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Abstract: In this work, structure, optical, and thermoelectric properties of layered ZrS2−xSex single
crystals with selenium composition of x = 0, 1, and 2 were examined. Single crystals of zirconium
dichalcogenides layer compounds were grown by chemical vapor transport method using I2 as
the transport agent. X-ray diffraction (XRD) and high-resolution transmission electron microscope
(HRTEM) results indicated that ZrS2−xSex (x = 0, 1, and 2) were crystalized in hexagonal CdI2

structure with one-layer trigonal (1T) stacking type. X-ray photoelectron and energy dispersive
X-ray measurements revealed oxidation sensitive behavior of the chalcogenides series. Transmittance
and optical absorption showed an indirect optical gap of about 1.78 eV, 1.32 eV, and 1.12 eV for the
ZrS2−xSex with x = 0, 1, and 2, respectively. From the result of thermoelectric experiment, ZrSe2 owns
the highest figure-of merit (ZT) of ~0.085 among the surface-oxidized ZrS2−xSex series layer crystals
at 300 K. The ZT values of the ZrS2−xSex (x = 0, 1, and 2) series also reveal increase with the increase
of Se content owing to the increase of carrier concentration and mobility in the highly Se-incorporated
zirconium dichalcogenides with surface states.
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1. Introduction

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) as MX2 (M = Mo, W, Re and X
= S, Se) [1–5] and III-VI layer compounds as NX (N = Ga, In and X = S, Se) [6–8] have recently received
considerable attentions on their excellent optical and electrical properties available for application in
electronics and optoelectronics devices [9] because their specific characteristics of flexible, large-area,
and ultra-thin, etc. These materials have a proper band gap of 1~2.5 eV (in near infrared to visible
region) [10,11] that suitable for solar-energy applications. Among them, III-VI GaSe and GaS series
showed feasibility for making visible light emitting devices owing to their widened and adjustable
band gaps [10,11]. On the other hand, ZrX2 (X = S, Se) are the group IVB TMDC materials that
crystallized in one-layer trigonal (1T) structure of CdI2 type [12]. These materials also have band gaps
ranging from 1.1 to 2 eV [13,14]. The compounds usually possess high conductivity and contains
defects and surface states in its layer structure. The proper band-gap value and higher conductivity
may also render ZrX2 suitable for electronic and thermoelectric device applications [15–17]. Despite
their TMDC counterparts of MoS2 series undergoing an indirect-to-direct band gap transition in the
monolayer form [18], the ZrX2 series TMDCs may remain in indirect band gap in all thicknesses [19].
The electronic band gaps and optical properties of the layered ZrX2 (X = S, Se) series compounds are
rarely studied up to date.
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In earlier research, the first principle thermoelectric properties of zirconium dichalcogenides was
reported by a number of authors [20,21]; nevertheless, experimental works on thermoelectric properties
of ZrX2 (X = S, Se) have rarely been reported. Some of the 1D nanowire and nanoscale thermoelectric
materials have been claimed to have improved thermo-electronic transport property [22,23]; however,
to date, experimental thermoelectric measurements on the Zr-based ZrS2, ZrSSe, and ZrSe2 layered
TMDCs are seldom found in the literature, in spite of some thermoelectric materials [24–27] having been
reported for power-generation applications. In this paper, the optical and thermoelectric properties of
ZrS2−xSex (x = 0, 1, and 2) were characterized using temperature-dependent transmittance, Raman, and
thermoelectric measurements from low to room temperature. Transmittance and optical absorption
revealed indirect allowed transition of all series ZrS2−xSex (x = 0, 1, and 2) layered crystals. Raman
measurement of ZrS2−xSex (x = 0, 1, and 2) also sustains that the whole series 2D materials are
crystallized in the 1T phase similar to the result of X-ray diffraction (XRD). The Raman mode of A1g is
the prominent peak in the layer plane. Because of surface oxidation, the ZrS2−xSex (x = 0, 1, and 2)
series chalcogenides reveal lower resistivity. From thermoelectric measurement, the ZT value increases
with the Se content is increased in the ZrSe2−xSex (x = 0, 1, and 2) series at room temperature.

2. Materials and Methods

High quality ZrS2−xSex (x = 0, 1, and 2) bulk crystals were grown by chemical vapor transport
(CVT) method using Iodine (I2) as the transport agent [28]. Prior to the growth, synthesis of the starting
material powders of ZrS2−xSex (x = 0, 1, and 2) with stoichiometry were needed. For crystal growth,
the starting material powder together with proper amount of transport agent (10 mg/cm3) were cooled
with liquid nitrogen, and then sealed in a vacuum of ~10−6 Torr inside a quartz ampoule. The growth
temperature was set as 900 ◦C→ 850 ◦C with a gradient of 2.5 ◦C/cm. The growth time kept 280 h
for growing single crystals. After the growth the crystal series essentially exhibited silver-black and
shiny color on their fresh surface. When they are oxidized in ambient (about 8 days in air) ZrS2

becomes silver-yellow color, ZrSSe becomes silver orange, and ZrSe2 becomes silver red. The color
change is maybe caused by free of chalcogen (S, Se) and which substitution by oxygen in the zirconium
compounds. The crystal images are shown in Figure S1 in supporting information (SI) for contrast.
With weakened van der Waals bonding between the layers, thin ZrX2 nanosheets can be mechanically
exfoliated and transferred onto a SiO2/Si substrate (8 × 8 × 0.3 mm3) using Scotch tape for performing
micro-Raman experiment. To avoid surface oxidation in air, the as-grown ZrX2 series crystals and
exfoliated nanosheets (on SiO2/Si) were stored in an evacuated chamber before measurements. Prior to
each of the experiments, the as-grown crystals can be exfoliated again to obtain fresh surface.

For X-ray diffraction (XRD) measurements, several small crystals from each composition of the ZrX2

series were finely ground and the X-ray powder patterns were taken and recorded by means of a slow
moving radiation detector. The copper Kα radiation (1.542 Å) was employed in the X-ray diffraction
measurements, and a silicon standard was used for experimental calibration. The micro-Raman
measurements of the ZrS2, ZrSSe, and ZrSe2 nanosheets were carried out in a RAMaker microscope
spectrometer (ProTrustTech, Tainan, Taiwan) with a 532-nm solid state diode-pumped laser as the
excitation source. An Olympus objective lens (50× or 100×with long working distance) acted as the
interconnection-coupled medium between the nanosheet sample, incident and reflected lights, and a
charge-coupled-device (CCD) spectrometer equipped with one 1200 grooves/mm grating. The power
of the 532-nm laser was controlled at 8 mW and the spot size was ~0.8 µm. A Janis liquid helium
open-circled cryostat equipped (Janis Co., Woburn, MA, USA) with Lakeshore 335 digital thermometer
controller facilitated low-temperature and temperature-dependent measurements.

For transmission measurement of the thin ZrX2 (X = S, Se) samples, a 150 W tungsten halogen
lamp was utilized for the white light source. The white light was dispersed by a Photonics International
(PTI) monochromator (Photonics International, MA, USA) equipped one 600 grooves/mm grating for
providing monochromatic light. The incident light was chopped at 200 Hz, and phase-locked detection
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by using a lock-in amplifier was employed. The transmission light from the layer sample was detected
by a Si detector (E > 1.1 eV) or an InGaAs detector (E = 0.7 to 1.7 eV) in different wavelength range.

For thermoelectric measurement, a stainless-steel plate of 4 × 2 × 0.01 cm−3 covered with thin
insulating tape on its top surface acted as the sample holder. The insulating tape should have much
lower thermal conductivity than the measured sample, to avoid any parasitic heat loss to the substrate.
Gold evaporated film on the insulating tape acted as the heater (R ~ 9 Ω) for the layered samples.
The layered zirconium dichalcogenide crystals were prepared in rectangle shape of bar-type four-point
measurement configuration (size ~0.45 × 0.12 × 0.01 cm3) that available for both resistivity and
thermoelectric measurements. For thermoelectric measurement, one end of the bar-shape ZrX2 sample
was closely attached on the Au-film heater, and a current of ~ 0.4 A was sent. When the sample
temperature is balanced (after seconds), the voltage difference (∆V) and temperature difference (∆T) are
simultaneously measured from the two central probes of the bar-shape ZrX2 sample for the estimation
of Seebeck coefficient and thermal conductivity. A pair of E-type thermocouples was used for sensing
the temperature difference between the two central probes in the thermoelectric-measured sample.
The temperature-dependent thermoelectric measurement was done from 20 to 300 K.

3. Results and Discussion

3.1. Structure and Composition Analysis of ZrS2−xSex (x = 0, 1, and 2) Crystals

Figure 1a shows high-resolution-transmission-electron-microscope (HRTEM) images of ZrS2−xSex

(x = 0, 1, and 2) series crystals. The obvious dotted pattern in selected-area-electron-diffraction (SAED)
pictures that proves all the crystals are high-quality single crystals. From the HRTEM and SAED results,
the lattice constant a can be determined to be 3.651 Å for ZrS2, 3.687 Å for ZrSSe, and 3.769 Å for ZrSe2,
respectively. Essentially, the lattice constant a will be expanded when more Se atoms are incorporated
into the ZrS2−xSex (x = 0, 1, and 2) series crystals. This result is well-matched with those obtained and
calculated from XRD measurement (see Table S1). The XRD results shown in Figure 1b also indicate
that ZrSSe series crystals are mainly crystallized in the 1T-CdI2 layer structure with verification of
the preferred c plane peak indexed as (001) [29]. The lattice constant c measured from XRD can be
determined to be 5.818 Å for ZrS2, 5.980 Å for ZrSSe, and 6.101 Å for ZrSe2, respectively. For the
lattice constant of a axis, the peak indices of (101), (102), (110), (103), (201), (202), and (113) planes
also show gradually increase with the selenium content is increased in the XRD pattern in Figure 1b.
This result reveals lattice dilation of a axis in the ZrS2−xSex lattice from x = 0 to x = 1. The monolayer
of 1T-ZrX2 consists of six hexagonal chalcogen atoms that octahedrally coordinated with one center
metal atom [30]. The obtained lattice constants of ZrS2−xSex (x = 0, 1, and 2) reveal that the lattice
constant a possesses the similar trend as that of c, in which the values are simultaneously increased
with the Se content is increased as displayed in Figure 1c. For ZrX2, the metal atoms are located in the
centre sheet and which is sandwiched by two chalcogen layers to form X-M-X monolayer with strong
covalent bond within the layer plane, and adjacent layers are connected by weak van der Waals force
as displayed in Figure 1d [19,31]. All the structural analysis of HRTEM and XRD in Figure 1 confirmed
that the ZrS2−xSex (x = 0, 1, and 2) series crystals are crystallized in the 1T layered structure.
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Figure 1. (a) High-resolution transmission electron microscope (HRTEM) results,
selected-area-electron-diffraction (SAED), and FFT images of ZrS2, ZrSSe, and ZrSe2. (b) XRD
pattern of ZrS2−xSex (x = 0, 1, and 2). (c) Selenium doping effect on the variation of lattice constants a
and c. (d) Atomic arrangements of layered ZrX2 (X = S, Se) observed from top view and side view.

Energy dispersive X-ray (EDX) spectroscopy is carried out to estimate stoichiometric content of
ZrS2−xSex (x = 0, 1, and 2) series (Figure S2). The x value of chalcogen composition is lower than that
of nominal composition due to the surface oxidation under ambient air condition after eight days.
The ZrSe2 demonstrate color change due to the surface oxidation as evident in Figure S1b,c from black
shiny (fresh surface) to pink red and white color (oxidize surface). It is noticed that even with fresh
surface, the ZrX2 samples in Figure S2 still revealed chalcogen deficiency, the zirconium dangling
bonds can easily oxidize with oxygen in the layer compounds. Thus, the surface states and defects,
like S/Se vacancies or Zr interstitials, still exist in the ZrS2−xSex to affect electrical conduction and
carrier transport properties. These layered semiconductors will become degenerate and high carrier
concentration, and we will evaluate the materials by temperature-dependent resistivity later.

3.2. Raman Spectroscopy

For micro-Raman measurement, the bulk ZrS2−xSex (x = 0, 1, and 2) samples are exfoliated into
thin layers (t < 40 nm, measured by atomic force microscopy) on a commercialized SiO2/Si substrate
(thickness: SiO2~200 nm and Si~300 µm). The ZrX2 thin layers were characterized from 4 to 300 K.
Figure 2a shows the Raman spectra of multilayer ZrS2−xSex (x = 0, 1, and 2) at room temperature,
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and the low temperature Raman spectra at 4 K is also included in Figure 2b, for comparison.
The temperature-dependent Raman spectra of ZrS2, ZrSSe, and ZrSe2 are shown in Figure S3.
The in-plane (Eg) and out-plane (A1g) Raman modes can be detected in these ZrX2 related layer crystals.
At 300 K, ZrS2−xSex (x = 0, 1, and 2) exhibit much broadened peaks compared to those measured at
4 K owing to thermal effect on lattice vibration. An A2u(LO) peak near A1g of ZrS2 is detected which
may be caused by IR mode [32] or by non-harmonic effect of A1g induced by acoustic phonon [33].
Figure 2c shows the representative scheme of vibrated eigen-modes of ZrX2 [32]. ZrS2 reveals three
peaks positioned at 246 ± 2 (Eg), 316 ± 2 (A2u) and 332 ± 2 cm−1 (A1g), as well as IR mode 2Eu at
approximately 680 ± 2 cm−1 at 300 K. Raman spectrum of ZrSSe reveals strong A1g mode at ~214 cm−1

and weak Eg mode at 133 ± 2 cm−1. The longitudinal optical mode Eu appears at 286 ± 2 cm−1.
For ZrSe2, there are three peaks positioned at 126 ± 2 (Eg), 191 ± 2 (A1g), and 262 ± 2 cm−1 (Eu) at
300 K. The Raman modes of the ZrS2−xSex (x = 0, 1, and 2) series show frequency-reduction behavior
with the increase of Se content. The heavier selenium atom causes the vibration peak shifted to lower
wavenumber for identification of Se doping effect. Figure 2d shows the Raman shift of A1g mode
as the function of temperature from 4 to 300 K. The variation mode follows a linear dependence of
energy reduction when the temperature is increased. This behavior may be attributed to the lattice
dilation of ZrS2−xSex (x = 0, 1, and 2) at room temperature to decrease lattice vibration frequency [34].
The temperature-dependent Raman spectra of ZrS2−xSex series are also shown in Figure S3 for detailed
comparison of the modes’ shift with temperature.
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measured transmittance by examining the spectral dependence of reflectance [35]. The transmittance 
spectra of ZrS2−xSex (x = 0, 1, and 2) crystals measured at 300 K were shown in Figure 3a. The 
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Figure 2. Raman spectra of ZrS2−xSex (x = 0, 1, and 2) at (a) 300 K and (b) 4 K. (c) The illustration of
atomic movements of vibrational modes. (d) Raman frequency of A1g mode as a function of temperature
in ZrS2−xSex (x = 0, 1, and 2).
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3.3. Optical Band Gap and Valence-Band Structure

To further characterize the ZrS2−xSex (x = 0, 1, and 2) series, transmittance measurement and
X-ray photoelectron spectroscopy (XPS) are carried out. The transmittance measurement is very useful
to evaluate optical absorption near band-edge portion [35]. The transmittance spectrum needs to
be measured at near-normal incidence, and the absorption coefficient should be determined from
measured transmittance by examining the spectral dependence of reflectance [35]. The transmittance
spectra of ZrS2−xSex (x = 0, 1, and 2) crystals measured at 300 K were shown in Figure 3a. The thickness
of the crystal was controlled to be ~6 µm to ~10 µm measured by atomic force microscopy. Essentially,
bulk ZrX2 series crystals were mechanically exfoliated to µm scale to obtain fresh surface using Scotch
tape. It is noticed that even a little oxide (ZrO2) still existed on the surface of ZrS2; the band gap of
ZrO2 (~5 eV) is usually larger than ZrS2, similar to that of Ga2O3 [36] > Ga2S3 [37] and In2O3 [38] >

In2S3 [39]. There is no light-shielding effect from the surface oxide on ZrX2 when doing transmittance.
The related band-edge value of ZrX2 could be obtained by analyzing the photon (Eg) and phonon (Ep)
energies expressed by αhν = (hν − Eg + Ep)2/[exp(Ep/kT) − 1] + (hν − Eg − Ep)2/[1 − exp(−Ep/kT)] for
assisting an indirect transition of absorption and emission of a phonon in the optical process. The plot
of (αhν)1/2 versus hν for the analysis of indirect gaps are shown in Figure 3b. The indirect band edge
Eg of each crystal is 1.78 eV for ZrS2, 1.32 eV for ZrSSe, and 1.12 eV for ZrSe2 at 300 K. These values are
in agreement with previous result reported for ZrS2 and ZrSSe [40]. The obtained phonon energies
from the linear fits of (αhν)1/2 versus hν [41] are Ep = 40 ± 10 meV for all the ZrS2−xSex (x = 0, 1, and 2)
series. The variation of indirect band edge indicated the doping effect of selenium content in pure
ZrS2 would cause the band-edge position shifting to lower energy with increasing Se content. This
situation resembled the gradual lattice constant change with respect to the increasing of selenium
composition obtained by XRD and HRTEM measurements. The XPS spectra in Figure 3c show the main
valence-band structure of ZrS2−xSex (x = 0, 1, and 2 with fresh surface) is coming from Zr 4d hybrid
with chalcogen p orbital. According to the electron configuration, transition metal Zr d electrons used
to have bonding with chalcogen S/Se, which forms Zr4+ (d0s0) configuration connected to 2·(S/Se)2−

(s2p6) [42]. For octahedral coordination, the d orbitals will split into two sets of energies due to the
trigonal distortion and ligand field. The higher energy set comes from dz

2 symmetry and lower energy
set comes from dxz, dyz, dxy symmetry [43]. For group IVB TMDC materials, especially for the ZrS2−xSex

(x = 0, 1, and 2) series, the dz
2 set is vacant and forms the lowest conduction band. The complete set of

XPS spectra were also measured and displayed in Figure S4 for comparison. The energies of Zr 3d, S 2p,
and Se 3d orbitals show redshift as the Se content is increased in the ZrS2−xSex (x = 0, 1, and 2) series. It
also verifies a little oxygen-incorporation effect in the ZrS2−xSex (x = 0, 1, and 2) series layer crystals.
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3.4. Transport and Thermoelectric Properties

For the characterization of electrical and thermoelectric properties of ZrS2−xSex (x = 0, 1, and 2)
series layer crystals, temperature-dependent resistivity and thermoelectric measurements from 20 to
300 K were carried out. Since many researchers have claimed that ZrX2 (X = S, Se) series displayed
good thermoelectric properties, we measured the experimental result and compared with previous
theoretical results [44,45] herein. The layered samples of ZrS2−xSex (x = 0, 1, and 2) crystals with
dimension about 0.45 × 0.12 × 0.01 cm3 were prepared. Because the existence of defects, surface states,
surface oxide (i.e., ZrX2−xOx, x = 0 to 2), etc., room-temperature resistivity and Hall-effect measurements
of ZrS2−xSex (x = 0, 1, and 2) were also done to identify their electrical property. The results are listed in
Table S2, for comparison. The carrier type of all the ZrX2 series was n type, and carrier concentrations
were determined to be 4.05 × 1017 cm−3 for ZrS2, 1.6 × 1018 cm−3 for ZrSSe, and 2.9 × 1018 cm−3 for
ZrSe2, respectively. The high carrier concentration also renders lower resistivity of 0.25 Ω-cm for
ZrS2, 0.0211 Ω-cm for ZrSSe, and 0.0058 Ω-cm for ZrSe2, respectively. Figure 4a shows temperature
dependent resistivity of ZrS2−xSex (x = 0, 1, and 2) series as a function of reciprocal temperature. The
series shows metallic carrier-conduction behavior due to the increasing resistivity as the temperature
increased. The lower resistivity of the ZrS2−xSex (x = 0, 1, and 2) series may come from heavily doping
from defects, like chalcogen vacancies or native impurities, i.e., surface oxidation states in air (or from
environment water vapor) [46], which cause the material to behave like a degenerate semiconductor,
as the band scheme shown in the inset of Figure 4d. Dissimilar to the other 2D materials, like MoS2

and MoSe2, ZrS2−xSex (x = 0, 1, and 2) series exhibits relatively low resistivity owing to the surface
states. The sign of Seebeck coefficient (S = −∆V/∆T) indicates all three ZrX2 compounds are n-type
semiconductor as shown in Figure 4b. The carrier type is similar to that determined by Hall-effect
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measurement. The resistivity values of ZrS2−xSex (x = 0, 1, and 2) in Table S2 reveal reduction with
the increase of Se content owing to the increased mobility and carrier concentration obtained by Hall
measurement. This property may result in reduction of Seebeck coefficient of the high Se compound as
displayed in Figure 4b. The Seebeck coefficient of ZrSe2 is about −50 µV/K at 300 K. The magnitude of
S value is close to a previous ZrS3−3xSe3x compound [47]. The efficiency of a thermoelectric material
is determined by a dimensionless figure of merit (ZT) defined as ZT = S2

·T/(ρ·κ), where ρ, T, and κ,
are electrical resistivity, absolute temperature, and thermal conductivity. Thermal conductivity κ can
be calculated from the heating power and temperature difference ∆T from the sample geometry as
P = κ·(w·t/l)·∆T, where w is width, t is thickness, and l is length, respectively. The ZT is an index
of efficient thermoelectric material, but ZT value is inversely proportional to thermal conductivity
κ [48,49]. Figure 4d shows the ZT values of the ZrS2−xSex series from 20 to 300 K. The ZT values of all
samples increase when the temperature is increased, while thermal conductivity κ decreases when the
temperature is raised (see Figure 4c). At 300 K, the highest ZT value of 0.085 was achieved by ZrSe2,
followed by ZrSSe of ZT = 0.06 and ZrS2 of ZT = 0.02, respectively. When the Se content increases, the
mobility and electron concentration are also increased to promote thermoelectric performance in the
ZrS2−xSex (x = 0, 1, and 2) series. The carrier concentration of ZrSe2 is close to ~1019 cm−3 in Table S2.
The concentration value was claimed to be an optimum carrier density for achieving optimal ZT in
the thermoelectric materials [50]. ZrSe2 is therefore shows the best thermoelectric performance in the
ZrS2−xSex (x = 0, 1, and 2) series layered TMDCs.
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4. Conclusions

In conclusion, ZrS2−xSex (x = 0, 1, and 2) crystals were successfully grown by CVT method. The
structural, optical, and thermoelectric properties of the compounds were characterized. The HRTEM
image, SAED, and XRD results confirmed the 1T-CdI2 structure. The ZrS2−xSex (x = 0, 1, and 2) series
revealed an indirect band gap positioned at 1.78 eV, 1.32 eV, and 1.12 eV, respectively. The energy
gap varies accordingly with Se composition change, which indicates the similar electronic and band
structures of the layered ZrX2 (X = S, Se). A few layers of Raman spectra of ZrS2−xSex (x = 0, 1, and
2) were observed from 4 to 300 K. The frequencies of vibration modes decreased with the increase
of Se content due to the heavier atomic weight of Se. All the layered ZrS2−xSex reveal chalcogen
deficiency and existing native oxide (ZrX2−xOx) and surface states on their surface to render lower
resistivity compared to the other 2D wide-gap TMDCs. Temperature-dependent resistivity shows
degenerate semiconductor behavior of all ZrS2−xSex layer compounds, with ZrSe2 possessing the
lowest resistivity. Along with Hall-effect measurement, ZrSe2 also shows higher mobility and higher
electron concentration to promote carrier transport and thermoelectric performance in the layered
ZrS2−xSex. At 300 K, the ZT is increased, and κ is decreased, with the increase of the Se content. An
experimental value of ZT ≈ 0.085 is obtained for ZrSe2 owing its enhanced mobility and optimal carrier
concentration in the ZrS2−xSex (x = 0, 1, and 2) series layered crystals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/4/327/s1,
Figure S1: Crystal morphology of c-plane layered ZrS2−xSex (x = 0, 1, and 2). Figure S2: Energy Dispersive X-ray
(EDX) analysis of ZrS2−xSex (x = 0, 1, and 2). Figure S3: Temperature-dependent Raman spectra of ZrS2, ZrSe2,
and ZrSSe. Figure S4: The XPS spectra of (a) Zr 3d3/2 and Zr 3d 5/2, (b) S 2p3/2 and S 2p1/2, and (c) Se 3d5/2 and Se
3d3/2 in ZrS2−xSex (x = 0, 1, and 2). Table S1: The comparison of lattice constants of ZrS2−xSex obtained by XRD
and TEM measurements. Table S2: Resistivity and Hall measurement results at 300 K.
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