute pressure—and temperature-dependent elastic
constants. In principle, the ability to do so depends mainly on the successful construction of a
pressure—and temperature-dependent baseline, i.e., the cubic EOS Vcubic = Vcubic(P, T). In a previous
paper [10], this task has been successfully carried out for the perovskite PbTiO3 by combining zero
temperature DFT calculations (see Appendix A for details) with the Debye approximation as implemented
in the GIBBS2 package [22,23] to incorporate effects of thermal expansion (recently, we learned [24] that
a similar approach also seems to work for MgSiO3). Unfortunately, our corresponding efforts to derive
Vcubic(P, T) for KMF along the same lines have failed so far, however. This failure manifests itself e.g., in the
inability to simultaneously reproduce the thermal baseline at P = 0 measured experimentally and the
ambient temperature EOS, even if we allowed for the introduction of a constant compensating background
pressure which is frequently introduced in DFT calculations to compensate inadequacies of an employed
exchange-correlation functional. Ref. [25] states that perovskites with octahedral tilting generally do
not show an appreciable coupling between structural and magnetic order parameters. Nevertheless,
this statement obviously does not exclude effects due to a coupling between magnetic degrees of freedom
and the background volume strain. Since the Debye approximation is based exclusively on phonons,
we may speculate that in KMF residual magnetic effects may be responsible for additional thermal energy
consumption. An investigation of this problem is currently underway.

Finally, it may be argued that our current theory also does not “explain” the origins of the involved
nonlinear P-dependencies on a fundamental level. In approaches based on infinitesimal strain couplings,
similarly looking P-dependent couplings are also introduced, but in a more or less completely ad hoc
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manner, blaming their existence on rather unspecific “higher order strain couplings”. As a rule, such an
approach results in a mathematically inconsistent theory. In contrast, the nonlinearities that arise in FSLT
result for different but well-defined reasons. On the one hand, there are couplings between powers of the
background strain e(P) and the Landau potential ΦR(Q; X̂) “floating” on this background strain, and there
is a pressure-dependence of the elastic moduli K(P) and µ(P), which is in principle accessible e.g., to
DFT calculations. This leaves the task of “explaining” the residual nonlinearities in the functions λa,t(P)
describing the couplings between order parameter and spontaneous strains. In contrast to blaming their
existence on the effects of some unspecified higher order couplings, our present theory provides a practical
way to numerically determine these functions. In addition, we see no reason in principle as to why such
P-dependent coupling constants could not eventually be extracted from DFT calculations along the general
philosophy laid out in Refs. [26,27] and the subsequent follow-up literature.
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Abbreviations

The following abbreviations are used in this manuscript:

AFN antiferromagnetic
DFT density functional theory
EOS equation of state
FSLT finite strain Landau theory
HPPT high pressure phase transition
KMF KMnF3

LDA local density approximation
LT Landau theory
OP order parameter
PT phase transition
NM nonmagnetic

Appendix A. DFT Calculation Details

The EOS and the elastic constants in the cubic phase of KMF were calculated using the WIEN2K

DFT package, which is an all-electron code based on the (linearized) augmented plane-wave and local
orbitals [(L)APW+lo] basis representation of the Kohn–Sham equations [28] of DFT. Here, we only content
ourselves with a quick outline of the basic ideas and refer to Refs. [29,30] and the monograph Ref. [31] for
more details.

In the (L)APW+lo method, the crystal’s unit cell is partitioned into a set of atomic spheres surrounding
the nuclei and a remaining interstitial region. Inside these atomic spheres, the wave functions are expanded
into atomic-like basis functions, i.e., numerical radial functions times spherical harmonics while they
are represented by plane waves throughout the interstitial region. These two regions are glued together
by requiring continuity of the basis functions in value (and, depending on the flavor of the (L)APW+lo
method, in radial slope) across the sphere boundaries. These LAPW calculations require making a couple
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of choices regarding cell size, standard parameter values, etc. In detail, the calculations of the present
work were done with Rmin

MT Kmax = 9 and atomic sphere radii of 2.1, 2.0, and 1.6 bohr for K, Mn and F,
respectively. The energy separation between core and valance states used was −6.0 Ry. Inside the sphere,
the maximum angular momentum used in the spherical expansions was Lmax = 10, while the charge
density in the interstitial was Fourier expanded up to a cutoff of Gmax = 14(a.u.)−1.

As to the use of exchange-correlation functionals, we have performed calculations using the standard
local density approximation (LDA) [32] and three functionals of the generalized gradient approximation,
namely, PBE from Perdew et al. [33,34], its solid-state optimized version PBEsol [35], and WC from Wu and
Cohen [36]. For LDA and PBE, we observed the well-known tendency to underestimate and overestimate
the lattice constants of solids, respectively, while PBEsol and WC produced more accurate results in
between LDA and PBE [37,38].

To study the effect of magnetism on our results, we undertook calculations for a standard
non-magnetic (NM) and ferromagnetic (FM) cubic perovskite unit cell with five atoms as well as an for a
cubic supercell with 10 atoms in antiferromagnetic (AFM) structures of A-type, C-type and G-type [39].
After sufficient testing, we settled for a k-mesh sampling of 10× 10× 10 k-points for all types of structures.
In FM and AFM structure, we observed a linearization error which is inherent to the basis functions inside
the spheres. To overcome this problem, we use the second energy derivative of the radial part (HDLO) for
d electrons for Mn atom (for more detail see Ref. [40]). Using this setup, we identified that G-type AFM
structure to have lowest energy.

Cubic elastic elastic constants were calculated with the help of the WIEN2K add-on package by
Charpin [41]. Results at T = 0 are compiled in Table A1. In particular, we conclude that FM and AFM
structures give similar value of lattice parameters and bulk modulus, which suggests that the specific
magnetic ordering is not overly important for these quantities. In passing, we note that non-magnetic
KMF is found to be a metal (with all functionals), but all magnetic structures lead to insulators (with all
functionals). Simulations with PBEsol+U with U = 4eV in the AFM G-type phase would even lead to
slightly better agreement with experiment for lattice constants and bulk modulus, but overall the effect is
small and we therefore used the PBEsol results in Figures 7 and 8.

Table A1. Lattice constant (Å) and bulk modulus (GPa) of cubic KMnF3 for different methods used in
this work.

Present Work Other Works

NM FM AFM (G-Type) PBE Expt.

Lattice constant 4.185 [42]
LDA 3.89 4.11 4.09
PBEsol 3.96 4.19 4.17
PBE 4.04 4.26 4.24 4.19 [43]
PBEsol + U (U = 4 ev) 4.20 4.19
Bulk modulus
LDA 117.2 83.7 88.4
PBEsol 97.6 70.4 69.6
PBE 83.3 62.3 63.1
PBEsol + U (U=4 ev) 68.2 67.7

Estimating an additional softening due to finite temperature with various flavors of the Debye
approximation which are implemented in the GIBBS2 software [22,23], the best agreement with the cubic
part of the experimental data of Ref. [11] was reached for the combination of G-type antiferromagnetic
structure and PBEsol functional.
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