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Abstract: The thermal response of a magnetic solid to an applied magnetic field constitutes
magnetocaloric effect. The maximum magnetic entropy change (MMEC) is one of the quantitative
parameters characterizing this effect, while the magnetic solids exhibiting magnetocaloric effect
have great potential in magnetic refrigeration technology as they offer a green solution to the
known pollutant-based refrigerants. In order to determine the MMEC of doped manganite and
the influence of dopants on the magnetocaloric effect of doped manganite compounds, this work
developed a grid search (GS)-based extreme learning machine (ELM) and hybrid gravitational
search algorithm (GSA)-based support vector regression (SVR) for estimating the MMEC of doped
manganite compounds using ionic radii and crystal lattice parameters as descriptors. Based on
the root-mean-square error (RMSE), the developed GSA-SVR-radii model performs better than the
existing genetic algorithm (GA)-SVR-ionic model in the literature by 27.09%, while the developed
GSA-SVR-crystal model performs better than the existing GA-SVR-lattice model in the literature
by 38.34%. Similarly, the developed ELM-GS-crystal model performs better than the existing
GA-SVR-ionic model with a performance enhancement of 14.39% and 20.65% using the mean absolute
error (MAE) and RMSE, respectively, as performance measuring parameters. The developed models
also perform better than the existing models using correlation coefficient as the performance measuring
parameter when validated with experimentally measured MMEC. The superior performance of the
present models coupled with easy accessibility of the descriptors definitely will facilitate the synthesis
of doped manganite compounds with a high magnetocaloric effect without experimental stress.

Keywords: magnetocaloric effect; support vector regression; extreme learning machine; maximum
magnetic entropy change; gravitational search algorithm

1. Introduction

Magnetocaloric compounds are of technological and scientific interest mainly because of their
significance in magnetic refrigeration, which has shown high potential in replacing the conventional
compression–expansion cycle of a gas cooling system [1–4]. These compounds are significant in
magnetic refrigeration technology since they serve as the refrigerants and the major component of the
cooling system characterized with lower noise, a high degree of compactness, high cooling efficiency
and environmental friendliness as they do not require ozone-depleting gases [5,6]. Before the discovery
of manganite-based compounds as a potential source of a high magnetocaloric effect (which is a

Crystals 2020, 10, 310; doi:10.3390/cryst10040310 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
http://dx.doi.org/10.3390/cryst10040310
http://www.mdpi.com/journal/crystals
https://www.mdpi.com/2073-4352/10/4/310?type=check_update&version=2


Crystals 2020, 10, 310 2 of 22

physical phenomenon that measures the change in internal temperature of a compound when subjected
to adiabatic magnetization), gadolinium was among the well-explored elements with significant
magnetocaloric effect near room temperature [7,8]. However, magnetocaloric effect can be observed in
many compounds, while the application of these compounds in magnetic refrigeration technology
is hindered by the appearance of the magnetocaloric effect at relatively high magnetic fields and/or
at transition temperatures differing greatly from room temperature. Manganite-based compounds
combine many unique features that make them fit well into magnetic refrigeration technology [9]. They
demonstrate a high magnetocaloric effect at low applied magnetic fields, relatively cheap elemental
compositions, high stability (especially in some corrosive environments) and physical parameters that
can be easily tuned through doping mechanisms [5,10,11]. Doping concentration plays a crucial role
in altering the magnetocaloric effect as well as the maximum magnetic entropy change (MMEC) of
manganite-based compounds, since A-site average ionic radius, ratio of Mn4+ and Mn3+ ions and
A-site disorder are strongly affected by the nature as well as the concentration of dopants [12–14].
A-site average ionic radius contributes mainly to magnetic properties of doped manganite through an
energy bandwidth of electron alteration that is related to the observed double-exchange interaction,
while A-site disorder measures A-site ionic distribution variance [15,16]. The present work developed
models through which the maximum magnetic entropy change (MMEC) of manganite compounds
could be influenced by the introduction of dopants into the parent manganite compound.

The observed physical properties in manganite-based compounds come from strong competition
among antiferromagnetic superexchange interactions, ferromagnetic double-exchange interaction and
spin–phonon coupling [17,18]. Zener’s double-exchange theory explains the importance of Mn4+ and
Mn3+ ions to the ferromagnetic feature of these compounds, while the exhibition of magnetic properties
is well captured within electron–phonon interaction described in Jahn–Teller formalism [4]. Doping
of sites in the parent manganite compound with divalent alkaline–earth ions, monovalent alkaline
or any other transition metals induces distortion in the lattice and changes the Mn4+ and Mn3+ ion
network that, in turn, alters the magnetocaloric effect as well as the maximum magnetic entropy change
(MMEC) of manganite-based compounds. Identifying the relationship between the nature as well as
the concentration of the dopants supports the understanding of their physical properties, while the
synthesis of new manganite-based compounds having multifunctional applications becomes possible.
Some screening approaches to developing and identifying materials with a large magnetocaloric effect
have been proposed in the literature [19], [20]. However, machine learning techniques have been
identified as effective and efficient tools for determining the influence of dopants on the physical
properties (such as magnetic ordering temperature, relative cooling power and magnetocaloric
effect) of doped manganite-based compounds [6,21–25]. The proposed grid search-based extreme
learning machine (GS-ELM) and hybrid gravitational search-based support vector regression model
the relationship between lattice distortion as well as elemental compositions on the MMEC when
dopants are incorporated into the crystal structure of the parent manganite-based compounds.

Support vector regression (SVR) is a type of machine learning technique developed using
statistical learning theory [26]. It acquires support vectors linking the descriptors with the desired
target at the training phase while the acquired vectors are further validated. The algorithm
maintains a high level of precision and accuracy while dealing with many real-life as well as
complex problems [27–30]. The robustness and effectiveness of an SVR-based model have been
attributed to its non-convergence to local minima, sound mathematical background and proper tuning
of its user-defined hyperparameters [31,32]. As such, the SVR algorithm and its hybrid have been
extensively applied to many problems in science and engineering. A gravitational search algorithm
(GSA) was used in this research work for SVR hyperparameter optimization. GSA is a population-based
optimization algorithm that is capable of navigating potential solutions in the search space using
Newtonian mechanical principles [33]. Its fast convergence to a global solution, avoidance of premature
convergence and dependence of its convergence on a limited number of parameters contribute to its
uniqueness that required its implementation in this work.
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The extreme learning machine (ELM) is a computational intelligence algorithm in which a
single-hidden-layer feedforward network is trained in a unique way that ensures a very fast speed
together with significant computational scalability [34–36]. Three different layers are associated
with the ELM; these layers include the input layer, the hidden or latent layer and the output layer.
The parameters of the hidden layer are generated randomly and kept unchanged throughout the
training phase of model development. Another stronghold of the ELM algorithm is the implementation
of the least-square method for solving the optimization problem instead of obtaining partial derivatives
of model parameters through the chain rule; thus, output weights are obtained analytically [37].
With the stochastic latent layer weights, the ELM still maintains universal approximation strength
in acquiring the relationship between descriptors and targets. These unique capacities of the ELM
algorithm are explored in the present work for modeling the MMEC of doped manganite compounds
using lattice parameters and ionic radii as descriptors.

The results of modeling and simulation of the MMEC of doped manganite compounds show
that the developed GSA-SVR-radii model, which employs the ionic radii and the concentrations of
dopants as descriptors, performs better than the existing genetic algorithm( GA)-SVR-ionic model [38]
in the literature by 27.09% on the basis of the root-mean-square error (RMSE), while the developed
GSA-SVR-crystal model, which utilizes crystal lattice parameters of the compound, performs better
than the existing GA-SVR-lattice model [38] in the literature by 38.34% using RMSE as a performance
measuring parameter. The superior performance demonstrated by the proposed model definitely
helps identify the manganite compounds with a high magnetocaloric effect and ultimately hastens the
practical implementation of magnetic refrigeration technology.

The remaining part of this manuscript is organized as follows: Section 2 describes the mathematical
formulation of the support vector regression algorithm, gravitational search algorithm and extreme
learning machine. Section 3 discusses the computational strategies employed for model development.
The description of the dataset used for modeling and simulation is also presented in the section.
Section 4 presents the results and compares the present work with the existing models. Section 5
concludes the manuscript.

2. Mathematical Formulation of the Proposed Models

The mathematical background and formulation of the proposed techniques are presented in this
section. The algorithms described include support vector regression, gravitational search algorithm
and extreme learning machine.

2.1. Description of the Support Vector Regression Algorithm

The support vector regression algorithm is a learning computational algorithm that acquires
useful information and intricacies linking the descriptors with the desired target so as to ultimately
attain excellent generalization [39,40]. The algorithm was first developed using the structural risk
minimization inductive principle that aims at minimizing Vapnik–Chervonenkis dimension and
empirical risk simultaneously. The algorithm acquires relevant and highly informative patterns
from the training set of data (a1, MMEC1)..........(a j, MMEC j) ∈ <

NX< and constructs a regression
model that governs future predictions. The regression equation can be generalized as presented in
Equation (1):

MMEC(a) = 〈ω, a〉+ b,ω ∈ N, b ∈ < (1)

where MMEC is the estimated maximum magnetic entropy change; a j represents the descriptors, which
are the crystal lattice parameters and the applied magnetics field for the GSA-SVR-crystal model,
whereas it represents the concentration of the dopants, ionic radii and the applied magnetic field for
the GSA-SVR-ionic model; 〈., .〉 is the dot product and N is the input pattern space.
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Prior to the construction of the regression function in either the ordinary or the high dimensional
feature space, the optimization problem depicted in Equation (2) is solved with a special consideration
given to the constraints in Equation (3) [41–43]:

1
2
‖ω‖2 + C

m∑
j

(
ξ∗j + ξ j

)
(2)


MMEC j − 〈ω, a〉 − b ≤ ε+ ξ j
〈ω, a〉 −MMECexp

j + b ≤ ε+ ξ∗j
ξ∗j, ξ j ≥ 0

(3)

where ‖.‖ represents the Euclidian norm, MMECexp
j stands for the measured maximum magnetic

entropy change, ξ∗j, ξ j are the slack variables and ε is the maximum allowable deviation of all training
data points from the measured values.

Deviations of data points from the measured values are penalized or regularized in the SVR
algorithm. The parameter C in Equation (2) measures the degree of penalty and is referred to as
the penalty factor. In addition, the slack variables ξ∗j, ξ j are introduced into the constraint equation
presented in Equation (3) purposely to eradicate or minimize the possibility of data points falling outside
ε− tube. Mapping of data points that could not be solved in ordinary space to the high dimensional
feature space was done in the present work using the Gaussian kernel function presented in Equation (4):

χ(a j, ai) = exp

−1
2


∥∥∥a j − ai

∥∥∥2

σ


 (4)

where σ represents the kernel option.
The final regression equation after transformation is presented in Equation (5):

MMEC(a,λ) =
m∑

j=1

(
λ∗j − λ j

)
χ(a j, ai) + b (5)

where λ∗ and λ are the Lagrange multipliers.
The performance of the SVR-based model is strongly influenced by the model hyperparameters

which include C, σ and ε [44–46]. Therefore, in order to develop a robust model that is characterized
with a high degree of precision, these hyperparameters must be tuned to optimum values.
The hyperparameters are tuned in this work using the gravitational search algorithm.

2.2. Physical Principles of the Gravitational Search Algorithm

The gravitational search algorithm (GSA) is a class of heuristic population-based algorithms
employed for solving optimization problems [33]. Its fundamental principle of navigating through a
search space of possible solutions is Newtonian mechanical formalism. In this approach, the solution
search space is explored and exploited by the agents, which are known as objects in Newtonian
description. The interaction of these agents with one another is controlled by the value of their masses
as well as gravitational pull [27,47,48]. An agent with heavy mass corresponds to a good or global
solution and moves very slowly in the solution space, whereas agents of lighter masses are attracted
towards heavy agents. A stepwise description of the algorithm operational principles goes as follows:

Step 1: Agent initialization. For q-number of initial population of agents, initialize the position
of the agents randomly. Evaluate the fitness of each of the agents using a defined objective
function. The fitness of the agents in this work was evaluated using the root-mean-square error
between the measured MMEC and predicted values obtained from objective function implementation.
Yk = (y1

k .....yD
k , ....yP

k ) specifies the position of kth agent where k = 1, 2, ......, K.
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Step II: Calculation of agents’ masses. Using the minimum and maximum values of the fitness
of the entire population, the mass of each of the agents is computed at the ith iteration through the
implementation of Equations (6) and (7):

Pk =
f itnessk(i) −Max_ f itness(i)

Min_ f itness(i) −Max_ f itness(i)
(6)

Mk(i) =
P j(i)

K∑
k=1

P j(i)
(7)

where f itnessk(i), Min_ f itness(i) and Max_ f itness(i) represent the fitness of the kth agent, the minimum
fitness of the entire population and the maximum fitness of the entire population, respectively.

Step III: Computation of Newtonian gravitational force. The Newtonian gravitational attraction
Fz

k(i) between the kth and zth agents is depicted in Equation (8), where FD
kz(i) and rkz(i) are defined,

respectively, in Equations (9) and (10) [49]:

Fz
k(i) =

K∑
k=1,k,z

randzFD
kz(i) (8)

FD
kz(i) = G(i)

Mk(i)Maz(i)
rkz(i) + δ

(
yD

k (i) − yD
z (i)

)
(9)

rkz(i) =
∥∥∥Yk(i), Yz(i)

∥∥∥
2 (10)

where rkz(i), G(i) and randz stand for the Euclidian distance between the k and z agents, the gravitational
constant defined as G0 exp

(
−α

(
i
τ )

)
and the random number spanning in the range of 0 to 1, respectively.

Similarly, Maz(i), τ and δ represent the active gravitational mass of the zth agent, the maximum iteration
and a small constant value, respectively.

Step IV: Calculation of the acceleration with which each of the agents is navigating. The acceleration
of the agents is calculated using Equation (11):

aD
k (i) =

FD
k (i)

Mk(i)
(11)

Step V: Calculation of the position and velocity of the agents. Equations (12) and (13) present the
expression for calculating the position and velocity of the agents in the population, respectively.

yD
k (i + 1) = yD

k (i) + vD
k (i + 1) (12)

vD
k (i + 1) = randkx vD

k (i) + aD
k (i) (13)

Step VI: Stopping criteria of the algorithm. Steps I to V are repeated until the maximum number
of iterations is reached.

2.3. Mathematical Background of the Extreme Learning Machine

The extreme learning machine is a novel learning algorithm of training a single-hidden-layer
feedforward neural network [34,50]. The algorithm analytically determines the output weights using
the Moore–Penrose generalized inverse method, while the input weights as well as the hidden biases are
randomly chosen. Suppose a single-hidden-layer feedforward neural network is to be trained with the
aid of t number of hidden neurons coupled with the nonlinear activation function g(x) and j number of
training samples (xi, ti) so that xi = [xi 1, ......., xip]

T
∈ Rp and MMECi = [MMECi 1, ......., MMECi m]T ∈

Rm (where p and m represent the number of data points for output and input layers, respectively).
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The operational principle of the ELM algorithm transforms the nonlinear system to a linear system
using the transformation relation presented in Equation (14) [51].

Hβ = T (14)

where H =
{
hip

}
(i = 1, ....., k and p = 1, ...., t), pth is the hidden neuron output with respect to

xi = hip = f (wp.xi + bp), wp = [wp 1, ......., wp t]
T = weight vector, linking the pth hidden neuron to

the input neurons, bp = bias of the pth hidden neuron, β = [β1, ......., βi]
T, the output weight matrix

βp = [βp1, ......., βp m]T(p = 1, . . . , i), the weight vector linking the pth hidden neuron to the output

neurons and T = [t1, ......., tk]
T is the matrix containing the descriptors.

The value of the MMEC of the doped manganite compound was estimated using the least-square
method with the minimum norm relation presented in Equation (15) after the implementation of the
linearization process of Equation (14):

^
β = H†T (15)

where H† = Moore–Penrose generalized inverse of matrix H.

3. Dataset Description and Computational Implementation of the Proposed Models

This section describes the computational method employed for the hybridization of the
gravitational search algorithm with the support vector regression algorithm. The computational
details of the proposed ELM-based model are also presented as well as the description of the dataset.
The chemical formula of the manganite compound, whose MMEC the developed models can effectively
estimate, is also described and presented.

3.1. Dataset Description and Chemical Formula of the Doped Manganite that Can be Incorporated into the
Developed Models

The proposed models in this work were developed using one hundred experimentally measured
MMEC of different manganite-based compounds extracted from the literature [7,8,11,15,18,52–64].
The descriptors to the model are two sets of data. The descriptors to the proposed GSA-SVR-crystal
model are the lattice distortions (as measured by the crystal lattice parameters) suffered by the manganite
crystal structure due to the introduction of dopants into the parent manganite [54,65–72]. The applied
magnetic field is also included as a descriptor. The significance of lattice distortion to magnetic
properties of the manganite-based compound can be inferred from the influence of lattice distortion
that accompanied doping on the Mn4+ and Mn3+ ion network. Similarly, since ionic radii of the dopants
have a strong influence on the magnetic properties of manganite-based compounds, these ionic radii
and the concentrations of dopants serve as the descriptors to the developed GSA-SVR-radii model.
This model also employs the value of the applied field as a descriptor. The chemical formula that
explains the implementation of the proposed GSA-SVR-radii model on manganite-based compounds
is presented in Equation (16).

R1−a−bAaBbMn1−cCcO3 (16)

where R and A represent the rare-earth element and alkaline-earth element, respectively, while B and
C are any dopant of choice. The concentrations of the dopants are represented by the lower case of the
dopant symbols. Implementation of the proposed GSA-SVR-radii model helps in determining the
nature and the concentration of dopants that give the desired value of the MMEC, and the outcome of
the model can be verified experimentally. The GSA-SVR-radii model is robust in the sense that it can
easily incorporate four different dopants including the rare-earth elements at various concentrations.
This is advantageous as a variety of dopants can be explored as quickly as possible. During model
implementation, the dopant that is absent in the chemical structure is assigned a zero value. Suppose
that the model is to be implemented to determine the MMEC of the Pr0.6Ca 0.1Sr 0.3Mn0.8Fe0.2O3
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compound; the descriptors are the ionic radii of elements Pr, Ca, Sr and Fe, while a, b and c are 0.1,
0.3 and 0.2, respectively. Table 1 shows the results of statistical analysis conducted on the dataset.
This is insightful in determining the content and the nature of the dataset employed for modeling
and simulation. The correlation coefficients between the descriptors and the target clearly show an
insignificant degree of linear relationship between them. Therefore, the need for nonlinear modeling
techniques such as those presented in this work becomes necessary.

Table 1. Statistical analysis of the dataset.

Quantity Minimum Maximum Mean Standard Deviation Correlation Coefficient

R(pm) 109.8 143 115.696 4.652 −0.272
A(pm) 0 152 103.83 51.2 0.389
B(pm) 0 152 79.92 66.139 0.334
C(pm) 0 100 23.07 38.523 0.14

a 0 0.45 0.162 0.126 0.261
b 0 0.45 0.161 0.169 0.441
c 0 0.3 0.029 0.048 −0.189

Distortion along a-axis 5.429 5.553 5.488 0.033 −0.557
Distortion along b-axis 5.438 13.467 6.483 1.307 0.102
Distortion along c-axis 5.419 359.95 12.036 35.311 0.105

Applied field (T) 0.05 6 3.483 1.758 0.583
MMEC 0.003 7.14 2.117 1.567

3.2. Computational Hybridization of the Gravitational Search and Support Vector Regression Algorithms

The computational part of this work was carried out within the MATLAB computing environment.
The available data points for modeling and simulation were partitioned into training and testing
sets after being randomized to ensure uniformity and prevent uneven distribution of the data points.
The hyperparameters of the SVR algorithm optimized using the GSA include the regularization factor,
epsilon and kernel option of the best kernel function, while the hyperparameter that controls the
hyperplanes was maintained as 1E−7. Step-by-step procedures for the computational hybridization of
GSA with the SVR algorithm are detailed as follows:

Step I: Data division. The 100 available data points were divided into training and testing sets in
the ratio of 8:2. The descriptors in each of the partitions consisted of nine different descriptors
for the GSA-SVR-radii model, while four descriptors were attributed to the GSA-SVR-crystal
model. The developed GSA-SVR-radii model employs the ionic radii of the dopants as well as
their concentrations, while the developed GSA-SVR-crystal model utilizes the crystal lattice distortion
of the manganite-based compound due to the introduction of dopants into the crystal lattice structure
of the parent manganite.

Step II: Hyperparameter initialization. The agents were populated within the Newtonian description
of the gravitational search algorithm. Each agent encodes the regularization factor, epsilon and
kernel option of a chosen function. For K-number of agents in a search space, each agent position is
represented as Yk = (y1

k .....yD
k , ....yP

k ) where k = 1, 2, ......, K and yD
k represents the current agent position

in the Dth dimension. In the present work, the dimension is three since there are three parameters to
be optimized.

Step III: Rating of fitness of each of the agents in the population. The fitness of each of the agents was
determined using the root-mean-square error (RMSE) between the model estimates and the measured
values of the MMEC. The agent in the testing set of the data, which is characterized by the lowest RMSE,
has the best fitness, while the agent with the highest RMSE becomes the worst agent in the population.

Step IV: Inertial mass of the agents in the population and gravitational pull computation. The inertial
mass is computed using Equations (6) and (7). The Newtonian gravitation pull is computed using
Equation (8).
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Step V: Computation of acceleration, position and velocity of the agents in the population.
The acceleration, position and velocity of each of the agents in the population were computed
using Equations (11)–(13), respectively.

Step VI: Stopping condition. After each iteration, Steps II to V are repeated, while the position of
each of the agents in the population is updated until the algorithm attains a global solution. The global
solution is indicated by a zero value of RMSE or the same value of RMSE for fifty consecutive numbers
of iteration.

3.3. Computational Implementation of the Grid Search-Based Extreme Learning Machine

The extreme learning machine is an efficient and robust algorithm that adequately trains a
single-hidden-layer feedforward network and ultimately achieves a high degree of precision as well
as reduced computational time. The ELM algorithm has one parameter (i.e., the number of hidden
nodes) and a nonlinear function that must be tuned and optimized in order to enhance the precision of
the algorithm. This parameter and the function are optimized in this work using a grid search (GS)
approach. The number of hidden nodes was sought within a specified range for each of the available
activation functions. Before the computational implementation of the ELM-GS model, the dataset was
partitioned and randomized in a similar manner to the approach used in developing the GSA-SVR
models. In this case also, two different models were developed. The developed ELM-GS-radii
model uses ionic radii and concentrations of dopants as descriptors similar to the descriptors of the
GSA-SVR-radii model, whereas the developed ELM-GS-crystal model employs lattice parameters as
descriptors. Of course, all the developed models in this work include the applied magnetic field during
magnetization measurement to the descriptors. The details of the computational strategies employed
in developing the two ELM-GS-based models are described step by step as follows:

Step I: Data randomization and partition. The datasets used for developing the GSA-SVR-based
models were also employed here. This allows a fair comparison between the generalization and
predictive strength of the developed models.

Step II: Generation of input weights and biases using pseudorandom number generator. Using the
pseudorandom number generator (seeding) in the MATLAB computing environment, input weights
wp and biases bp were generated. With the Mersenne Twister generator using seed N [rng(N)],
these weights and biases were optimized by searching for values of N between 0 to 100 that result
in the lowest RMSE between the measured and estimated MMEC. The optimum initial weights and
biases were saved and implemented for the rest of the modeling and simulation stages.

Step III: Computation of hidden-layer output matrix H. For the selected activation function from the
pool of available functions (Sine (sin), sigmoidal (sig), radial basis (radbas), hardlim (hardlim) and
triangular basis (tribas) functions), compute the hidden-layer output weights for each of the hidden
nodes, which spans between (1,100) using the training set of data.

Step IV: Determination of output weights
^
β and computation of the MMEC. Compute the output

weights and calculate the MMEC for each of the manganite-based compounds using the Moore–Penrose
generalized inverse matrix for each of the hidden nodes in Step III.

Step V: Selection of the best model for each of the activation functions. Using the obtained input weights,
biases and output weights for each of the number of nodes, determine the RMSE between the measured
MMEC and the estimated values and select the model with the lowest RMSE using the testing set of
data. The number of nodes and the activation function corresponding to the best model are also saved.

Step VI: Selection of the overall best model. Repeat Steps III to V and select the overall best model.
The input weights, biases, output weights, activation function and the number of nodes corresponding
to the best models are saved for future implementation.
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4. Results and Discussion

This section discusses the outcome of the research work. The dependence of the convergence of
the GSA-SVR-based model on the initial number of agents exploiting and exploring the population is
discussed and presented. The comparison between the results of this work and the existing models is
also presented in this section.

4.1. Searching for the Optimum Hyperparameters of the Developed Models

The dependence of the convergence of the developed GSA-SVR-radii and GSA-SVR-crystal
models to the initial number of agents exploring and exploiting the search space are presented
in Figures 1 and 2, respectively. For the convergence of the GSA-SVR–radii model presented in
Figure 1, the convergence to local minima was observed when ten, thirty and fifty agents explored
the search space, while the model converged to a global solution when the number of agents was
increased to seventy. Above this value, no further minimization of the objective function was possible.
Similarly, Figure 2 presents the convergence for the GSA-SVR-crystal model that employs the crystal
lattice parameters and the applied magnetic field as descriptors. The developed GSA-SVR-crystal
model converged to a local solution when ten agents were exploring and exploiting the search space.
The global solution was reached by thirty agents, while the increase in the number of initial agents
returned the model to a local solution convergence. The optimum values of the SVR hyperparameters
for the GSA-SVR-radii and GSA-SVR-crystal models are presented in Table 2. The table also presents
the optimum activation functions and the number of hidden nodes for the developed ELM-GS-radii
and ELM-GS-crystal models.

Figure 1. Dependence of convergence of GSA-SVR-radii model on the density of search space.

Table 2. Optimum hyperparameters of support vector regression (SVR)-based models as obtained
using a gravitational search algorithm (GSA) and extreme learning machine (ELM)-based models as
obtained using grid search (GS).

GSA-SVR-Radii GSA-SVR-Crystal ELM-GS-Radii ELM-GS-Crystal

Penalty factor 944.3013 592.9928 —- —
Epsilon 0.1003 0.3758 —- —

Kernel option 0.8198 0.2516 —– —-
Number in the population 70 30 —- —

Activation function — — Hardlim Sin
Number of hidden nodes — — 58 24
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Figure 2. Dependence of convergence of GSA-SVR-crystal model on the density of search space.

4.2. Generalization and Predictive Strength Comparison Between the SVR- and ELM-Based Models

The generalization and predictive strengths of the developed models are compared using three
different performance measuring parameters, which include correlation coefficient (CC), mean absolute
error (MAE) and root-mean-square error (RMSE). Figures 3 and 4 compare the training and testing
stages of the GSA-SVR-radii and GSA-SVR crystal models using CC and MAE performance measuring
parameters, respectively.

Figure 3. Comparison between the GSA-SVR-radii and GSA-SVR-Crystal models on the basis of the
correlation coefficient.

The training stage of the GSA-SVR-radii model demonstrates better performance than that of the
GSA-SVR-crystal model with a performance improvement of 2.39%, whereas a percentage enhancement
of 5.59% was achieved on the testing set of data using CC as the performance measuring parameter.
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Figure 4. Comparison between the GSA-SVR-radii and GSA-SVR-crystal models on the basis of the
mean absolute error.

Using MAE as the yardstick for measuring the generalization and future estimation capacity as
presented in Figure 4, the developed GSA-SVR-radii model shows a better performance as compared
to the GSA-SVR crystal model with a performance enhancement of 56.86% and 29.04% during the
training and testing stages, respectively.

A similar improvement is presented in Figure 5 using RMSE as the performance measuring
parameter. The prediction capacity of the developed GSA-SVR-radii model for the training dataset
performs better than that of the GSA-SVR-crystal model with a performance improvement of 19.32%.
while an improvement of 39.77% was obtained for the testing dataset. It should be noted that the
testing stage of the developed GSA-SVR-radii model shows a better performance than the training
phase of model development. This shows the robustness and uniqueness of the developed model in
generalizing well to an unseen dataset. Another advantage of the developed GSA-SVR-radii model over
the developed GSA-SVR-crystal model, aside from a better and excellent performance, is the ease of its
descriptors. The descriptors for the developed GSA-SVR-radii model can be easily acquired without
any prior experimental measurement, whereas XRD analysis must be performed before extracting the
descriptors for the developed GSA-SVR-crystal model. Hence, the developed GSA-SVR-radii model
allows pre-lab simulation and ultimately saves experimental time as well as other valuable resources.

Figure 6 presents the comparison between the ELM-GS-radii and ELM-GS-crystal models at
the training and testing stages of model development using correlation coefficient as the measure of
performance strength. The developed ELM-GS-crystal model performs better than the ELM-GS-radii
model with a performance improvement of 5.29%, whereas, at the validation stage, the developed
ELM-GS-radii model performs better than the ELM-GS-crystal model with a performance improvement
of 5.07%. The comparison between the models is presented in Figure 7 with the mean absolute error as
the performance measuring parameter. A similar trend of performance improvement is observed at
the training and testing phases of model development.

The developed ELM-GS-crystal model shows an improvement of 14.08% as compared to the
ELM-GS-radii model at the training stage, whereas the latter performs better than the former with
a percentage improvement of 36.44% at the testing stage of model development. In Figure 8, which
presents the comparison on the basis of RMSE, the ELM-GS-crystal model shows a percentage
improvement of 19.11% over the developed ELM-GS-radii model at the training stage, whereas the
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ELM-GS-radii model demonstrates a better performance of 39.35% at the testing stage. The actual
values of each of the performance measuring parameters at different stages of model development are
presented in Table 3. It is worth mentioning that although the developed ELM-GS-crystal model shows
a better performance at the training phase, the excellent performance of the ELM-GS-radii model at
the testing phase is more meritorious since the testing stage shows the future estimating capacity of
the model.

Figure 5. Comparison between the GSA-SVR-radii and GSA-SVR-crystal models on the basis of the
root-mean-square error.

Figure 6. Comparison between the ELM-GS-radii and ELM-GS-crystal models on the basis of the
correlation coefficient.
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Figure 7. Comparison between the ELM-GS-radii and ELM-GS-crystal models on the basis of the mean
absolute error.

Figure 8. Comparison between the ELM-GS-radii and ELM-GS-crystal models on the basis of the
root-mean-square error.

Table 3. Performance measuring parameters for the four developed models at different stages of
model development.

Parameters GSA-SVR-Radii GSA-SVR-Crystal ELM-GS-Radii ELM-GS-Crystal

Training Testing Training Testing Training Testing Training Testing

CC 0.9545 0.958 0.9317 0.9044 0.83777 0.961358 0.88462 0.914984
RMSE (J/Kg K) 0.4655 0.462 0.577 0.767 0.85233 0.285445 0.715575 0.46994
MAE (J/Kg K) 0.1766 0.376 0.4094 0.5299 0.586574 0.426137 0.51419 0.670479

The correlation cross-plots between the measured and predicted MMEC for training and testing
sets of data are preesented in Figures 9 and 10, respectively. The values of the correlation coefficient
for each of the developed models are also presented in the cross-plot for easy comparison. A direct
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impression about the precision and quality of the developed models can be easily inferred from the
distribution and the alignment of the data points in the cross-plots.

Figure 9. Correlation cross-plot between the measured and estimated MMEC for all developed models
using the training set of data.

Figure 10. Correlation cross-plot between the measured and estimated MMEC for all developed models
using the testing set of data.

4.3. Superiority of the Present Models as Compared to the Existing Models in the Literature

The generalization and predictive strength of the present models are compared with the existing
models using mean absolute error and root-mean-square error metrics. The comparison between the
performance of the present and existing models that employ the ionic radii and the concentrations of
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dopants as descriptors is presented in Figure 11 on the basis of the mean absolute error, while Figure 12
presents the same finding using the root-mean-square error as the performance measuring parameter.

Figure 11. Comparison between the present and existing ionic radii-based models using the mean
absolute error metric.

Figure 12. Comparison between the present and existing ionic radii-based models using the
root-mean-square error metric.

The developed GSA-SVR-radii model performs better than the existing GA-SVR-ionic model [38]
with a performance improvement of 28.85% as can be observed from Figure 11. The developed
GSA-SVR-radii model also performs better than the developed ELM-GS-radii model with a performance
of 58.86%. The superior performance demonstrated by the developed GSA-SVR-radii model can
be attributed to the uniqueness of the Newtonian-based optimization algorithm in effectively
selecting optimum hyperparameters of the SVR algorithm. Following a similar trend, the developed
GSA-SVR-radii model performs better than the existing GA-SVR-ionic model [38] and the present
ELM-GS-radii model with a performance improvement of 27.09% and 40.85%, respectively, on the
basis of RMSE as presented in Figure 12.
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Figures 13 and 14 present the comparison between the present and existing models that employ
crystal lattice distortions as well as the applied magnetic field as the descriptors. The comparison
presented in Figure 13 is based on the mean absolute error, whereas that of Figure 14 is based on the
root-mean-square error. Table 4 also presents the actual values of each of the performance measuring
parameters for the present and existing models.

Figure 13. Comparison between the present and existing crystal lattice distortion-based models using
the mean absolute error metric.

Figure 14. Comparison between the present and existing crystal lattice distortion-based models using
the root-mean-square error metric.

Table 4. Performance comparison between the present and existing models.

GA-SVR_Ionic
(Existing) [38]

GA-SVR-Lattice
(Existing) [38]

GSA-SVR-Radii
(This Work)

GSA-SVR-Crystal
(This Work)

ELM-GS-Radii
(This Work)

ELM-GS-Crystal
(This Work)

MAE (J/Kg K) 0.304311 0.578056 0.216517 0.433503 0.526348 0.50534
RMSE (J/Kg K) 0.590673 0.890676 0.464783 0.619666 0.785806 0.706786
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The developed GSA-SVR-crystal model performs better than the existing GA-SVR-lattice
model [38] with a performance improvement of 33.35% and 38.34% on the basis of MAE and
RMSE, respectively. The developed ELM-GS-crystal model also performs better than the existing
GA-SVR-ionic model with a performance enhancement of 14.39% and 20.65% using MAE and RMSE
as performance measuring parameters, respectively. The observed precision of the developed crystal
lattice distortion-based models over the existing model can be attributed to the strong mathematical
background of the developed models as well as the excellent power of hybridization.

4.4. Investigating the Doping Effect of Fe on the Value of the MMEC of the Pr0.6Ca 0.1Sr 0.3Mn 1-xFexO3
Manganite Compound Using the Developed GSA-SVR-Crystal Model

The influence of Fe dopants on the MMEC of the Pr0.6Ca 0.1Sr 0.3Mn 1-xFexO3 manganite compound
is presented in Table 5. It was observed that an increase in the concentration of Fe lowers the value of
the MMEC. This observation as obtained using the developed GSA-SVR-crystal model conforms to the
experimental observation [70]. The effect of the partial substitution of Fe in the Mn site in the Pr0.6Ca

0.1Sr 0.3Mn 1-xFexO3 manganite compound lowers the value of the MMEC because the incorporation
of Fe particles modifies the Mn/Fe-O distance and Mn-O-Mn angle, which subsequently leads to a
weakening of the double-exchange interaction at the expense of the superexchange interaction [38].

Table 5. Comparison between the results of the developed GSA-SVR-crystal model and the measured
values of the MMEC for different classes of manganite-based compounds.

Doped Manganite-Based
Compounds

Measured
MMEC (J/KgK)

Estimated MMEC Using
GSA-SVR-Crystal (J/KgK) Absolute Error

La0.7Ca0.25Sr0.05MnO3 1.65 [73] 1.5601 0.0899
La0.67Ca0.13 Ba0.2Mn0.9Co 0.1O3 1.93 [74] 1.5141 0.4159

La0.6Bi0.1Sr0.3Mn0.9Cu 0.1O3 3.39 [75] 3.9562 0.5662
La0.8Na0.2Mn0.94Ni 0.06O3 3.70 [76] 4.1572 0.4572

La0.065Nd0.05Ba0.3Mn0.85Cr0.15O3 3.55 [77] 3.1356 0.4144
Pr0.6Ca 0.1Sr 0.3MnO3 3.64 [70] 3.8108 0.1708

Pr0.6Ca 0.1Sr 0.3Mn0.975 Fe0.025O3 3.53 [70] 3.9058 0.3758
Pr0.6Ca 0.1Sr 0.3Mn0.95 Fe0.05O3 3.7 [70] 3.845 0.145

Pr0.6Ca 0.1Sr 0.3Mn0.925 Fe0.075O3 3.12 [70] 3.5018 0.3818

4.5. Implementation of the Developed Model for Determining the Maximum Magnetic Entropy Change of
Different Classes of Doped Manganite

In order to further investigate the generalization and predictive strength of the developed model
in determining the MMEC of manganite-based compounds, the developed GSA-SVR-crystal model
was employed in determining the MMEC of several classes of manganite-based compounds and
the obtained results were compared with the experimental values. The comparison is presented in
Table 5. It is worth mentioning that the developed GSA-SVR-crystal model was only supplied with the
descriptors, whereas the model implements the support vectors that it acquired during the training
phase for its estimation. The results of the developed model agree well with the experimentally
measured values. It has been reported that the experimental values of the MMEC suffer from an
experimental uncertainty of approximately at least 5% [78] and that this may explain deviations of the
results of the developed model from the measured values.

5. Conclusions and Recommendations

This work developed a grid search (GS)-based extreme learning machine (ELM) and hybrid
gravitational search algorithm (GSA)-based support vector regression (SVR) for estimating the
maximum magnetic entropy change (MMEC) of doped manganite-based compounds. The developed
GSA-SVR-radii and ELM-GS-radii models employ ionic radii and concentrations of dopants at a
specific value of an applied magnetic field as descriptors, whereas the developed GSA-SVR-crystal and
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ELM-GS-crystal models utilize the crystal lattice distortions due to the incorporation of dopants into the
crystal lattice structure of the parent manganite compound as well as the value of the applied magnetic
field as descriptors. The developed models perform better than the existing models in the literature
using RMSE and MAE as performance measuring parameters. The better performance of the present
models as compared to the existing models can be attributed to the sound mathematical background
as well as the intrinsic ability of the models to precisely acquire all the intricacies, information and
patterns linking the descriptors with the target. The precision of the developed models offers a green
solution to the known pollutant-based refrigerants and opens up ways by which manganite-based
compounds of the desired maximum magnetic entropy change can be predicted for possible laboratory
fabrication and implementation.
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Sobczak, J.; Dyakonov, K.; Ślawska-Waniewska, A.; et al. Magnetic properties and magnetocaloric effect in
La0.7Sr0.3−xBixMnO3 manganites. J. Alloys Compd. 2015, 640, 433–439. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.chemolab.2017.06.006
http://dx.doi.org/10.1016/j.aca.2018.05.029
http://dx.doi.org/10.1016/j.neucom.2010.11.030
http://dx.doi.org/10.1016/j.physleta.2019.02.036
http://dx.doi.org/10.1016/j.chemolab.2013.09.005
http://dx.doi.org/10.1016/j.asoc.2015.03.009
http://dx.doi.org/10.1016/j.jlp.2018.11.018
http://dx.doi.org/10.1002/prep.201900077
http://dx.doi.org/10.3139/120.110819
http://dx.doi.org/10.1016/j.commatsci.2017.05.047
http://dx.doi.org/10.1016/j.neucom.2007.02.009
http://dx.doi.org/10.3233/JIFS-171979
http://dx.doi.org/10.1016/j.ceramint.2018.04.075
http://dx.doi.org/10.1016/j.jmmm.2010.09.020
http://dx.doi.org/10.1016/j.jallcom.2015.03.126


Crystals 2020, 10, 310 21 of 22

55. Arun, B.; Athira, M.; Akshay, V.R.; Sudakshina, B.; Mutta, G.R.; Vasundhara, M. Investigation on the structural,
magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1−xSrxMnO3−δmanganites.
J. Magn. Magn. Mater. 2018, 448, 322–331. [CrossRef]

56. Saleh, J.A.; Sarsari, I.A.; Kameli, P.; Salamati, H. Influence of Al-doping on the structural, magnetic, and
electrical properties of La0.8Ba0.2Mn1−xAlxO3(0 ≤ x ≤ 0.25) manganites. J. Magn. Magn. Mater. 2018, 465,
339–347. [CrossRef]

57. Choudhary, Y.; Mangavati, S.; Patil, S.; Rao, A.; Nagaraja, B.; Thomas, R.; Okram, G.; Kini, S.G.
Effect of rare-earth substitution at La-site on structural, electrical and thermoelectric properties of
La0.7−xRExSr0.3MnO3 compounds (x = 0, 0.2, 0.3; RE = Eu, Gd, Y). J. Magn. Magn. Mater. 2018, 451, 110–120.
[CrossRef]

58. Liu, Z.; Lin, W.; Zhou, K.; Yan, J. Effect of Cu doping on the structural, magnetic and magnetocaloric
properties of La0.7Sr0.25Na0.05Mn1−xCuxO3 manganites. Ceram. Int. 2018, 44, 2797–2802. [CrossRef]

59. Ben Khlifa, H.; Othmani, S.; Chaaba, I.; Tarhouni, S.; Cheikhrouhou-Koubaa, W.; Koubaa, M.;
Cheikhrouhou, A.; Hlil, E. Effect of K-doping on the structural, magnetic and magnetocaloric properties of
Pr0.8Na0.2–K MnO3 (0 ≤ x ≤ 0.15) manganites. J. Alloys Compd. 2016, 680, 388–396. [CrossRef]

60. Iqbal, M.; Khan, M.N.; Khan, A.A. Structural, magnetic, magnetocaloric and critical behavior studies in
the vicinity of the paramagnetic to ferromagnetic phase transition temperature in LaMnO3+δcompound.
J. Magn. Magn. Mater. 2018, 465, 670–677. [CrossRef]

61. Snini, K.; Ben Jemaa, F.; Mohamed, E.; Hlil, E. Structural, magnetic and magnetocaloric investigations
in Pr0.67Ba0.22Sr0.11Mn1-xFexO3 (0 ≤ x ≤ 0.15) manganite oxide. J. Alloys Compd. 2018, 739, 948–954.
[CrossRef]

62. Tejaswini, B.P.; Daivajna, M.D. Thrupthi Structural, electrical, magnetic and thermal properties of
Pr0.8-xDyxSr0.2MnO3 with (x = 0, 0.2 and 0.25). J. Alloys Compd. 2018, 741, 97–105. [CrossRef]

63. Hira, U.; Sher, F. Structural, magnetic and high-temperature thermoelectric properties of
La0.4Bi0.4Ca0.2Mn1−Co O3 (0 ≤ x ≤ 0.3) perovskites. J. Magn. Magn. Mater. 2018, 452, 64–72. [CrossRef]

64. Elyana, E.; Mohamed, Z.; Kamil, S.; Supardan, S.; Chen, S.; Yahya, A. Revival of ferromagnetic behavior in
charge-ordered Pr0.75Na0.25MnO3 manganite by ruthenium doping at Mn site and its MR effect. J. Solid
State Chem. 2018, 258, 191–200. [CrossRef]

65. Ghodhbane, S.; Tka, E.; Dhahri, J.; Hlil, E. A large magnetic entropy change near room temperature in
La0.8Ba0.1Ca0.1Mn0.97Fe0.03O3 perovskite. J. Alloys Compd. 2014, 600, 172–177. [CrossRef]

66. Selmi, A.; M’Nassri, R.; Cheikhrouhou-Koubaa, W.; Boudjada, N.C.; Cheikhrouhou, A. Influence of transition
metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites.
Ceram. Int. 2015, 41, 10177–10184. [CrossRef]

67. Wang, Z.; Jiang, J. Magnetic entropy change in perovskite manganites La0.7A0.3MnO3
La0.7A0.3Mn0.9Cr0.1O3 (A = Sr, Ba, Pb) and Banerjee criteria on phase transition. Solid State Sci. 2013, 18,
36–41. [CrossRef]

68. Selmi, A.; M’Nassri, R.; Cheikhrouhou-Koubaa, W.; Boudjada, N.C.; Cheikhrouhou, A. The effect of Co
doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−xCoxO3 manganites. Ceram. Int.
2015, 41, 7723–7728. [CrossRef]

69. Oumezzine, E.; Hcini, S.; Hlil, E.-K.; Dhahri, E.; Oumezzine, M. Effect of Ni-doping on structural, magnetic
and magnetocaloric properties of La 0.6 Pr 0.1 Ba 0.3 Mn 1− x Ni x O 3 nanocrystalline manganites synthesized
by Pechini sol–gel method. J. Alloys Compd. 2014, 615, 553–560. [CrossRef]

70. Mahjoub, S.; Baazaoui, M.; M’Nassri, R.; Rahmouni, H.; Boudjada, N.C.; Oumezzine, M. Effect of iron
substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1−xFexO3
(0 ≤ x ≤ 0.075) manganites. J. Alloys Compd. 2014, 608, 191–196. [CrossRef]

71. Mleiki, A.; Othmani, S.; Cheikhrouhou-Koubaa, W.; Koubaa, A.; Cheikhrouhou, A.; Hlil, E.K. Effect of
praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55Sr0.45MnO3
manganite. J. Alloys Compd. 2015, 645, 559–565. [CrossRef]

72. Kossi, S.E.; Ghodhbane, S.; Dhahri, J.; Hlil, E.K. The impact of disorder on magnetocaloric properties in
Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1-x)TixO3 (0≤x ≤0.2). J. Magn. Magn. Mater. 2015, 395,
134–142. [CrossRef]

http://dx.doi.org/10.1016/j.jmmm.2017.06.105
http://dx.doi.org/10.1016/j.jmmm.2018.06.014
http://dx.doi.org/10.1016/j.jmmm.2017.11.007
http://dx.doi.org/10.1016/j.ceramint.2017.11.021
http://dx.doi.org/10.1016/j.jallcom.2016.04.138
http://dx.doi.org/10.1016/j.jmmm.2018.06.026
http://dx.doi.org/10.1016/j.jallcom.2017.12.309
http://dx.doi.org/10.1016/j.jallcom.2018.01.075
http://dx.doi.org/10.1016/j.jmmm.2017.12.038
http://dx.doi.org/10.1016/j.jssc.2017.10.007
http://dx.doi.org/10.1016/j.jallcom.2014.02.096
http://dx.doi.org/10.1016/j.ceramint.2015.04.123
http://dx.doi.org/10.1016/j.solidstatesciences.2012.12.020
http://dx.doi.org/10.1016/j.ceramint.2015.02.103
http://dx.doi.org/10.1016/j.jallcom.2014.07.001
http://dx.doi.org/10.1016/j.jallcom.2014.04.125
http://dx.doi.org/10.1016/j.jallcom.2015.05.043
http://dx.doi.org/10.1016/j.jmmm.2015.07.050


Crystals 2020, 10, 310 22 of 22

73. Taboada-Moreno, C.; Jesús, F.S.-D.; Pedro-García, F.; Cortés-Escobedo, C.; Betancourt-Cantera, J.;
Ramírez-Cardona, M.; Bolarín-Miró, A. Large magnetocaloric effect near to room temperature in Sr doped
La0.7Ca0.3MnO3. J. Magn. Magn. Mater. 2020, 496, 165887. [CrossRef]

74. Xiao, G.; He, W.; Yang, T.; Huang, G.; Wang, T.; Huang, J. Effect of Co-doping on structural, magnetic
and magnetocaloric properties of La 0.67 Ca 0.13 Ba 0.2 Mn 1-x Co x O 3 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1)
manganites. Curr. Appl. Phys. 2019, 19, 424–435. [CrossRef]

75. Bouzaiene, E.; Dhahri, A.; Dhahri, J.; Hlil, E.; Bajahzar, A. Effect of A-site-substitution on structural, magnetic
and magnetocaloric properties in La0.7Sr0.3 Mn0.9Cu0.1O3 manganite. J. Magn. Magn. Mater. 2019, 491,
165540. [CrossRef]

76. Hassayoun, O.; Baazaoui, M.; Laouyenne, M.; Hosni, F.; Hlil, E.; Oumezzine, M.; Farah, K. Magnetocaloric
effect and electron paramagnetic resonance studies of the transition from ferromagnetic to paramagnetic in
La0.8Na0.2Mn1-xNixO3 (0≤x≤0.06). J. Phys. Chem. Solids 2019, 135, 109058. [CrossRef]

77. Mahjoub, S.; M’Nassri, R.; Baazaoui, M.; Hlil, E.; Oumezzine, M. Tuning magnetic and magnetocaloric
properties around room temperature via chromium substitution in La0.65Nd0.05Ba0.3MnO3 system. J. Magn.
Magn. Mater. 2019, 481, 29–38. [CrossRef]

78. Pecharsky, V.K.; Gschneidner, K.A. Magnetocaloric effect from indirect measurements: Magnetization and
heat capacity. J. Appl. Phys. 1999, 565. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmmm.2019.165887
http://dx.doi.org/10.1016/j.cap.2019.01.011
http://dx.doi.org/10.1016/j.jmmm.2019.165540
http://dx.doi.org/10.1016/j.jpcs.2019.06.006
http://dx.doi.org/10.1016/j.jmmm.2019.02.049
http://dx.doi.org/10.1063/1.370767
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Formulation of the Proposed Models 
	Description of the Support Vector Regression Algorithm 
	Physical Principles of the Gravitational Search Algorithm 
	Mathematical Background of the Extreme Learning Machine 

	Dataset Description and Computational Implementation of the Proposed Models 
	Dataset Description and Chemical Formula of the Doped Manganite that Can be Incorporated into the Developed Models 
	Computational Hybridization of the Gravitational Search and Support Vector Regression Algorithms 
	Computational Implementation of the Grid Search-Based Extreme Learning Machine 

	Results and Discussion 
	Searching for the Optimum Hyperparameters of the Developed Models 
	Generalization and Predictive Strength Comparison Between the SVR- and ELM-Based Models 
	Superiority of the Present Models as Compared to the Existing Models in the Literature 
	Investigating the Doping Effect of Fe on the Value of the MMEC of the Pr0.6Ca 0.1Sr 0.3Mn 1-xFexO3 Manganite Compound Using the Developed GSA-SVR-Crystal Model 
	Implementation of the Developed Model for Determining the Maximum Magnetic Entropy Change of Different Classes of Doped Manganite 

	Conclusions and Recommendations 
	References

