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Abstract: A novel terbium-tetracarboxylate framework with the 5,5’-(diazene-1,2-iyl)diisophthalic
acid (H4abtc) ligand, formulated as [Tb(Habtc)(DMSO)(H2O)2]n (ZTU-5), has been synthesized
and structurally characterized. ZTU-5 features a 2D-layered structure constructed by the binuclear
terbium secondary building units (SBUs) and abtc4– ligand, which can be further expanded into
a 3D-supramolecular framework by the hydrogen bond interactions. In addition, the magnetic and
fluorescence properties of ZTU-5 are investigated and ZTU-5 exhibits highly selective and sensitive
detection of nitrofurazone (NZF).
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1. Introduction

Antibiotics are widely used as the specific drug for treating bacterial infection in humans and
animals, while the abuse of antibiotics has caused the high levels of antibiotic residues in surface
and groundwater as well as in drinking water [1–3]. Owing to the antibiotic wastewaters being
highly poisonous and difficult to degrade, monitoring of antibiotic wastewaters was significant, but
challenging [4,5]. Compared with the traditional detection method of antibiotics using instrumental
methods such as liquid chromatography (LC), capillary electrophoresis (CE), liquid chromatography
mass spectrometry (LC-MS), Raman spectroscopy (RS), ion mobility spectrometry (IMS), and so
forth, the metal organic frameworks (MOFs) used as luminescent probes for the selective detection
of antibiotics has been considered as a very effective and proven technology [6–11]. Despite some
successes, the design and discovery of new MOFs as luminescent probes for highly selective and
sensitive detection of antibiotics is also challenging and of great significance [12–15].

Hence, we have successfully constructed one novel terbium-tetracarboxylate framework with
the H4abtc ligand, formulated as [Tb(Habtc)(DMSO)(H2O)2]n (ZTU-5), which features a 2D-layered
structure constructed by the binuclear terbium secondary building units (SBUs) and abtc4–ligand, which
further expands into a 3D-supramolecular framework by the hydrogen bond interactions. Herein,
its syntheses, crystal structures, and magnetic and fluorescence properties are discussed in detail.

2. Experimental

2.1. Materials and Methods

All the chemical reagents were commercially purchased and used without further purification.
The powder X-ray diffraction (XRD) patterns were recorded on crushed single crystals in the 2θ
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range of 5~50◦ using Cu-Kα (1.5418 Å) radiation. Elemental analyses (C, H, and N) were measured
with an Elementar Vario EL III Analyzer (Elementar, Germany). Magnetic susceptibility data were
collected on a Quantum Design MPMS (SQUID)-XL magnetometer (Quantum Design, United States).
Fluorescence spectra, quantum yield (Φ), and lifetime for ZTU-5 were performed on an Edinburgh
Analytical instrument (FLS920) (Edinburgh Instruments, United Kingdom) with both continuous
(450 W) and pulsed Xenon lamps.

2.2. Synthesis of ZTU-5

A mixture of Tb(NO3)3·6H2O (0.25 mmol, 113.26 mg) and H4abtc ligand (0.25 mmol, 89.57 mg) was
placed in a 25 mL Teflon-lined stainless steel vessel with 6 mL of DMSO/H2O (V/V = 1:1). The mixtures
were heated to 120 °C over 4 h, kept at this temperature for three days, and then cooled to room
temperature during another two days. White crystals of ZTU-5 were obtained in 42% yield based on
Tb(NO3)3·6H2O. Anal. Calcd. for ZTU-5: C, 34.41; H, 2.73; N, 4.46%. Found: C, 34.48; H, 4.77; N,
4.38%. IR (cm−1): 3328, 2913, 2345, 1608, 1375, 1311, 1246, 1132, 1093, 912, 789, 703, 650.

2.3. Crystal Structure Determination

Single-crystal X-ray diffraction data of ZTU-5 were collected on a Bruker with a Mercury CCD
area detector (Mo-Kα, λ = 0.71073 Å). Empirical absorption corrections were applied to the data
using the Crystal Clear program [16]. The structures of ZTU-5 were solved by direct methods and
refined by full-matrix least-squares on F2 using the SHELXTL-2017 program [17]. Metal cations were
located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier
syntheses. All non-hydrogen atoms were refined anisotropically except for a few badly disordered
atoms and the lattice solvent molecules. The organic hydrogen atoms were positioned geometrically
with fixed thermal factors, while the coordinated water molecules were located using the difference
Fourier method and refined freely. Crystallographic data and other pertinent information for ZTU-5
are summarized in Table 1,and the selected bond distances and bond angles are listed in Table S1.
The CCDC number for ZTU-5 is 1950505.

Table 1. Crystal data and structure refinement for [Tb(Habtc)(DMSO)(H2O)2]n (ZTU-5).

Compounds ZTU-5

CCDC 1950505
Formula C18H17N2O11STb

Mr 628.33
Space group P1

a (Å) 7.7450(2)
b (Å) 11.224(3)
c (Å) 12.051(3)
α (deg) 78.901(6)
β (deg) 82.678(7)
γ (deg) 85.359(6)
V (Å3) 1017.9(4)

Z 2
Dc (g cm−3) 2.050
M (mm−1) 3.644

F(000) 616.0
GOF 1.062
R1

a 0.0175
wR2

a 0.0432
aR =

∑
(||Fo| – |Fc||)/

∑
|Fo|, wR = {

∑
w[(Fo

2 – Fc
2)2]/

∑
w[(Fo

2)2]}1/2; [Fo > 4 (Fo)].
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3. Results and Discussion

3.1. Synthesis and Structure Description of the Crystal Structures

The solvothermal reaction of the Tb(NO3)3·6H2O and H4abtc ligand in a mixed-solvent of
DMSO and H2O (V/V = 1:1) led to one novel terbium tetracarboxylate framework (ZTU-5). ZTU-5 is
crystallized in the triclinic space group P1 with lattice parameters a = 7.7450(2) Å, b = 11.224(3) Å,
c = 12.051(3) Å, α = 78.901(6)◦,β = 82.678(7)◦, and γ = 85.359(6)◦, and its asymmetry unit consists of
one independent Tb(III) ion, one Habtc3− ligand, two terminally coordinated water molecules, and
one coordinated DMSO molecule (Figure 1a). The central Tb(III) ions are eight coordinated by five
carboxylate O atoms from four different Habtc3− ligands, two O atoms from two coordinated H2O
molecules, and one O atom from one coordinated DMSO molecule. The Habtc3– ligand displays
the µ2-κ1-(κ1-κ1)-µ8 coordination mode (Figure 1a) and two Tb(III) ions are linked by the bridging
carboxylate from six Habtc3− ligands, to generate the binuclear terbium SBUs with the Tb–Tb distance
of 5.3289(10) Å (Figure S1). The aromatic rings of two Habtc3− ligands are arranged in an offset
face-to-face mode with the parallel distance of 3.4531(26) Å (Figure 1b), which indicates the existence of
weak π–π stacking [18]. In addition, the binuclear terbium SBUs are bridged by the Habtc3- ligands and
extended into the 1D lanthanide-carboxylate chain (Figure 1c), which further expands into a 2D and
3D-supramolecular framework by the hydrogen bond interactions (Figure 1d and Table S2), involving
O7-H7···O3 of the carboxylate groups and O10-HB···O3, O11-H11B···O4 between the pairs of water
molecules and carboxylate groups.
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(Figure S2). The proportion of the H-H/H-H, O-H/H-O, C-H/H-C, N-H/H-N, and S-H/H-S 
interactions in the total Hirshfeld surface was 19.4%, 26.8%, 5.0%, 1.7%, and 1.0%, respectively. 

Figure 1. (a) Representation of the coordination environment of the Tb ion in [Tb(Habtc)(DMSO)
(H2O)2]n (ZTU-5). Symmetry codes: A: x + 1, y, z − 1; B: −x, −y, −z + 2; C: −x, −y + 1, −z + 2; D: x − 1,
y, z + 1. (b) The π–π stacking interaction between aromatic rings of Habtc3− ligands in ZTU-5. (c) and
(d) The 1D lanthanide-carboxylate chain and 3D supramolecular architecture in ZTU-5.

3.2. Hirshfeld Surface Analysis

In order to study the intermolecular interactions in ZTU-5, the Hirshfeld surface analysis and
2D finger-printing were computed by the Crystal Explorer program [19]. As shown in Figure 2,
the 3D hirshfeld surface mapped visually shows the interactions of crystal structure in ZTU-5; the red
area denotes the strong interactions, which are attributed to the mostly hydrogen bonding including
O···H, but the electron density of the blue region is weak interactions [20].The significant interaction
distribution mapped on the molecular surface of ZTU-5 was presented by the 2D fingerprint plots
(Figure S2). The proportion of the H-H/H-H, O-H/H-O, C-H/H-C, N-H/H-N, and S-H/H-S interactions in
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the total Hirshfeld surface was 19.4%, 26.8%, 5.0%, 1.7%, and 1.0%, respectively. These results indicated
the intermolecular interactions are mainly derived from the H-H/H-H and O-H/H-O interaction [21].
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compound ZTU-5.

3.3. XRD Patterns and Thermogravimetric Analyzer Data

The XRD of ZTU-5 was performed to confirm its purity and structure, and all the peak positions
on the curves for ZTU-5 are well matched with the simulated XRD patterns (Figure S3). In order to
investigate the stability of ZTU-5 in solvent, the samples of ZTU-5 were immersed in DMF solution
for 24 h at room temperature, and the XRD patterns of ZTU-5 are still consistent with the simulated
ones, suggesting the stability of ZTU-5. In addition, ZTU-5 exhibits a weight loss of 18.03% from 35 to
310 ◦C, which is attributed to the loss of one coordinated DMSO molecule and two coordinated water
molecules (calcd. 18.16%) (Figure S4).

3.4. Magnetic Property

The magnetic susceptibility of ZTU-5 was measured in the temperature range of 2–300 K under
1000 Oe. The χmT product for ZTU-5 is 23.36 cm3 K mol−1 at 300 K, which is close to the expected
theoretical value for two uncoupled Tb(III) ions (23.65 cm3 K mol−1 and g = 3/2, 7F6) [18]. Upon
further cooling, the value of χmT sequentially decreases, reaching a minimum value of 16.20 cm3

K mol−1 at 2 K. In addition, the magnetic data were fitted by the Curie–Weiss equation, in order
to obtain a Curie constant C = 23.38 cm3 K mol−1 and Weiss temperature θ = −3.90 K (Figure S5).
The decrease observed in the χmT value and the negative θ values suggest the presence of the weak
anti-ferromagnetic interaction and other effects such as magnetic anisotropy and thermal depopulation
of the Tb(III) excited states in ZTU-5 [22–24].
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3.5. Luminescence Property

The solid state luminescence property of ZTU-5 was explored at room temperature, whichexhibits
the typical emission peaks at 488.5, 542.5, 588.5, and 622.5 nm when excited at 308 nm (Figures S6 and
S7), which are assigned to 5D4→

7FJ (J = 6−3) transitions [25]. The strong luminescent emission band
appears at 542.5 nm, which arises from the 5D4→

7F5 transition. The band at 488.5 nm is attributed
to the 5D4→

7F6 transition and the weaker emission bands at 588.5 and 622.5 nm correspond to the
5D4→

7F4 and 5D4→
7F3 transitions, respectively. In addition, the quantum yield and luminescence

lifetime of ZTU-5 were measured at 25 °C, and the corresponding quantum yield and lifetime for
ZTU-5 are 26.42% and 1.982 ms, respectively.

Considering the good luminescent property of ZTU-5, the sensing of the antibiotics was performed
through the luminescent detection. In order to explore the influence of different antibiotics in ZTU-5,
metronidazole (MDZ), furazolidone (FZD), nitrofurantoin (NFT), nitrofurazone (NZF), ronidazole
(RDZ), dimetridazole (DTZ), ornidazole (ODZ), and chloramphenicol (CAP) with different sizes and
configurations were investigated (Figure S8). In a typical experiment, a 5 mg sample of ZTU-5 was
dispersed in 10 mL of different antibiotic in DMF solution (50 ppm) and processed into a suspension
solution. Then, the resultant suspensions were monitored and the fluorescence intensity of these
antibiotics showed the quench effect compared with the blank control sample, and the quenching
efficiency (%) was calculated by the absolute quantum yield ratio (Figure 3a). Particularly, the NZF
solution exhibited a drastic quenching effect in ZTU-5, which indicated that ZTU-5 can act as
a promising luminescent probe for the detection of NZF among various nitro-antibiotics [12–14].
In addition, the possible quenching mechanism was proposed as the collision interaction between the
structures of ZTU-5 and nitro-antibiotics, consuming the energy transfer and resonance energy transfer,
and leading to a reduced luminescent intensity [12–14]. Owing to the hydrogen bond interactions
between ZTU-5 and NZF, as well as the conjugative effect of NZF, ZTU-5 exhibits highly selective and
sensitive detection of NZF among various nitro-antibiotics.
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Figure 3. (a) The quenching efficiency of ZTU-5 by the 50 ppm concentrations of antibiotics
in the DMF solution; (b) emission spectra of ZTU-5 in the DMF solution with the different
concentrations of nitrofurazone (NZF). NFT, nitrofurantoin; FZD, furazolidone; DTZ, dimetridazole;
CAP, chloramphenicol; ODZ, ornidazole; MDZ, metronidazole; RDZ, ronidazole.

For exploring the detection limit of ZTU-5 as the NZF probe, a series of concentrations of NZF
solution were prepared (0.5−500 ppm) in DMF solution (Figure 3b). The luminescence intensity of
ZTU-5 gradually decreased with the increasing concentration of NZF. The decreased luminescence
intensity could be clearly observed when the ZTU-5 samples were immersed in a 0.5 ppm of NZF
solution. According to the Stern–Volmer equation, the quenching constants (Ksv) value is 8.12 ×
103 M−1 (Figure S9), which indicates a strong quenching effect of NZF in ZTU-5 with a good application
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prospect for the detection of NZF in DMF solution [12–14]. These results indicated that ZTU-5 exhibits
highly selective and sensitive detection of NZF.

4. Conclusions

A novel terbium-tetracarboxylate framework (ZTU-5) with H4abtc ligand was successfully
synthesized and structurally characterized. ZTU-5 features a 2D-layered structure constructed by the
binuclear terbium SBUs and abtc4– ligand, which can be further expanded into a 3D-supramolecular
framework by the hydrogen bond interactions. In addition, the magnetic and fluorescence
properties of ZTU-5 are investigated and ZTU-5 exhibits high sensitivity and selectivity sensing
for NZF nitro-antibiotics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/3/222/s1,
Figure S1: The binuclear terbium secondary building units (SBUs) in ZTU-5, Figure S2: Hirshfeld surface mapped
with the fingerprint plots of compound ZTU-5, Figure S3: The X-ray diffraction (XRD) patterns of ZTU-5, Figure S4:
The thermo gravimetric analyzer (TGA) curves of ZTU-5, Figure S5: Dependence of χmT and χm

−1 for ZTU-5,
Figure S6: The solid-state excitation spectra of ZTU-5, Figure S7: The solid-state emission spectra of ZTU-5,
Figure S8: Molecular structures of the explored nitro-antibiotics in this work, Figure S9: The linear correlation
of (I0/I) vs. concentrations of NZF, Table S1: The selected bond distances and angles of ZTU-5, Table S2: Bond
lengths (Å) and angles (◦) of hydrogen bonds of ZTU-5.
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