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Abstract: A gravimetric method was used to experimentally determine the (solid + liquid) equilibrium
of sofosbuvir of crystalline forms A and B in both ethyl acetate + toluene and methyl tert-butyl ether
(MTBE) + toluene binary solvents systems at atmosphere pressure. Experiments were carried out at a
temperature range of 268.15−308.15 K. Results show that the solubility of sofosbuvir increases with
temperature, and the solubility of form B was higher than that of form A. The modified Apelblat
model, the CNIBS/Redlich–Kister model, and the combined version of Jouyban–Acree model were
employed to correlate the measured solubility data, respectively. Furthermore, an examination of the
solid-state stability of the two polymorphs was conducted, finding that form A and form B exhibit
good solid-state stability under high temperature, high humidity, and strong light exposure conditions.
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1. Introduction

Sofosbuvir (C22H29FN3O9P, CAS No.: 1190307-88-0, presented in Figure 1) is a novel anti-HCV
agent, offering a more satisfactory sustained virologic response rate than those that have ever been
used in similar cases before [1,2]. It is indicated by our previous studies that ethyl acetate + toluene and
MTBE + toluene binary systems can be used to crystallize sofosbuvir of form A or B [3]. However, there
is no literature that has reported the solution thermodynamic data of sofosbuvir in these two systems.
These are important for the optimization of the crystallization process, especially for the controlling of
polymorphs, since the various solid forms generally present different physicochemical properties.
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Figure 1. Chemical structure of sofosbuvir. Figure 1. Chemical structure of sofosbuvir.

In this study, a gravimetric method [4–6] was used to acquire the solubility data of sofosbuvir
of forms A and B in both ethyl acetate + toluene binary solvents with ethyl acetate mole fraction
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ranging from 0.32 to 0.53, and MTBE + toluene binary solvents with MTBE mole fraction ranging from
0.40 to 0.77, at atmosphere pressure, with a temperature range of 268.15−308.15 K. The experimental
data were correlated using the modified Apelblat model, the CNIBS (combined nearly ideal binary
solvent)/Redlich–Kister model, and the combined version of Jouyban–Acree model. A stability test
according to International Conference for Harmonization Quality Guidelines was conducted as well,
to disclose the solid-state stability of sofosbuvir polymorphs under the influence of a variety of
environmental factors such as temperature, humidity, and light. This can provide experimental data
for establishing a re-test period for active pharmaceutical ingredients or a shelf life for the drug product
and recommended storage conditions.

2. Modeling

Correlation of the experimental solubility data with different models is helpful for further
understanding the thermodynamic properties in the measurement range. With this consideration,
three models were used in this study. The modified Apelblat equation describes the dependence of
solubility on temperature, the CNIBS/ Redlich–Kister model describes the dependence of solubility
on solvent composition, while the Jouyban–Acree model describes the dependence of solubility on
both parameters.

2.1. Modified Apelblat Equation

The Apelblat equation, as a well-known equation used to correlate solubility, was originally
proposed by Apelblat and Manzurola; in it, the temperature dependence of the mole fraction solubility
in different solvents is described as follows [7–11]:

ln xA = A +
B
T
+ C ln T (1)

where xA is the mole fraction solubility and T represents the corresponding absolute temperature. A, B
and C are semi-empirical parameters of the model.

2.2. CNIBS/Redlich–Kister Model

The governing equation of CNIBS/Redlich–Kister model [12,13] is defined as follows:

ln xA = x0
B ln(xA)B + x0

C ln(xA)C + x0
Bx0

C

N∑
i=0

Si
(
x0

B − x0
C

)i
(2)

where xB
0 and xC

0 are the mole fraction of each solvent in a binary solvent system, respectively; N is
the number of “curve-fit” parameters and Si is the model constant, which is two for a binary solvent
system in this case; thus, xC

0 can be represented as (1−xB
0). Substituting xC

0, Equation (2) can be
expressed as:

ln xA = (ln(xA)B − ln(xA)C + S0 − S1 + S2)x0
B

+(−S0 + 3S1 − 5S2)
(
x0

B

)2
+ (−2S1 + 8S2)

(
x0

B

)3

+(−4S2)
(
x0

B

)4
+ ln(xA)C

(3)

Changing constants in Equation (3) with a constant term Ai (A0, A1, A2, A3, A4), the CNIBS/R–K
model can be simplified as follows [14,15]:

ln xA = A0 + A1x0
B + A2(x0

B)
2
+ A3(x0

B)
3
+ A4(x0

B)
4

(4)
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2.3. Jouyban–Acree Model

The original function of Jouyban–Acree model, which was obtained by modifying the CNIBS/R–K
model, is shown below [16]:

ln xA = x0
B ln(xA)B + x0

C ln(xA)C + x0
Bx0

C

N∑
i=0

Ji

T

(
x0

B − x0
C

)i
(5)

in which Ji is a constant of the function.
In order to enlarge the applicability of solution behavior of non-ideal systems, the modified

Apelblat equation can be used to substitute ln(xA)i; then Equation (6) is obtained, as in the CNIBS/R–K
model:

ln xA = aB + bB
T + cC ln T + (aB − aC)x0

B + (b1 − b2 + J0 − J1 + J2)
x0

B
T

+(3J1 − J0 − 5J2)
(x0

B)
2

T + (8J2 − 2J1)
(x0

B)
3

T

+(−4J2)
(x0

B)
4

T + (cB − cC)x0
B ln T

(6)

A final equation of the Jouyban–Acree model can be obtained by simplifying equation 6 as well,
with a constant term Bi (containing B0, B1, B2, B3, B4, B5, B6, B7, B8) [17]:

ln xA = B0 +
B1
T + B2 ln T + B3x0

B + B4
x0

B
T + B5

(x0
B)

2

T + B6
(x0

B)
3

T

+B7
(x0

B)
4

T + B8x0
B ln T

(7)

3. Experimental Section

3.1. Materials.

Sofosbuvir of forms A and B was prepared and identified using the methods published in previous
studies [3]. Ethyl acetate, MTBE and toluene were of analytical grade and used without further
purification. Detailed information on the above-mentioned materials is listed in Table 1.

Table 1. Sources and purity of the materials.

Chemical Name Source Purification
Method

Mass Fraction
Purity Analysis Method

Sofosbuvir (form A) synthesis crystallization >0.99 HPLC a

Sofosbuvir (form B) synthesis crystallization >0.99 HPLC
Ethyl acetate Sinopharm none 0.995 GC b

Toluene Sinopharm none 0.995 GC
MTBE Sinopharm none 0.995 GC

a High performance liquid chromatography. b Gas chromatography.

3.2. Characterization of Sofosbuvir Polymorphs

Powder X-ray diffraction (PXRD) was used to identify the crystalline form of sofosbuvir, and the
patterns were recorded using a Rigaku Ultima IV diffractometer with Cu Kα radiation (40 kV, 40 mA)
scanned at 20◦/min over an angular range of 5–45◦ of 2θ. The patterns are shown in Figure 2, and the
main PXRD data are listed in Table S1, Supplementary Information.
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Figure 2. Powder X-ray diffraction (PXRD) patterns of sofosbuvir of form A and form B.

3.3. Stability Test

3.3.1. Temperature

The two polymorphs of sofosbuvir were kept for 10 days at a temperature of 60 ± 2 ◦C and
sampled on the 5th and 10th day, respectively. PXRD analysis shows no obvious changes, which
means that the solid-state stability of the two polymorphs is good at high temperature conditions. The
patterns are given in Figures S1 and S2, Supplementary Information.

3.3.2. Humidity

The two polymorphs of sofosbuvir were kept for 10 days at a humidity of RH 92.5 ± 5% and
sampled on the 5th and 10th day, respectively. PXRD analysis shows no obvious changes, which means
that the solid-state stability of the two polymorphs is good at high humidity conditions. The patterns
are given in Figures S3 and S4, Supplementary Information.

3.3.3. Light

The two polymorphs of sofosbuvir were kept for 10 days under a light illumination of 4500 ±
500 lux and sampled on the 5th and 10th day, respectively. PXRD analysis shows no obvious changes,
which means that the solid-state stability of the two polymorphs is good at strong light exposure
conditions. The patterns are given in Figures S5 and S6, Supplementary Information.

3.4. Solubility Measurement

Sufficient amounts of sofosbuvir polymorphs were added to 25 ml solvent in a 50 ml jacket glass
vessel with a magnetic stir bar and a thermometer, to form a saturated solution. A thermostatic bath
was employed to control the temperature with an accuracy of ±0.1 K. The solution was agitated for
2 h to ensure that the system had reached the state of solid-liquid equilibrium. Then the stirring was
stopped and the solution was kept stationary for 10 min. Subsequently, the upper clear solution (about
5 mL) was transferred into a small beaker using a membrane filter (0.45 µm). The beaker was dried



Crystals 2020, 10, 209 5 of 9

in a vacuum oven at 333.15 K for about 48 h to make sure that the weight of the beakers became
constant. Both of the polymorphs were proved by PXRD to be maintained over the temperature range.
Measurements were conducted in triplicate at each temperature to minimize the relative deviation.
All of the masses were measured using an analytical balance (Mettler Toledo XS105, Switzerland) with
an accuracy of ±0.01 mg.

The solubility of the sofosbuvir polymorphs, described in mole fraction x in different systems,
was calculated by the following equation [18]:

x =
m
M

m
M +

∑(
ms
Ms

) (8)

in which m and ms represent the mass of sofosbuvir and the solvent, respectively; M and Ms are the
molecular mass of sofosbuvir and the solvent, respectively.

4. Results and Discussion

4.1. Solubility Data in Binary Solvents

Experimental data on solubility measurement are presented in Tables S2−S5, Supplementary
Information, and graphically illustrated in Figure 3; Figure 4. It is obvious that the solubility of
sofosbuvir increases with the temperature and the mole fraction of ethyl acetate or MTBE. Solubility of
form B is higher than that of form A under all of the experimental conditions, which means that form
A is more stable than form B at the temperature range of measurement. The relative thermodynamic
stability is in line with our previous research [3].
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4.2. Data Correlation

The Apelblat model, the CNIBS/Redlich-Kister model, and the Jouyban–Acree model were used
to correlate the solubility data, based on the average relative deviation (ARD) defined by Equation (9),
which was used to compare among three different models [19].

ARD% =
100
N

N∑
i=1

∣∣∣∣∣∣∣xA,i − xcal
A,i

xA,i

∣∣∣∣∣∣∣ (9)

in which N is the number of the experimental measurement, xA,i is each measured solubility and xA,i
cal

is each calculated value. The 1stOpt program was applied to calculate the data using Equations (1), (4),
and (7).

Parameters of data correlation and values of ARD% for each individual modeling system are listed
in Tables 2–7, with which the calculated solubility values were obtained and listed in Tables S2–S5,
Supplementary Information. It was observed that experimental solubility data are satisfactory, fitting
with the calculated solubility values. Values of ARD% calculated by the modified Apelblat model, the
CNIBS/R–K model, and the Jouyban–Acree model are less than 2.41%, 0.88%, and 4.06%, respectively,
indicating that the three models all correlate well in this system. After comparing calculated stabilities
with corresponding experimental ones, the CNIBS/R–K model stood out to be more suitable with a
higher accuracy than the other two models.

Table 2. Fitting parameters of modified Apelblat model for ethyl acetate + toluene system.

xB
0 A B C ARD%

Form A
0.32 −19.11 −1655.76 4.55 2.13
0.36 55.30 −5021.69 −6.51 1.58
0.40 −70.83 416.91 12.45 2.41
0.46 70.70 −5406.75 −8.91 0.90
0.53 −101.85 2463.61 16.78 0.88

Form B
0.32 −118.97 3120.84 19.29 1.07
0.36 −187.47 5626.11 29.90 0.62
0.40 −73.51 508.07 12.96 1.10
0.46 −36.90 −873.12 7.39 1.31
0.53 30.75 −4517.73 −2.22 1.86

Table 3. Fitting parameters of modified Apelblat model for MTBE + toluene system.

xB
0 A B C ARD%

Form A
0.40 −48.64 794.58 8.30 0.55
0.46 1.45 −1661.09 1.00 1.24
0.53 76.70 −5256.26 −10.05 0.73
0.63 −43.24 −54.52 7.98 1.26
0.77 −47.35 302.27 8.53 1.43

Form B
0.40 −27.26 −937.26 5.66 1.46
0.46 97.35 −6501.56 −12.89 0.72
0.53 −60.70 323.62 10.85 1.08
0.63 1.13 −2362.87 1.61 1.18
0.77 −97.89 1952.94 16.48 1.65
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Table 4. Parameters of CNIBS/R–K model for ethyl acetate + toluene system.

T/K A0 A1 A2 A3 A4 ARD%

Form A
268.15 −44.17 469.34 −1833.07 3119.79 −1938.72 0.31
273.15 −19.22 221.48 −922.75 1664.43 −1082.88 0.42
278.15 −3.58 59.73 −298.58 616.49 −437.45 0.06
283.15 −64.11 669.20 −2567.66 4325.46 −2682.28 0.06
288.15 −38.48 415.32 −1626.87 2795.33 −1762.46 0.06
293.15 −21.05 226.97 −879.77 1515.09 −960.63 0.01
298.15 −66.28 682.86 −2568.42 4252.38 −2600.93 0.05
303.15 −42.04 436.51 −1636.54 2708.64 −1656.26 3.35 × 10−3

308.15 24.61 −221.89 775.88 −1167.56 648.80 5.15 × 10−3

Form B
268.15 −20.13 205.25 −772.52 1297.59 −803.01 5.14×10-3

273.15 −10.78 111.46 −419.60 714.80 −444.44 3.83×10−3

278.15 12.13 −133.23 543.43 −933.40 593.65 0.15
283.15 −20.09 193.32 −676.07 1065.87 −619.34 1.29×10−3

288.15 53.46 −550.38 2113.54 −3523.38 2175.54 0.46
293.15 10.07 −138.44 669.97 −1302.14 909.16 0.46
298.15 17.10 −210.49 948.41 −1771.84 1201.58 0.88
303.15 −1.99 −33.95 349.46 −879.34 708.39 0.66
308.15 12.11 −181.10 921.67 −1851.30 1318.01 0.43

Table 5. Parameters of CNIBS/R–K model for MTBE + toluene system.

T/K A0 A1 A2 A3 A4 ARD%

Form A
268.15 2.93 −14.50 31.95 −25.98 7.38 3.33 × 10−5

273.15 −2.85 24.15 −62.23 76.30 −34.29 1.67 × 10−4

278.15 −5.23 40.73 −103.47 122.26 −53.62 4.93 × 10−4

283.15 13.09 −95.73 270.85 −323.18 140.77 1.73 × 10−3

288.15 0.51 −7.34 44.02 −68.49 35.06 1.30 × 10-4

293.15 14.54 −111.81 331.94 −413.21 186.39 2.04 × 10−3

298.15 36.57 −272.47 763.73 −917.64 402.86 0.03
303.15 17.44 −130.78 378.15 −458.88 201.78 3.52×10−3

308.15 14.07 −107.14 318.83 −393.48 175.10 6.76×10−3

Form B
268.15 7.40 −53.96 155.74 −186.41 80.93 2.03 × 10−3

273.15 5.30 −36.30 107.39 −129.93 56.98 1.16 × 10−3

278.15 −1.11 9.07 −7.47 −3.26 5.59 1.57 × 10−6

283.15 −6.73 52.11 −125.01 136.72 −55.91 1.22 × 10−4

288.15 −8.90 63.65 −142.97 144.93 −54.73 1.45 × 10−3

293.15 −29.22 214.75 −553.63 631.87 −267.26 0.02
298.15 −18.94 144.72 −375.83 435.24 −187.22 2.16 × 10−3

303.15 −7.52 59.50 −139.44 150.07 −60.82 1.45 × 10−4

308.15 0.23 0.16 30.20 −60.21 34.51 9.61 × 10−3

Table 6. Parameters of modified Jouyban–Acree model for ethyl acetate + toluene system.

Parameters Form A Form B

B0 −54.84 78.01
B1 −9575.17 1486.82
B2 482.53 −525.11
B3 −254.27 123.06
B4 27916.88 1322.24
B5 −71,896.69 8370.77
B6 150,328.07 −93,564.23
B7 −108,692.03 102,694.79
B8 36.72 −14.50

ARD% 2.96 4.06
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Table 7. Parameters of modified Jouyban–Acree model for MTBE + toluene system.

Parameters Form A Form B

B0 −9.03 −32.63
B1 −1580.68 −7699.82
B2 107.52 292.16
B3 −69.37 −142.54
B4 −8506.99 21944.77
B5 34761.70 −37826.14
B6 −44,739.66 39619.22
B7 20376.34 −15596.72
B8 11.05 21.83

ARD% 3.51 1.82

5. Conclusions

In this paper, the solubility data of sofosbuvir of forms A and B in ethyl acetate + toluene and
MTBE + toluene binary solvent systems were measured at atmosphere pressure with T = 268.15−308.15
K by a gravimetric method. Three models were adopted to correlate the experimental solubility data
and all of them manifested satisfactory consistency, especially for CNIBS/R–K, with a higher accuracy.
It was found that the solubility of sofosbuvir increases with temperature and the mole fraction of ethyl
acetate or MTBE. Solubility of form B was higher than that of form A under all of the experimental
conditions, which means form A was more stable than form B in the measurement temperature range.
A stability test was conducted as well, finding that the two polymorphs show good solid-state stability
under high temperature, high humidity, and strong light exposure conditions. All of the experimental
data may provide valuable guidance for the crystallization and purification process of sofosbuvir.
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