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Abstract: A new synthetic urine was adopted in this work to study the nucleation kinetics of calcium
oxalate using a batch crystallizer for various supersaturations at 37 ◦C. In the studied new synthetic
urine, three additional components (urea, uric acid and creatinine) within the normal physiological
ranges were added to the commonly-used synthetic urine to simulate human urine more closely.
The interfacial energy for the nucleation of calcium oxalate was determined based on classical
nucleation theory using the turbidity induction time measurements. The effects of various inhibitors,
including magnesium, citrate, hydroxycitrate, chondroitin sulfate, and phytate, on the nucleation
of calcium oxalate were investigated in detail. Scanning electron microscopy was used to examine
the influences of these inhibitors on the preferential nucleation of the different hydrates of calcium
oxalate crystals.
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1. Introduction

Renal lithiasis is a common health problem and affects about 10% of the global population [1].
Although renal stones are composed of organic and inorganic biomineral matrices, calcium oxalate
(CaOx) is the most common crystalline composition found in clinical stone formation [2]. Three hydrates
can be formed by CaOx crystallization, including the thermodynamically stable monoclinic
monohydrate (COM) [3], the metastable tetragonal dihydrate (COD) [4] and the thermodynamically
unstable triclinic trihydrate (COT) [5]. As COM has the strongest affinity for renal tubule cell membranes
among the three hydrates, COM more easily forms urinary stones than COT or COD [6].

Many inorganic and organic substances—e.g., magnesium, citrate, hydroxycitrate, chondroitin
sulfate, phytate, etc.—are known to inhibit stone formation, while low urine volume, calcium, oxalate
and urate can promote stone formation [7–12]. A deficiency of inhibitors in the urine can facilitate
stone formation. As storing real urine is difficult and real urine generally does not meet the dosage test
requirements, a number of synthetic urines which are different in their compositions and concentrations
have been adopted in the study of renal stone formation. However, the relative importance of
inhibitors in renal stone formation remains unclear due to the wide variety of urine adopted in the test
systems [13–22].

The induction time in a crystallization system is defined as the time between the creation of the
supersaturation and the appearance of detectable nuclei. The nucleation rate is generally reported
to be inversely proportional to the induction time in the nucleation process [23]. The synthetic urine
adopted in some previous research [21,22] is modified in this work to study the effects of various
inhibitors, including magnesium, citrate, hydroxycitrate, chondroitin sulfate, and phytate, on the
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nucleation of CaOx based on the induction time data using a batch crystallizer. The solution conditions
are controlled to simulate real physiological conditions. In addition, scanning electron microscopy
(SEM) is used to identify the different hydrates of calcium oxalate crystals and hence examine the
influences of the inhibitors on the preferential nucleation of the different hydrates.

2. Experimental

The experimental apparatus consisted of a 250 mL crystallizer immersed in a programmable
thermostatic water bath, as shown in Figure 1. The crystallizer was equipped with a magnetic stirrer
with a constant stirring rate of 350 rpm. Chemicals of analytical reagent grade purity were dissolved in
the deionized water to prepare the desired solutions. The solutions were filtered through 0.45 µm pore
filters before use.
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Figure 1. Schematic diagram of the experimental apparatus: (1) 250 mL crystallizer; (2) magnetic 
stirrer; (3) constant temperature water bath; (4) turbidity probe; (5) temperature probe; (6) computer. 

Figure 1. Schematic diagram of the experimental apparatus: (1) 250 mL crystallizer; (2) magnetic stirrer;
(3) constant temperature water bath; (4) turbidity probe; (5) temperature probe; (6) computer.

By comparing various different synthetic urine formulas, Chutipongtanate and Thongboonkerd [24]
suggested a new formula for in vitro cellular study (see Table S1 in Supplementary Materials). In this
work, three additional components (urea, uric acid and creatinine) within the normal physiological
ranges suggested by Chutipongtanate and Thongboonkerd [24] were added to the synthetic urine
adopted by Robertson and Scurr [21] and Grases et al. [22] (see Table S2 in Supplementary Materials)
to simulate human urine more closely. The synthetic urine adopted in this work is listed in Table 1.

Table 1. The initial concentrations of all the components in solution 1, solution 2 and solution 3,
respectively, before mixing for the synthetic urine adopted in this study.

Composition Concentration (mM)

Solution 1 (100 mL):
Na2SO4·10H2O 9.67

NH4Cl 43.37
KCl 81.30

CaCl2 5.00

Solution 2 (100 mL):
NaH2PO4·2H2O 7.73

Na2HPO4·12H2O 7.82
NaCl 111.54
Urea 200

Uric acid 1.00
Creatinine 4.00

Solution 3 (3 mL):
Na2C2O4 25.6, 32.4, 40.0, 57.6
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The induction time experiments were performed at 37 ◦C. At the beginning of the experiments,
100 mL of solution 1 and 100 mL of solution 2 were mixed to prepare the synthetic urine for the current
study. Subsequently, 3 mL of solution 3 (sodium oxalate) at the predetermined concentration (25.6 mM,
32.4 mM, 40.0 mM, and 57.6 mM) was added into the 200 mL mixed urine solution to achieve the
desired supersaturation, S, of CaOx. The final concentrations of all the components for the solutions
formed at the point of mixing are listed in Table 2. Fresh solutions were prepared for each experiment.

Table 2. The final concentrations of all the components at the point of mixing for the synthetic urine
adopted in this study.

Composition Concentration (mM)

Na2SO4·10H2O 4.76
NH4Cl 21.36

KCl 40.05
CaCl2 2.46

NaH2PO4·2H2O 3.81
Na2HPO4·12H2O 3.85

NaCl 54.95
Urea 98.52

Uric acid 0.49
Creatinine 1.97
Na2C2O4 0.38, 0.48, 0.59, 0.85

In consideration of the activity values for the calcium and oxalate ions in the urinary solutions,
Finlayson [25] proposed the following relation to determine the supersaturation based on the urinary
ion equilibrium:

S = 3.756 + 6.796×
[
Ca2+

][
Ox2−

]([
Ca2+

]
and

[
Ox2−

]
in mM

)
(1)

As the solubilities for the different hydrates of calcium oxalate are not available in the literature,
the supersaturation calculated from Equation (1) was adopted in this work regardless of the different
hydrates formed in the supersaturated urinary solutions. Thus, S varied with

[
Ox2−

]
while

[
Ca2+

]
was

kept the same at 2.46 mM during the experiments. For example,
[
Ox2−

]
= 0.38 mM leads to S = 10.09

while
[
Ox2−

]
= 0.59 mM leads to S = 13.65.

The desired concentrations of inhibitors, including potassium phytate, sodium chondroitin
sulfate, potassium hydroxycitrate monohydrate, trisodium citrate dihydrate and magnesium sulfate
heptahydrate, were added to solution 2 before mixing. For the final solutions formed at the point of
mixing, the inhibitor concentration, Ci, for magnesium sulfate heptahydrate ranged from 200 ppm
to 1000ppm, Ci for trisodium citrate dihydrate ranged from 200 ppm to 800 ppm, Ci for potassium
hydroxycitrate monohydrate ranged from 100 ppm to 600 pp, Ci for sodium chondroitin sulfate ranged
from 10 ppm to 60 ppm, and Ci for potassium phytate ranged from 0.5 ppm to 1.5 ppm,. Note that
1 ppm = 1 mg/L = 10−3 Kg/m3.

Sodium sulfate decahydrate (Na2SO4·10H2O, purity 99%), calcium chloride anhydrous
(CaCl2, purity 96%), urea (CH4N2O, purity 99%), uric acid (C5H4N4O3, purity >99%), creatinine
(C4H7N3O, purity >99%), sodium oxalate (Na2C2O4, purity >95%) and sodium chondroitin sulfate
(C14H22NNaO15S, purity >95%) were purchased from Acros. Ammonium chloride (NH4Cl, purity
99%), potassium chloride (KCl, purity 99.5%), sodium chloride (NaCl, purity 99.5%), trisodium citrate
dihydrate (Na3C6H5O7·2H2O, purity 99%) and magnesium sulfate heptahydrate (MgSO4·7H2O, purity
100%) were purchased from Showa. Sodium phosphate monobasic dihydrate (NaH2PO4·2H2O, purity
100%) and sodium phosphate dibasic dodecahydrate (Na2HPO4·12H2O, purity >98%) were purchased
from Aencore. Potassium phytate (C6H16O24P6K2, purity >95%) and potassium hydroxycitrate
monohydrate (C6H5K3O8·H2O, purity >95%) were purchased from Sigma (St. Louis, USA).
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A turbidity probe (Crystal Eyes, manufactured by HEL limited, Hertford, UK) was used in the
experiments to measure the induction time for each condition at a constant temperature of 37 ◦C.
The mixed synthetic urine solution was kept at a pH of 6.5 during the induction time measurements,
which is close to the pH value of human urine. At the end of the experiments, the final dried crystals
were examined using SEM (Hitachi, SU8220, Tokyo, Japan) to determine the polymorphic forms of
CaOx crystals.

3. Results and Discussion

The measured induction time data for various supersaturations at 37 ◦C in the solutions without
inhibitors are listed in Table S3 (see Supplementary Materials). The measured induction time data for
S = 13.65 at 37 ◦C in the solutions in the presence of various inhibitors are listed in Tables S4–S8 (see
Supplementary Materials). Each condition was carried out three times to obtain the average induction
time. The nucleation rate based on classical nucleation theory (CNT) is expressed as [23]

J = AJ exp
[
−

16πv2γ3

3kB3T3ln2S

]
(2)

where AJ is the nucleation pre-exponential factor, γ is the interfacial energy, kB is the Boltzmann constant,
S = C

Ceq
is the supersaturation, and v = Mw

ρcNA
is the molecular volume. Note that Mw = 0.146 kg/mol,

ρC = 2200 kg/m3 and v = 1.103× 10−28 m3 for CaOx monohydrate.
For simplicity, the induction time at a constant supersaturation level is often assumed to correspond

to a point at which the total number density of the nuclei has reached a certain value, fN, in the
induction time measurements [26–30]. Thus, one can derive, at the induction time ti,

fN = J ti (3)

where fN depends on the sensitivity of the detector. Equation (3) is consistent with the common method
that the nucleation rate is assumed to be inversely proportional to the induction time, as stated in the
literature [23].

Substituting Equation (2) into Equation (3) yields

ln
(

1
ti

)
= ln

(
AJ

fN

)
−

16πv2γ3

3kB3T3ln2S
(4)

A plot of ln
(

1
ti

)
versus 1

ln2S at a constant temperature should give a straight line, the slope and

intercept of which permit the determination of
AJ
fN

and γ, respectively. If the value of fN is available,
AJ can be determined.

Based on the study of 28 solutions undergoing nucleation, Mersmann and Bartosch [31] concluded
that the minimum detectable volume fraction of nuclei in solution corresponds to fV = 10−4

− 10−3 with
the minimum detectable size of 10− 100 µm. As the intermediate value, fV = 4× 10−4, was adopted at
the detection of the nucleation point for the Lasentec focus beam reflectance measurements reported
by Lindenberg and Mazzotti [32] and for the turbidity measurements reported by Shiau and Lu [28],
this value was also adopted in this study. Based on fV = 4× 10−4 for spherical nuclei with Ld = 10 µm
and kV = π

6 , it leads to fN = 7.64× 1011 m−3 [30].
Figure 2 shows the increase of J

J0
with increasing S for the solutions without inhibitors at 37 ◦C,

where J0 represents the nucleation rate for S = 13.65. Note that J
J0

=
ti,0
ti based on Equation (3),

where ti,0 represents the induction time for S = 13.65. For example, J
J0
= 1.7 for S = 18, and J

J0
= 0.5

for S = 12. Thus, as S increases, J increases due to decreasing ti.
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Figure 2. The increase of J
J0

with increasing S for calcium oxalate without inhibitors at 37 ◦C. The solid
line is a visual guide.

Figure 3 shows the induction time data of ln
(

1
ti

)
versus 1

ln2S for the solutions without inhibitors at

37 ◦C fitted to Equation (4), leading toγ = 22.7 mJ/m2 and
AJ
fN

= 0.336 s−1. Based on fN = 7.64×1011 m−3,

we can obtain AJ = 2.57× 1011 m−3 s−1. This value of γ is consistent with the values reported in the
literature [25,33,34]. Generally, the higher the value of the interfacial energy, the more difficult it is for

the solute to crystallize. It should be noted that γ and
AJ
fN

are determined first without the knowledge
of fN. Consequently, γ is not influenced by the chosen value of fN although AJ needs to be determined
based on fN. For example, if the chosen value of fN is increased by ten times, AJ is increased by ten
times while γ remains unchanged.
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Figure 4 shows the decrease of J
J0

with increasing inhibitor concentration for the solutions in the
presence of magnesium, citrate and hydroxycitrate for S = 13.65 at 37 ◦C. Figure 5 shows the decrease
of J

J0
with increasing inhibitor concentration for the solutions in the presence of chondroitin sulfate

for S = 13.65 at 37 ◦C. Figure 6 shows the decrease of J
J0

with increasing inhibitor concentration for
the solutions in the presence of phytate for S = 13.65 at 37 ◦C. In Figures 4–6, J0 and J represent the
nucleation rate for S = 13.65 without inhibitors and in the presence of inhibitors, respectively.



Crystals 2020, 10, 333 6 of 11

Crystals 2020, 10, x FOR PEER REVIEW 6 of 11 

 

Figure 4 shows the decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the 

presence of magnesium, citrate and hydroxycitrate for 𝑆 = 13.65  at 37 °C. Figure 5 shows the 
decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the presence of chondroitin 

sulfate for 𝑆 = 13.65  at 37 °C. Figure 6 shows the decrease of ௃௃బ  with increasing inhibitor 

concentration for the solutions in the presence of phytate for 𝑆 = 13.65 at 37 °C. In Figures 4−6, 𝐽଴ 
and 𝐽  represent the nucleation rate for 𝑆 = 13.65  without inhibitors and in the presence of 
inhibitors, respectively. 

As compared in Figures 4−6 for 𝑆 = 13.65, the inhibition on nucleation rate of CaOx increases 
in the order magnesium < citrate < hydroxycitrate < chondroitin sulfate < phytate. For example, Figure 
4 shows that the amount of inhibitor required to reach the inhibition of ௃௃బ = 0.2  is 800 ppm 

magnesium, as opposed to 600 ppm citrate or 400 ppm hydroxycitrate. Figure 5 shows that the 
amount of chondroitin sulfate required to reach the inhibition of ௃௃బ = 0.2 is 40 ppm. Figure 6 shows 

that the amount of phytate required to reach the inhibition of ௃௃బ = 0.2 is 1 ppm. Although small 

amounts of phytate can significantly reduce the nucleation rate of CaOx, the ingestion of phytate may 
affect the bioavailability and levels of iron, zinc and calcium in humans [35].  

 

Figure 4. The decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the presence 

of magnesium, citrate and hydroxycitrate for 𝑆 = 13.65 at 37 °C. Solid lines are visual guides. 

 
Figure 5. The decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the presence 

of chondroitin sulfate for 𝑆 = 13.65 at 37 °C. The solid line is a visual guide. 

Figure 4. The decrease of J
J0

with increasing inhibitor concentration for the solutions in the presence of
magnesium, citrate and hydroxycitrate for S = 13.65 at 37 ◦C. Solid lines are visual guides.

Crystals 2020, 10, x FOR PEER REVIEW 6 of 11 

 

Figure 4 shows the decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the 

presence of magnesium, citrate and hydroxycitrate for 𝑆 = 13.65  at 37 °C. Figure 5 shows the 
decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the presence of chondroitin 

sulfate for 𝑆 = 13.65  at 37 °C. Figure 6 shows the decrease of ௃௃బ  with increasing inhibitor 

concentration for the solutions in the presence of phytate for 𝑆 = 13.65 at 37 °C. In Figures 4−6, 𝐽଴ 
and 𝐽  represent the nucleation rate for 𝑆 = 13.65  without inhibitors and in the presence of 
inhibitors, respectively. 

As compared in Figures 4−6 for 𝑆 = 13.65, the inhibition on nucleation rate of CaOx increases 
in the order magnesium < citrate < hydroxycitrate < chondroitin sulfate < phytate. For example, Figure 
4 shows that the amount of inhibitor required to reach the inhibition of ௃௃బ = 0.2  is 800 ppm 

magnesium, as opposed to 600 ppm citrate or 400 ppm hydroxycitrate. Figure 5 shows that the 
amount of chondroitin sulfate required to reach the inhibition of ௃௃బ = 0.2 is 40 ppm. Figure 6 shows 

that the amount of phytate required to reach the inhibition of ௃௃బ = 0.2 is 1 ppm. Although small 

amounts of phytate can significantly reduce the nucleation rate of CaOx, the ingestion of phytate may 
affect the bioavailability and levels of iron, zinc and calcium in humans [35].  

 

Figure 4. The decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the presence 

of magnesium, citrate and hydroxycitrate for 𝑆 = 13.65 at 37 °C. Solid lines are visual guides. 

 
Figure 5. The decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the presence 

of chondroitin sulfate for 𝑆 = 13.65 at 37 °C. The solid line is a visual guide. 

Figure 5. The decrease of J
J0

with increasing inhibitor concentration for the solutions in the presence of
chondroitin sulfate for S = 13.65 at 37 ◦C. The solid line is a visual guide.

Crystals 2020, 10, x FOR PEER REVIEW 7 of 11 

 

 

Figure 6. The decrease of ௃௃బ with increasing inhibitor concentration for the solutions in the presence 

of phytate for 𝑆 = 13.65 at 37 °C. The solid line is a visual guide. 

Figure 7 displays the polymorphic forms of CaOx crystals obtained under various conditions for 𝑆 = 13.65 using SEM. Based on the known morphologies of the different hydrates for CaOx crystals 
shown in Figure 8 [36], COM is formed without inhibitors (Figure 7a) and in the presence of 1000 
ppm magnesium (Figure 7b). Note that, although COM is formed in the presence of 800 ppm citrate 
(Figure 7c), some crystals do not have the COM morphology, and at least one crystal has the COD 
morphology. The presence of 500 ppm hydroxycitrate (Figure 7d) can induce the formation of COT, 
while the presence of 1.5 ppm phytate (Figure 7e) or 20 ppm chondroitin sulfate (Figure 7f) can induce 
the formation of COD. As COM more easily forms urinary stones than COT or COD, hydroxycitrate, 
phytate and chondroitin sulfate can be used to inhibit the formation of COM. 

   

   

(a) (b) 

(c) (d) 

Figure 6. The decrease of J
J0

with increasing inhibitor concentration for the solutions in the presence of
phytate for S = 13.65 at 37 ◦C. The solid line is a visual guide.



Crystals 2020, 10, 333 7 of 11

As compared in Figures 4–6 for S = 13.65, the inhibition on nucleation rate of CaOx increases
in the order magnesium < citrate < hydroxycitrate < chondroitin sulfate < phytate. For example,
Figure 4 shows that the amount of inhibitor required to reach the inhibition of J

J0
= 0.2 is 800 ppm

magnesium, as opposed to 600 ppm citrate or 400 ppm hydroxycitrate. Figure 5 shows that the amount
of chondroitin sulfate required to reach the inhibition of J

J0
= 0.2 is 40 ppm. Figure 6 shows that the

amount of phytate required to reach the inhibition of J
J0
= 0.2 is 1 ppm. Although small amounts of

phytate can significantly reduce the nucleation rate of CaOx, the ingestion of phytate may affect the
bioavailability and levels of iron, zinc and calcium in humans [35].

Figure 7 displays the polymorphic forms of CaOx crystals obtained under various conditions for
S = 13.65 using SEM. Based on the known morphologies of the different hydrates for CaOx crystals
shown in Figure 8 [36], COM is formed without inhibitors (Figure 7a) and in the presence of 1000 ppm
magnesium (Figure 7b). Note that, although COM is formed in the presence of 800 ppm citrate
(Figure 7c), some crystals do not have the COM morphology, and at least one crystal has the COD
morphology. The presence of 500 ppm hydroxycitrate (Figure 7d) can induce the formation of COT,
while the presence of 1.5 ppm phytate (Figure 7e) or 20 ppm chondroitin sulfate (Figure 7f) can induce
the formation of COD. As COM more easily forms urinary stones than COT or COD, hydroxycitrate,
phytate and chondroitin sulfate can be used to inhibit the formation of COM.
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Figure 7. The polymorphic forms of calcium oxalate crystals obtained under various conditions using
scanning electron microscopy (SEM): (a) monoclinic monohydrate (COM) without inhibitors; (b) COM
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trihydrate (COT) in the presence of 500 ppm hydroxycitrate; (e) tetragonal dipyramidal dihydrate
(COD) in the presence of 1.5 ppm phytate; (f) COD in the presence of 20 ppm chondroitin sulfate.
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Figure 8. The morphologies of the different hydrates for CaOx crystals: (a) monoclinic prismatic
monohydrate (COM); (b) tetragonal dipyramidal dihydrate (COD); (c) triclinic trihydrate (COT) [36].

4. Conclusions

Three additional components (urea, uric acid and creatinine) within the normal physiological
ranges were added to the commonly-used synthetic urine to simulate human urine more closely.
The nucleation kinetics of calcium oxalate without inhibitors and in the presence of inhibitors were
compared at 37 ◦C based on CNT using the turbidity induction time data. The results indicated that
COM was formed for supersaturation in the range 10.09 to 18.01 without inhibitors and the solid–liquid
interfacial energy for the formation of COM is 22.7 mJ

m2 based on CNT. The induction times were generally
prolonged in the presence of inhibitors, leading to slower nucleation rates. The inhibition of the
nucleation rate of calcium oxalate for supersaturation of 13.65 increases in the order magnesium <

citrate < hydroxycitrate < chondroitin sulfate < phytate. The influences of these inhibitors on the
preferential nucleation of the different hydrates were examined by SEM. The results indicated that
COM is formed without inhibitors and in the presence of 1000 ppm magnesium or 800 ppm citrate.
The presence of 500 ppm hydroxycitrate can induce the formation of COT, while the presence of
1.5 ppm phytate or 20 ppm chondroitin sulfate can induce the formation of COD. As COM forms
urinary stones more easily than COT or COD, hydroxycitrate, chondroitin sulfate and phytate can be
used to inhibit the formation of COM.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/4/333/s1,
Table S1: The new formula of synthetic urine for in vitro cellular study, adopted by Chutipongtanate and
Thongboonkerd [24]. Table S2: The synthetic urine adopted by Robertson and Scurr [21] and Grases et al. [22].
Table S3: The measured induction time data for the synthetic urine without inhibitors at 37 ◦C. Each condition
was carried out three times to obtain the average induction time. Table S4: The measured induction time data for
the synthetic urine in the presence of magnesium for S = 13.65 at 37 ◦C. Each condition was carried out three times
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to obtain the average induction time. Table S5: The measured induction time data for the synthetic urine in the
presence of citrate for S = 13.65 at 37 ◦C. Each condition was carried out three times to obtain the average induction
time. Table S6: The measured induction time data for the synthetic urine in the presence of hydroxycitrate for
S = 13.65 at 37 ◦C. Each condition was carried out three times to obtain the average induction time. Table S7:
The measured induction time data for the synthetic urine in the presence of chondroitin sulfate for S = 13.65 at
37 ◦C. Each condition was carried out three times to obtain the average induction time. Table S8: The measured
induction time data for the synthetic urine in the presence of phytate for S = 13.65 at 37 ◦C. Each condition was
carried out three times to obtain the average induction time.
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Notation

AJ Nucleation kinetic parameter
(
m−3s−1

)
Ci Concentration of inhibitor (mg/L)
J Nucleation rate

(
m−3s−1

)
fN Minimum detectable number density of nuclei (m−3)

kB Boltzmann constant
(
= 1.38× 10−23 JK−1

)
MW Molar mass

(
kg mol−1

)
NA Avogadro number

(
= 6.02× 1023 mol−1

)
S Supersaturation (−)

T Temperature (K)
ti Induction time (s)
γ Interfacial energy

(
J/m2

)
ρC Crystal density

(
kg/m3

)
v Volume of the solu te molecule (m3)
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