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Abstract: The doping of LiNbO3 with V2+, V3+, V4+ and V5+ as well as Mo3+, Mo4+, Mo5+ and Mo6+

ions is of interest in enhancing its photorefractive properties. In this paper, possible incorporation
mechanisms for these ions in LiNbO3 are modelled, using a new set of interaction potentials fitted to
the oxides VO, V2O3, VO2, V2O5 and to LiMoO2, Li2MoO3, LiMoO3, Li2MoO4.

Keywords: lithium niobate; divalent; trivalent; tetravalent; pentavalent and hexavalent doping;
computer modelling

1. Introduction

Ferroelectric lithium niobate is a material that has been extensively studied because of its
many technological applications, including optical integrated circuits, electro-optical modulators,
optical memories, acoustic filters, high-frequency beam deflectors, frequency converters and
holographic volume storage [1–9], for which holographic volume storage performance is very
important [10–15]. This paper looks at the doping of LiNbO3 with vanadium and molybdenum
ions in different charge states, with the aim of predicting the optimum location of dopants, and charge
compensation mechanisms where needed.

Previous work on vanadium and molybdenum doped lithium niobate has included experimental
studies of how its photorefractive properties are enhanced by doping with molybdenum ions [16,17]
where it is suggested that the Mo6+ ion dopes at the Nb5+ site. Another study looks at LiNbO3 co-doped
with Mg and V, concluding that some of the vanadium dopes at the Nb site in the 5+ charge state,
but that V4+

Li, V3+
Li and V2+

Li defects are also observed [18]. Finally, another recent publication [19]
has looked at the photorefractive response of Zn and Mo co-doped LiNbO3 in the visible region,
and concluded that the presence of Mo6+ ions helps promote fast response and multi-wavelength
holographic storage, which is attributed to their occupation of regular niobium sites in the lattice.

In a Density Functional Theory (DFT) study [20], vanadium doping was modelled, and it was
concluded that vanadium substitutes at the Li+ site as V4+, but that it dopes at the Nb site as a
neutral defect as the Fermi level is increased. In another DFT study [21], molybdenum doping was
modelled and it was concluded that the most stable configuration involves doping at the Nb5+ site,
in agreement with the previously mentioned experimental studies [16,17]. It is noted that in the DFT
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studies, predictions were made on the basis of defect formation energies, as opposed to the solution
energy approach adopted in this paper.

This paper presents a computer modelling study of V2+, V3+, V4+ and V5+ as well as Mo3+, Mo4+,
Mo5+ and Mo6+ doping in LiNbO3 using interatomic potentials. Such calculations enable predictions to
be made of the sites occupied by dopant ions, and the form of charge compensation adopted, if needed.
These calculations provide information about how the defects behave in the material, and how they
influence its properties in the applications mentioned previously. It follows a series of papers by the
authors on LiNbO3 doped with a range of ions [22–27].

2. Materials and Methods

2.1. Interatomic Potentials

The interatomic potentials used in this work consist of Buckingham potentials, supplemented by
an electrostatic term, as given below:

V(ri j) =
qiq j

ri j
+ Ai j exp

(
−ri j

ρi j

)
−Ci jri j

−6 (1)

This expression shows that for each pair of ions it is necessary to determine three parameters:
Aij, ρij and Cij, which are constants for each interaction, qi, qj represent the charges of the ions i and j,
and rij is the interatomic distance. The parameters are determined by empirical fitting, and formal
charges are used for qi and qj. The procedure by which potentials were obtained for LiNbO3 is explained
in the work of Jackson and Valério [22], and the derivation of the potentials for the vanadium and
molybdenum dopants is described in Section 3.1 below. The potentials for LiNbO3 have been the
subject of recent studies on the doping of the structure with rare earth ions [23,24], doping with Sc, Cr,
Fe and In [25], metal co-doping [26] and doping with Hf [27]. These papers show that modelling can
predict the energetically optimal locations of the dopant ions and calculate the energy involved in the
doping process. This paper extends this procedure to the study of V2+, V3+, V4+ and V5+ as well as
Mo3+, Mo4+, Mo5+ and Mo6+ doped lithium niobate, with the aim of establishing the optimal doping
site and charge compensation scheme for both sets of ions.

2.2. Defect Formation Energies

The calculation of defect formation energies is carried out using the Mott–Littleton
approximation [28], in which the crystal is divided into two regions: region I, which contains
the defect, and region II, which extends from the edge of region I to infinity. In region I, the positions
of the ions are adjusted until the resulting force is zero. The radius of region I is selected such
that the forces in region II are relatively weak and the relaxation can be treated according to the
harmonic response to the defect (a dielectric continuum). An interfacial region IIa is introduced to
treat interactions between region I and region II.

3. Results and Discussion

3.1. Derivation of Interatomic Potential Parameters

It was necessary to derive potential parameters for the dopant oxide structures: VO, V2O3, VO2

and V2O5 as well as LiMoO2, Li2MoO3, Li3MoO4 and Li2MoO4. For V2+-O2−, V3+-O2−, V4+-O2− and
V5+-O2− as well as Mo3+-Li+, Mo4+-Li+, Mo5+-Li+, Mo6+-Li+, Mo3+-O2−, Mo4+-O2−, Mo5+-O2− and
Mo6+-O2− interactions, a new set of potentials was derived empirically by fitting to the observed
structures as shown in Table 1. The O2−-O2− potential was obtained by Sanders et al. [29] and uses the
shell model for O [30], which is a representation of ionic polarisability, in which each ion is represented
by a core and a shell, coupled by a harmonic spring, and the Li-O potential was taken from [22]. In all
cases, the dopant-oxide potentials were obtained by fitting to parent oxide structures.
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Table 1. Interionic potentials obtained from a fit to the VO, V2O3, VO2, V2O5, LiMoO2, Li2MoO3,
Li3MoO4 and Li2MoO4 structures.

Interaction Aij(eV) ρij(Å) Cij(Å6 eV)

Licore-Oshell 950.0 0.2610 0.0
Vcore-Oshell 293.240087 0.475181 0.0

Mocore-Licore 573.532325 0.369602 0.0
Mocore-O2−

shell 3003.79 0.3474 0.0
Mocore-Ocore 600.263736 0.328558 0.0

O2−
shell-O2−

shell 22764.0 0.1490 27.88
Harmonic k(eV Å2) ro(Å)
Vcore-Ocore 46.997833 1.942956

Mocore-Ocore 385.638986 2.073074
Species Y(e)
Mocore 3.0 4.0 5.0 6.0
Vcore 2.0 3.0 4.0 5.0
Ocore 0.9
Oshell −2.9

Spring k(Å−2 eV)
Ocore-Ooore 70.0

Table 2 compares experimental and calculated structures of VO [31], V2O3 [32], VO2 [33] and
V2O5 [34] oxides as well as LiMoO2 [35], Li2MoO3 [36], Li3MoO4 [37] and Li2MoO4 [38] lithium
molybdate structures, using the potentials in Table 1. It is seen that the experimental and calculated
lattice parameters differ by less than 1%, confirming that the potentials can be used in further simulations
of defect properties. The calculations were carried at 0 K (the default for the modelling code and used
in most other theoretical studies) and at 293 K for comparison with room temperature results. In this
way, we can see how the structure and energies vary with temperature.

Table 2. Comparison of calculated (calc.) and experimental (expt.) lattice parameters.

Oxide Lattice Parameter Exp. Calc. (0 K) ∆% Calc. (293 K) ∆%

VO a(Å) = b(Å) = c(Å) 4.067800 4.108237 0.99 4.10683 0.98

V2O3 a(Å) = b(Å) = c(Å) 9.393000 9.304757 0.90 9.346331 0.94

VO2
a (Å) = b(Å) 4.556100 4.569483 0.20 4.566212 0.22

c(Å) 2.859800 2.866421 0.23 2.857861 0.07

V2O5

a(Å) 11.971900 11.99652 0.20 12.01247 0.33

b(Å) 4.701700 4.722561 0.44 4.660343 0.88

c(Å) 5.325300 5.355671 0.57 5.371149 0.86

Lithium Molybdates Lattice Parameter Exp. Calc. (0 K) ∆% Calc. (293 K) ∆%

LiMoO2
a(Å) = b(Å) 2.866300 2.880528 0.50 2.887246 0.73

c(Å) 15.474300 15.409390 0.42 15.595024 0.78

Li2MoO3
a(Å) = b(Å) 2.878000 2.854443 0.82 2.859809 0.63

c(Å) 14.91190 15.002886 0.61 15.04632 0.90

Li3MoO4 a(Å) = b(Å) = c(Å) 4.1389 4.107762 0.75 4.106941 0.77

Li2MoO4
a(Å) = b(Å) 14.330000 14.301305 0.20 14.384501 0.38

c(Å) 9.584 9.492067 0.96 9.632413 0.96

3.2. Defect Calculations

In this section, calculated energies for dopant ions in LiNbO3 are reported. The divalent, trivalent,
tetravalent, pentavalent and hexavalent dopants can substitute at Li and Nb sites in the LiNbO3 matrix
with charge compensation taking place in a number of ways. The proposed schemes described in
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the following subsections are written as solid state reactions using the Kroger–Vink notation [39].
This notation appears in the tables in Sections 3.2.1–3.2.5 where the dot/bullet (·) means a net positive
charge and the dash/prime (′) means a net negative charge.

3.2.1. Divalent Dopants

The substitution of the divalent dopant V2+ in the Li+ and Nb5+ host sites requires a
charge-compensating defect, which can involve Li and Nb vacancies, NbLi anti-sites, interstitial
oxygen, self-compensation and oxygen vacancies. The modes of substitution considered for divalent
cations are shown in Table 3.

Table 3. Types of defects considered due to M = V2+ incorporation in LiNbO3.

Site Charge Compensation Reaction

Li+ Lithium Vacancies (i) MO + 2 LiLi → MLi+V′Li+Li2O
Niobium Vacancies (ii) 5MO + 5LiLi+NbNb → 5MLi+V′′′′′Nb + 2.5Li2O+0.5Nb2O5
Oxygen Interstitial (iii) 2MO + 2LiLi → 2MLi+O′′

i +Li2O

Li+ and Nb5+ Self-Compensation (iv) 4MO + 3 LiLi+NbNb → 3MLi+M′′′

Nb + 1.5Li2O+0.5 Nb2O5

Nb5+ Lithium Vacancies
and Anti-site (NbLi)

(v) MO + 2LiLi+NbNb → M′′′

Nb+V′Li + NbLi+Li2O

Anti-site (NbLi) (vi) 4MO + 3LiLi+4NbNb → 4M′′′

Nb+3NbLi+Li2O + LiNbO3
(vii) 4MO + 3LiLi+4NbNb → 4M′′′

Nb+3NbLi + 1.5Li2O+0.5Nb2O5
Oxygen Vacancies (viii) 2MO + 2NbNb+3OO → 2M′′′

Nb+3VO+Nb2O5

The solution energies for the divalent (V2+) dopant with different charge-compensating
mechanisms were evaluated and plotted as a function of the reaction schemes. Based on the lowest
energy value, it seems that the incorporation of a divalent (V2+) ion is energetically favourable at the
lithium and niobium sites, taking into account the first in relation to the c axis. In schemes (i) and (iv),
the energy difference in eV is small at both temperatures in the first neighbours, indicating that it can
be incorporated at the lithium site compensated by a lithium vacancy as well as by self-compensation
as shown in Figure 1. This can be attributed to the similarity between the ionic radius of V2+, which is
0.79 Å, and those of the Li+ site, which varies between 0.59 and 0.74 Å, and the Nb5+ site, which varies
between 0.32 and 0.71 Å [40].
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Figure 1. Bar chart of solution energies vs. solution schemes for divalent dopant (V2+) at the Li and Nb
sites, considering the first neighbours in relation to the c axis.
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3.2.2. Trivalent Dopants

As with the divalent ion V2+, the trivalent V3+ and Mo3+ dopants can be incorporated at the
lithium and niobium sites in the LiNbO3 matrix through various schemes as shown in Tables 4 and 5.
When these ions are substituted at Li and Nb sites, the extra positive charge can, as noted earlier,
be compensated by the creation of vacancies, interstitials, anti-site defects or self-compensation.

Table 4. Types of defects considered due to V3+ incorporation in LiNbO3.

Site Charge Compensation Reaction

Li+ Lithium Vacancies (i) 0.5M2O3+3LiLi → MLi+2V′Li + 1.5Li2O
Niobium Vacancies (ii) 2.5M2O3+5LiLi+2NbNb → 5MLi+2V′′′′′Nb + 2.5Li2O + Nb2O5
Oxygen Interstitial (iii) 0.5M2O3+LiLi → MLi+O′′

i + 0.5Li2O

Li+ and Nb5+ Self-Compensation (iv) M2O3+LiLi+NbNb → MLi+M′′

Nb + 0.5Li2O+0.5 Nb2O5

Nb5+ Oxygen Vacancies (v) 0.5M2O3+NbNb+OO → M′′

Nb+VO + 0.5Nb2O5
Anti-site (NbLi) (vi) M2O3+LiLi+2NbNb → 2M′′

Nb+NbLi+LiNbO3
Lithium Vacancies and

Anti-site (NbLi)
(vii) 0.5M2O3+3LiLi+NbNb →M′′

Nb + 2V′Li+NbLi + 1.5Li2O

Table 5. Types of defects considered due to Mo3+ incorporation in LiNbO3.

Site Charge Compensation Reaction

Li+ Lithium Vacancies (i) LiMoO2+3LiLi → MoLi+2V′Li+2Li2O
Niobium Vacancies (ii) 5LiMoO2+5LiLi+2NbNb → 5MoLi+2V′′′′′Nb+5Li2O + Nb2O5
Oxygen Interstitial (iii) LiMoO2+LiLi →MoLi+O′′

i +Li2O

Li+ and Nb5+ Self-Compensation (iv) 2LiMoO2+2LiLi+NbNb →MoLi+Mo′′Nb + 1.5Li2O+0.5Nb2O5

Nb5+ Oxygen Vacancies (v) LiMoO2+NbNb + OO →Mo′′Nb+VO + 0.5Li2O+0.5Nb2O5
Nb5+ Anti-site (NbLi) (vi) 2LiMoO2+LiLi+2NbNb → 2Mo′′Nb+NbLi + 1.5Li2O+0.5Nb2O5

Nb5+ Lithium Vacancies and
Anti-site (NbLi)

(vii) LiMoO2+3LiLi+NbNb →Mo′′Nb + 2V′Li+NbLi+2Li2O

According to Figures 2 and 3 for the first and second neighbours with respect to the c axis,
the trivalent V3+ and Mo3+ ions prefer to occupy both the Li and Nb sites according to scheme (iv)
which is also observed in other trivalent ions [23–25]. This can be attributed to the similarity between
the ionic radius of V3+ which is 0.64 Å and Mo3+ which is 0.67 Å [40] and that of Li+ and Nb5 +.
The ionic radius of Li+ varies between 0.59 Å and 0.74 Å and Nb5+ varies from 0.32 Å to 0. 66 Å [40].
All these ionic radii are in relation to the coordination sphere with oxygen atoms.Crystals 2020, 10, x FOR PEER REVIEW 6 of 13 
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Figure 2. Bar chart of solution energies vs. solution schemes for trivalent dopant (V3+) at the Li and
Nb sites, considering the first neighbours in relation to the c axis.
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3.2.3. Tetravalent Dopants

Like other divalent and trivalent cations, tetravalent V4+ and M4+ dopant ions can also substitute
at either the Li+ or Nb5+ sites. When these ions substitute at the Li+ and Nb5+ site charge compensation
is required, and various schemes involving vacancies, interstitials, anti-sites and self-compensation are
adopted, as shown in Tables 6 and 7.

Table 6. Types of defects considered due to M = V4+ incorporation in LiNbO3.

Site Charge Compensation Reaction

Li+ Lithium Vacancies (i) MO2+4LiLi →MLi+3V′Li + 2Li2O
Niobium Vacancies (ii) 5MO2+5LiLi+3NbNb → 5MLi+3V′′′′′Nb + 2.5Li2O+1.5Nb2O5
Oxygen Interstitial (iii) 2MO2+2LiLi → 2MLi+3O′′

i +Li2O

Li+ and Nb5+ Self-Compensation (iv) 4MO2+LiLi+3NbNb → MLi+3M′Nb + 0.5Li2O+1.5 Nb2O5

Nb5+ Anti-site (NbLi) (v) 4MO2+LiLi+4NbNb → 4M′Nb+NbLi + 0.5Li2O+1.5Nb2O5
Lithium Vacancies and

Anti-site (NbLi)
(vi) MO2+4LiLi+NbNb → M′Nb+3V′Li+NbLi + 2Li2O

(vii) 2MO2+3LiLi+2NbNb → 2M′Nb+2V′Li+NbLi+Li2O + LiNbO3
(viii) 3MO2+2LiLi+3NbNb → 3M′Nb+V′Li+NbLi+LiNbO3

Oxygen Vacancies (ix) 2MO2+2NbNb+OO → 2M′Nb+VO+Nb2O5

Table 7. Types of defects considered due to M=Mo4+ incorporation in LiNbO3.

Site Charge Compensation Reaction

Li+ Lithium Vacancies (i) Li2MoO3+4LiLi →MoLi+3V′Li + 3Li2O
Niobium Vacancies (ii) 5Li2MoO3+5LiLi+3NbNb → 5MoLi+3V′′′′′Nb + 7.5Li2O+1.5Nb2O5
Oxygen Interstitial (iii) 2Li2MoO3+2LiLi → 2MoLi+3O′′

i +3Li2O

Li+ and Nb5+ Self-Compensation (iv) 4Li2MoO3+LiLi+3NbNb → MoLi+3Mo′Nb + 4.5Li2O+1.5 Nb2O5

Nb5+ Anti-site (NbLi) (v) 4Li2MoO3+LiLi+4NbNb → 4Mo′Nb+NbLi + 4.5Li2O+1.5Nb2O5
Lithium Vacancies

and Anti-site (NbLi)
(vi) Li2MoO3+4LiLi+NbNb → Mo′Nb+3V′Li+NbLi + 3Li2O

(vii) 2Li2MoO3+3LiLi+2NbNb → 2Mo′Nb+NbLi+2V′Li+3Li2O + LiNbO3
(viii) 3Li2MoO3+2LiLi+3NbNb → 3Mo′Nb+NbLi+V′Li+3Li2O + 2LiNbO3

Oxygen Vacancies (ix) 2Li2MoO3+2NbNb+OO → 2Mo′Nb+VO+2Li2o + Nb2O5

The results obtained from these calculations are given in Figures 4 and 5. By inspecting these
figures, it can be seen that the tetravalent cation V4+ prefers to be incorporated at the Li+ and
Nb5+ sites through scheme (iv), while the Mo4+ ion prefers to be incorporated at the niobium site
compensated by an oxygen vacancy according to scheme (ix). Similar to the divalent and trivalent
dopants, this preference is related to the proximity with the ionic radii of Li+ and Nb5+.
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Figure 4. Bar chart of solution energies vs. solution schemes for tetravalent dopant (V4+) at the Li and
Nb sites, considering the first neighbours in relation to the c axis.
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Figure 5. Bar chart of solution energies vs. solution schemes for tetravalent dopant (Mo4+) at the Li
and Nb sites, considering the first neighbours in relation to the c axis.

3.2.4. Pentavalent Dopants

For the pentavalent dopants V5+ and Mo5+, no charge compensation is required for the substitution
at the Nb5+ host site, but it is required when the substitution is at the Li+ host site, as shown in
Tables 8 and 9.

Table 8. Types of defects considered due to M = V5+ incorporation in LiNbO3.

Site Charge Compensation Reaction

Li+ Lithium Vacancies (i) 0.5M2O5+5LiLi →MLi+4V′Li + 2.5Li2O
Niobium Vacancies (ii) 2.5M2O5+5LiLi+5NbNb → 5MLi+4V′′′′′Nb + 2.5Li2O + 2Nb2O5
Oxygen Interstitial (iii) 0.5M2O5+LiLi → MLi+2O′′

i + 0.5Li2O

Nb5+ No Charge Compensation (iv) 0.5M2O5+NbNb → MNb + 0.5Nb2O5

Table 9. Types of defects considered due to Mo5+ incorporation in LiNbO3.

Site Charge Compensation Reaction

Li+ Lithium Vacancies (i) Li3MoO4+5LiLi →MoLi+4V′Li + 4Li2O
Niobium Vacancies (ii) 5Li3MoO4+5LiLi+4NbNb → 5MoLi+4V′′′′′Nb + 10Li2O + 2Nb2O5
Oxygen Interstitial (iii) Li3MoO4+LiLi → MoLi+2O′′

i +2Li2O

Nb5+ No Charge Compensation (iv) Li3MoO4+NbNb → MoNb + 1.5Li2O+0.5Nb2O5

The solution energies for the pentavalent (V5+) and (Mo5+) dopants with different charge
compensation mechanisms were evaluated and plotted as a function of the reaction scheme. Based on
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the lowest energy value, it seems that the incorporation of pentavalent (V5+) and (Mo5+) ions at an Nb
site is energetically more favourable than at an Li site, according to scheme (iv) as shown in Figures 6
and 7 at temperatures 0 K and 293 K. This can be attributed to the similarity between the charge of the
V5+ and Mo5+ ions and the Nb5+ host, which can contribute to a small deformation in the lattice and
consequently a lower solution energy. Experimental results by Kong et al. [17] and Tian et al. [16] show
that substitution occurs at the Nb5+ site.
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Figure 6. Bar chart of solution energies vs. solution schemes for pentavalent dopant (V5+) at the Li and
Nb sites, considering the first neighbours in relation to the c axis.
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Figure 7. Bar chart of solution energies vs. solution schemes for pentavalent dopant (Mo5+) at the Li
and Nb sites, considering the first neighbours in relation to the c axis.

3.2.5. Hexavalent Dopants

For the hexavalent dopant Mo6+, as with the pentavalent ions, there is no self-compensation
mechanism and charge compensation schemes are possible when replacing Li and Nb in the LiNbO3

matrix as shown in Table 10.

Table 10. Types of defects considered due to Mo6+ incorporation in LiNbO3.

Site Charge Compensation Reaction

Li+ Lithium Vacancies (i) Li2MoO4+6LiLi → MoLi+5V′Li+4Li2O
Niobium Vacancies (ii) Li2MoO4+LiLi+NbNb →MoLi+V′′′′′Nb + 1.5Li2O+0.5Nb2O5
Oxygen Interstitial (iii) 2Li2MoO4+2LiLi → 2MoLi+5O′′

i +3Li2O

Nb5+ Lithium Vacancies (iv) Li2MoO4+LiLi+NbNb → MoNb+V′Li + 1.5Li2O+0.5Nb2O5
Niobium Vacancies (v) 5Li2MoO4+6NbNb → 5MoNb+V′′′′′Nb+5Li2O + 3Nb2O5
Oxygen Interstitial (vi) 2Li2MoO4+2NbNb → 2MoNb+O′′

i +2Li2O + Nb2O5

The solution energies for the hexavalent (Mo6+) dopants with different charge-compensation
mechanisms were evaluated and plotted as a function of the reaction scheme. Based on the lowest
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energy value, it seems that the incorporation of hexavalent (Mo6+) ions at an Nb site is energetically
more favourable than at an Li site, according to scheme (iv) as shown in Figure 8 at temperatures 0 K
and 293 K. This can be attributed to the similarity between the ionic radii of Mo6+ ions and the Nb5+

host site (0.32–0.71 Å) [40]. The ionic radii of Mo6+, taking into account the coordination number,
vary between 0.42 and 0.67 Å [40], and the small difference between the Mo6+ dopant ions and Nb5+

ions can contribute to a small deformation in the lattice and consequently a lower solution energy.
This result reveals that global trends of dopant solution energies are controlled by the combination of
dopant ion size [40] and its electrostatic interactions, demonstrating that there is a relation between
the energetically preferred site and the types of defect mechanisms involved in the doping process.
Experimental results from Kong et al. [17] and Zhu et al. [41] show that substitution occurs at the
Nb5+ site.
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Figure 8. Bar chart of solution energies vs. solution schemes for hexavalent dopant (Mo6+) at the Li
and Nb sites, considering the first neighbours in relation to the c axis.

In all cases, the energy involved in doping was obtained by calculating the solution energy,
which includes all terms of the thermodynamic cycle involved in the solution process. For example,
the solution energy, Esol, corresponding to the incorporation of V2+ at the Li+ site (second equation in
Table 3) is given by:

ESol = EDef(5M Li + V′′′′′Nb ) + 2.5ELatt(Li 2 O) + 0.5ELatt(Nb 2O5
)
− 5ELatt(MO) (2)

where the Elatt and EDef terms are lattice energies and defect energy.
All energies were normalised by the number of dopants, i.e., the solution energy is divided by the

number of dopants involved. For example, for scheme (ii) of Table 3, the energy must be divided by
five, since five lithium sites are occupied. This is done because the number of dopants varies for each
mechanism. Lattice energies, Elatt, required to calculate the solution energies are given in Table 11.
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Table 11. Lattice energies used in the solution energy calculations (eV).

Compound Lattice Energy Lattice Energy

0 K 293 K

LiNbO3 −174.45 −174.66

Li2O −33.16 −32.92

Nb2O5 −314.37 −313.39

VO −22.06 −22.07

V2O3 −124.37 −124.39

VO2 −111.54 −111.57

V2O5 −315.65 −274.18

LiMoO2 −98.07 −97.09

Li2MoO3 −150.38 −149.10

Li3MoO4 −181.28 −178.88

Li2MoO4 −234.06 −234.12

3.2.6. Summary of Results for Vanadium and Molybdenum Dopants in LiNbO3

In this sub-section, the results presented in the last five subsections are summarised.
Divalent dopants: the calculations predict that, for V2+, self-compensation (simultaneous doping

at lithium and niobium sites) and doping at the lithium site with lithium vacancy compensation are
most likely. It is noted that V2+

Li defects have been observed experimentally [18].
Trivalent dopants: both V3+ and Mo3+ ions are predicted to self-compensate. Experimental data

from [18] support V3+ doping at the lithium site, as with V2+.
Tetravalent dopants: here, different behaviour is predicted for vanadium and molybdenum.

V4+ is predicted to self-compensate, while Mo4+ is predicted to occupy a niobium site with oxygen
vacancy charge compensation. Again, [18] suggests that V4+ can dope at a lithium site.

Pentavalent dopants: both V5+ and Mo5+ are predicted to dope at the niobium site (no charge
compensation is needed), agreeing with experimental results [16,17].

Hexavalent dopants: Mo6+ is predicted to dope at the niobium site, with charge compensation
by lithium vacancy formation. The occupation of the niobium site is supported by experimental
data [16,17,19].

4. Conclusions

This paper has presented a computational study of VO, V2O3, VO2 and V2O5 as well as LiMoO2,
Li2MoO3, Li3MoO4 and Li2MoO4 structures doped into LiNbO3. New interatomic potential parameters
for VO, V2O3, VO2 and V2O5 as well as LiMoO2, Li2MoO3, Li3MoO4 and Li2MoO4 have been developed.
It was found that divalent (V2+), trivalent (V3+, Mo3+) and tetravalent (V4+) ions are more favourably
incorporated at the Li and Nb sites through the self-compensation mechanism. The tetravalent
(Mo4+) ion is more favourably incorporated at the niobium site, compensated by an oxygen vacancy.
The pentavalent ions (V5+, Mo5+) and hexavalent (Mo6+) ion are more favourably incorporated at
the Nb site, and the lowest energy schemes involve, respectively, no charge compensation, and for
the Mo6+ ion, charge compensation with lithium vacancy. This is shown to be consistent with some
experimental data, although future calculations involving finite V5+ and Mo6+ concentrations will be
carried out to investigate this further.

Finally, to summarise, in this paper we have looked in detail at vanadium and molybdenum
dopants in various charge states in LiNbO3, and through the use of solution energies, identified the
energetically favoured sites and charge compensation mechanisms, while comparing the results with
available experimental and theoretical work in this field.
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