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Abstract: Calcium sulfate scale is a typical deposit on the equipment pieces or pipes of an
industrial water system. Scale inhibitors could obviously reduce the precipitation of calcium
sulfate crystal. The development and research of late-model environmentally friendly polymer
inhibitors are often urgent problems to be addressed. A water-soluble poly(ethylenediaminetetraacetic
acid-diethanolamine) (PEDTA-DEA) was successfully synthesized by thermal polycondensation
of ethylenediaminetetraacetic acid (EDTA) with diethanolamine (DEA). The polymer product was
characterized by Fourier infrared spectrum (FTIR) and the molecular weight was measured by gel
chromatography, which confirms the polymerization of the two monomers. The inhibition effect of
the polymer against calcium sulfate deposition was studied by static scale inhibition tests. When the
Ca2+ concentration is 3000 mg/L, and the dosage of the polymer inhibitor is 10 mg/L, the inhibition
effect exceeds 90%. The results show that PEDTA-DEA can inhibit the precipitation of calcium sulfate
and reduce the deposition of calcium sulfate scale. The precipitate of calcium sulfate collected from
the static scale inhibition test solution was analyzed by FTIR, scanning electron microscope (SEM) and
X-ray diffraction (XRD). The results revealed that the addition of the polymer significantly changes
the calcium sulfate crystal’s growth shape. Therefore, PEDTA-DEA is a potential calcium sulfate
precipitation inhibitor for the industrial water system.
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1. Introduction

Water is often used as the heated fluid in the industrial water system because of its large specific
heat capacity [1–3]. Due to the evaporation of water, scaling ions, such as calcium and magnesium
ions, combine easily with carbonate or sulfate ions [4,5] and then form a low-soluble scale precipitating
on the surface of equipment pieces and pipes. As a result, the equipment pieces and pipes become
severely corroded and blocked by calcium scale and may even burst [6,7]. Calcium carbonate scale can
be easily removed by acid treatment, but once calcium sulfate is formed, removal becomes difficult [8,9].
Therefore, it is necessary to reduce the deposition of calcium sulfate scale in the industrial water system.
Using a scale inhibitor is one of the most effective and straightforward methods [10].

Synthetic water-soluble polymer scale inhibitors are most widely used in industry, including acrylic
polymers [11,12], malefic polymers [13,14], sulfonic acid polymers [15–17] and phosphorus-containing
polymers [18–20]. However, there are also many drawbacks in terms of environmental protection.
For example, some scale inhibitors can cause eutrophication of water, or cannot be biodegraded.
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Environmentally friendly scale inhibitors have been widely researched and developed with the
improvement of public environmental awareness and stricter environmental laws and regulations.
The most commonly applied green scale inhibitors are poly(aspartic acid) and its derivatives [21–23],
as well as polyepoxysuccinic acid and its derivatives [12,24,25]. They are not cost-effective, despite
their environmental friendliness and good scale-inhibition effect. Zhao [26] has developed a kind of
polymer inhibitor synthesized from citric acid as a monomer. The inhibition performance against
CaSO4 scale is excellent. When the dosage of scale inhibitor is 25 mg/L, the scale inhibition rate is
as high as 98.8%. However, the scale inhibition performance for CaCO3 scale is not good enough.
Only when the usage of scale inhibitor reaches 100 mg/L, does the scale inhibition rate reach 87%.
Therefore, the development of an up-to-date, environmentally friendly and cost-effective polymer
scale inhibitor is currently a focus research.

Most of those polymer inhibitors contain the carboxylic acid (-COOH) group which plays an
essential role in the scale inhibition of calcium carbonate and calcium sulfate. In order to obtain the new
type of polymer containing suspended carboxylic groups, the selected monomer should also contain
multiple carboxylic groups. Ethylenediaminetetraacetic acid (EDTA) contains four carboxylic groups
in each of its molecules. It is a non-toxic and harmless compound used as a food additive [27,28],
etc. But EDTA has little scale inhibition against CaSO4 scale and it cannot be used as an inhibitor
directly. According to the report [26], the scale inhibition of small molecules gets worse. However,
it could be increased through polymerizing small molecules to generate a polymer. The carboxylic
acid group can be chemically reacted with the hydroxyl group or amine group to form ester or amide
bonds, respectively. Therefore, as a kind of multi-carboxyl molecule, EDTA could be subjected to
condensation polymerization with diol or diamine to synthesize a high molecular polymer. Calcium
sulfate is a kind of common scale, which often appears in circulating cooling water systems [29],
seawater desalination systems [30–32] and oilfield water injection systems [13,33]. In order to solve
this problem, scale inhibitor has come into being.

In this paper, a new polymer, poly(ethenediaminetetraacetic acid-diethanolamine) (PEDTA-DEA)
was prepared by virtue of polycondensation with EDTA and diethanolamine (DEA) as monomers.
The inhibition of the polymer against calcium sulfate crystal precipitation was further estimated by the
static scale inhibition test and the inhibition performance in different test conditions was evaluated in
simulated industrial water.

2. Materials and Methods

2.1. Materials

The EDTA, DEA, calcium chloride and sodium sulfate used in the experiment are all analytically
pure and were purchased at Shanghai Lingfeng Chemical Reagent Co. Ltd., in China. Commercial
scale inhibitors, hydroxyethylenediphosphonic acid (HEDP), 2-phosphonbutane-1,2,4-tricarboxylic
acid (PBTCA) and polyaspartic acid (PASP, 4000 Da) were provided by the Shanghai Duojia Water
Treatment Company in China and are all industrially pure. All of the reagents were used directly
without further purification.

2.2. Synthesis of Polymer

The typical synthesis process is stated as follows. 2.92 g EDTA and 1.0 mL DEA were placed in
a three-neck, round-bottom flask with a 1:1 molar ratio, with 10 mL of N,N-dimethylformamide as
solvent, and 5 mL phosphoric acid as catalyst dropped into the round-bottom flask. The flask was kept
at 200 ◦C for 2 h. Then the resulting reaction product was solved in deionized water. We adjusted the
pH of the solution to neutral (between 6 and 8) with a 5 mol/L sodium hydroxide solution. At last,
the solution was dialyzed by a dialysis membrane (retaining molecular weight >1000 macromolecules).
The desired product polymer was obtained from the retained solution by rotary evaporation, which was
subsequently dried in vacuum at 50 ◦C for 24 h.
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2.3. Characterization of the Prepared Polymers

Fourier transformation infrared (FTIR) spectra were obtained by attenuated total reflection (ATR)
method on a Spectrum Two spectrometer (FTIR-8400 S, Shimadzu Co. Ltd., Japan). Alongside,
size exclusion chromatography (Agilent 1260, Agilent Ltd., Palo Alto, Santa Clara, CA, USA) was used
to determine the molecular weight of the polymers by using polyethylene glycol as the standard and
deionized water as the fluent phase.

The hydrogen nuclear magnetic resonance (1HNMR) spectra were obtained at ambient temperature
for the reagent solution in the 5-mm-diameter sample tubes on Bruker AVANCE spectrometer
(Bruker Bio Spin GmbH., Baden-Wurttemberg, Germany). The reagent solution was DMSO-d6.
The stability of the polymer was analyzed by thermogravimetric (TG) analysis (NETZSCH STA 449F3,
NETZSCH-Gerätebau GmbH., Selb, Germany). The temperature range for testing was 25–600 ◦C,
and the whole process was carried out in a nitrogen atmosphere. The heating rate was 10 ◦C/min.

2.4. Evaluation of Polymer Inhibition Performance of Precipitation

The scale inhibition performance was evaluated by a static scale inhibition test according to the
Standards for Petroleum and Natural Gas Industry of the People’s Republic of China Q/SY126-2014.
The 50 mL test solution contained 3000 mg/L Ca2+ (made by calcium chloride), 3000 mg/L SO4

2−

(made by sodium sulfate) and a certain amount of the prepared polymer inhibitor. The test solution
was placed in a water bath at 80 ◦C for 10 h. Then the solution was filtered after being cooled to
room temperature. We accurately measured 10.00 mL filtrate, and added two drops of chrome black
T indicator and 1.0 mL ammonia-ammonium chloride buffer solution. The calcium in the solution
was titrated with 0.1 mol/L of ethylenediaminetetraacetie disodium (EDTA-Na) standard solution.
The inhibition ratio was calculated by the following Equation (1).

ηs =
V2 −V1

V0 −V1
× 100% (1)

where V0 is the consumption volume of the EDTA-Na standard solution to titrate the blank solution
without inhibitor. V1 is the consumption volume of the EDTA-Na standard solution to titrate the mixed
solution without inhibitor, kept at 80 ◦C for 10 h. V2 is the consumption volume of the EDTA standard
solution to titrate the mixed solution with inhibitor, kept at 80 ◦C for 10 h.

Similarly, the scale inhibition performance was evaluated according to the national standard of
China numbered GB/T 16632-2008 (named “Determination of Scale-Inhibition Performance of Water
Treatment Agents—Calcium Carbonate Precipitation Method”). There was 240 mg/L Ca2+ (made by
calcium chloride), 732 mg/L HCO3

− (made by sodium bicarbonate) and a certain amount of the prepared
polymer inhibitor contained in the solution. The test solution was placed in a water bath at 80 ◦C for
10 h, and we maintained the initial pH of the solution at 9.0 under borax buffer. Then the solution was
filtered after it was cooled to room temperature. 10.00 mL filtrate was accurately measured, followed
by adding two drops of chrome black T indicator as well as 1.0 mL of ammonia-ammonium chloride
buffer solution. The calcium in the solution was titrated with 0.01 mol/L of ethylenediaminetetraacetie
disodium (EDTA-Na) standard solution. The inhibition ratio was calculated by the Equation (2)
as follows.

ηs =
V2 −V1

V0 −V1
× 100% (2)

where V0 is the consumption volume of the EDTA-Na standard solution to titrate the blank solution
without inhibitor. V1 is the consumption volume of the EDTA-Na standard solution to titrate the
combined solution without inhibitor, kept at 80 ◦C for 10 h. V2 is the consumption volume of the EDTA
standard solution to titrate the mixed solution including inhibitor, kept at 80 ◦C for 10 h.
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2.5. The Morphology of the Calcium Sulfate Crystal Precipitation

Calcium sulfate crystal obtained from the static scale inhibition experiment was sprayed with a
sputter-thin, gold film onto the surface of the precipitation particles. Then the particles were observed
by a scanning electron microscope (SEM) at an accelerating voltage of 15 kV. The X-ray diffraction
(XRD) mode of the calcium sulfate powder was recorded with the aid of copper Kα radiation using a
D8 advanced X-ray diffractometer (Bruker AXS GmbH, Karlsruhe, Germany).

3. Results and Discussion

3.1. Structure of Prepared Polymers

The condensation polymerization may occur between carboxyl groups of EDTA and the hydroxyl
groups or amine groups of DEA (as shown in Figure 1). There are four carboxyl groups in each EDTA
molecule (see Figure 1a), and two hydroxyl groups and one amine group in each DEA molecule
(see Figure 1b). According to chemical principles, an esterification reaction occurs between a carboxyl
group and a hydroxyl group or an amidation reaction occurs between a carboxyl group and an amine
group, catalyzed by acid or base as a catalyst. Thus, EDTA and DEA can be thermally polycondensed
to produce polymers. As mentioned above, the configuration of the polymer is not necessarily a
mono-linear polymerization, but may be branched. The polymer presented in Figure 1 consists of
a plurality of carboxyl groups, and can continue to react to form an ester bond or an amide bond.
In short, there are many carboxyl, ester and amide groups in PEDTA-DEA.

Crystals 2020, 10, x FOR PEER REVIEW 4 of 16 

 

2.5. The Morphology of the Calcium Sulfate Crystal Precipitation 

Calcium sulfate crystal obtained from the static scale inhibition experiment was sprayed with a 
sputter-thin, gold film onto the surface of the precipitation particles. Then the particles were 
observed by a scanning electron microscope (SEM) at an accelerating voltage of 15 kV. The X-ray 
diffraction (XRD) mode of the calcium sulfate powder was recorded with the aid of copper Kα 
radiation using a D8 advanced X-ray diffractometer (Bruker AXS GmbH, Karlsruhe, Germany). 

3. Results and Discussion 

3.1. Structure of Prepared Polymers 

The condensation polymerization may occur between carboxyl groups of EDTA and the 
hydroxyl groups or amine groups of DEA (as shown in Figure 1). There are four carboxyl groups in 
each EDTA molecule (see Figure 1a), and two hydroxyl groups and one amine group in each DEA 
molecule (see Figure 1b). According to chemical principles, an esterification reaction occurs between 
a carboxyl group and a hydroxyl group or an amidation reaction occurs between a carboxyl group 
and an amine group, catalyzed by acid or base as a catalyst. Thus, EDTA and DEA can be thermally 
polycondensed to produce polymers. As mentioned above, the configuration of the polymer is not 
necessarily a mono-linear polymerization, but may be branched. The polymer presented in Figure 1 
consists of a plurality of carboxyl groups, and can continue to react to form an ester bond or an 
amide bond. In short, there are many carboxyl, ester and amide groups in PEDTA-DEA. 

 
Figure 1. Molecular structure of ethylenediaminetetraacetic acid (EDTA) (a), diethanolamine (DEA). 
(b) and possible fragments of poly(ethylenediaminetetraacetic acid-diethanolamine) (PEDTA-DEA) 
(c). 

Infrared spectra of EDTA and DEA are obviously different from the polymer products. In the 
infrared spectrum of EDTA (curve a in Figure 2A), the stretching vibration peaks of -CH2- are 3017 
cm−1 and 1439 cm−1 and the C=O bond in the carboxylic acid group is 1683 cm−1. The peak at 1388 cm−1 
is the C-N bond, 1310 cm−1 is the bending vibration of the C-C bond and 765 cm−1 is the stretching 
vibration peak of the C-O bond in C-OH. In the infrared spectrum of DEA (curve b in Figure 2A), 
3296 cm−1 is the stretching vibration peak of -OH while 2837 cm−1 is the stretching vibration peak of 
-CH2-. -NH- bond vibration peaks are at 1453 cm−1 (in-plane bending) and 861 cm−1 (out-of-plane 
vibration), respectively. The in-plane bending vibration peak of the O-H bond is 1361 cm−1, 1122 cm−1 
is the stretching vibration peak of the C-N bond and 1050 cm−1 is the stretching vibration peak of the 
C-O bond. In the infrared spectrum of the polymer (curve c in Figure 2A), the stretching vibration 
peak of -CH2- is at 2975 cm−1 and 1501 cm−1. The peaks at 1654 cm−1 and 1648 cm−1 are the carbonyl 
groups in the suspension carboxylic -COOH, amide groups R-CO-NR2 and ester groups -CO-O-. 
Moreover, the vibration peak of the C-O bond in the carbonyl group is at 1466 cm−1. 

Figure 1. Molecular structure of ethylenediaminetetraacetic acid (EDTA) (a), diethanolamine (DEA).
(b) and possible fragments of poly(ethylenediaminetetraacetic acid-diethanolamine) (PEDTA-DEA) (c).

Infrared spectra of EDTA and DEA are obviously different from the polymer products. In the
infrared spectrum of EDTA (curve a in Figure 2A), the stretching vibration peaks of -CH2- are 3017 cm−1

and 1439 cm−1 and the C=O bond in the carboxylic acid group is 1683 cm−1. The peak at 1388 cm−1

is the C-N bond, 1310 cm−1 is the bending vibration of the C-C bond and 765 cm−1 is the stretching
vibration peak of the C-O bond in C-OH. In the infrared spectrum of DEA (curve b in Figure 2A),
3296 cm−1 is the stretching vibration peak of -OH while 2837 cm−1 is the stretching vibration peak of
-CH2-. -NH- bond vibration peaks are at 1453 cm−1 (in-plane bending) and 861 cm−1 (out-of-plane
vibration), respectively. The in-plane bending vibration peak of the O-H bond is 1361 cm−1, 1122 cm−1

is the stretching vibration peak of the C-N bond and 1050 cm−1 is the stretching vibration peak of the
C-O bond. In the infrared spectrum of the polymer (curve c in Figure 2A), the stretching vibration peak
of -CH2- is at 2975 cm−1 and 1501 cm−1. The peaks at 1654 cm−1 and 1648 cm−1 are the carbonyl groups
in the suspension carboxylic -COOH, amide groups R-CO-NR2 and ester groups -CO-O-. Moreover,
the vibration peak of the C-O bond in the carbonyl group is at 1466 cm−1.
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Comparing the three infrared spectra in Figure 2A, the newly generated peak at 1397 cm−1 is the
stretching vibration peak of the C-N-C bond and the peak at 1167 cm−1 is the stretching vibration peak
of the C-N in the amide bond (curve c in Figure 2A). Simultaneously, the intensity of the peaks of
-C-O-(H) and -NH- in curve c of Figure 2A are both weaker than that of the peaks in curve a and curve
b of Figure 2A. It can be known these groups will reduce when the polymer is formed, all of which
indicate that the two monomers have successfully transferred into the polymer.

The 1H NMR was recorded on Bruker AVANCE spectrometer (as shown in Figure 2B–D).
Chemical shifts (δ) were expressed in ppm relative to the residual of solvent (DMSO 2.5 ppm for 1H
NMR). Coupling constants (J) were recorded in hertz (Hz). Multiplicities explained by the following
abbreviations: s, singlet; d, doublet; t, triplet; q, quartet.

1H NMR (500 MHz, DMSO-d6, δ): EDTA: 2.76 (s, 4H); 3.33 (s, 8H); 3.45 (s, 4H). DEA: 2.56
(t, J1 = 10 MHz, 4H); 3.43 (t, J2 = 0.5 MHz, 4H); 3.84 (s, 3H). PEDTA-DEA: 2.86 (d, J3 = 80 MHz, the peak
of H in the unreacted carboxyl group); 2.96 (d, J4 = 55 MHz, the peak of H in the methylene group
linked to the carboxyl group.); 3.56 (s, the peak of H in amino group).
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The stability of the polymer was determined by thermogravimetry and the results are shown
in Figure 2E. When the test temperature of thermogravimetric analysis (TGA) is at the range of
100 ◦C–200 ◦C, the stability of the polymer is similar to that of the raw material. When the temperature
is over 250 ◦C, the polymer is much more stable than EDTA and DEA. The highest temperature used in
this experiment was 180 ◦C, so PEDTA-DEA has good stability.

The molecular weight of the polymer is measured by size exclusion chromatography. The number
average molecular weight (Mn) of the PEDTA-DEA was 1.97× 104 Da, and the polydispersity coefficient
of the polymer was 1.4. All of these illustrate that the condensation polymerization was carried
out efficaciously.

3.2. Precipitation Inhibition Performance of Prepared Polymers

The precipitation inhibition of the prepared polymers was evaluated by a static scale inhibition
test. It can be observed that all of the polymers have distinct inhibition performance against calcium
scale crystal precipitation. When the dosage of the polymer inhibitor is 20 mg/L, the inhibition rate
can reach 93.2%, and the inhibition effect will not increase much as the dosage of polymer increases.
Some of other inhibitors show similar performance to calcium sulfate [8,23,34] and all manifested
threshold effects.

The precipitation inhibition properties of the polymers are related to the types and amounts of
functional groups on the polymer. The main functional group that is capable of inhibiting calcium
sulfate may be a carboxylic acid group (-COOH) [26]. The molecular structure of the polymer is shown
in Figure 1, and the molecular structures of PBTCA, HEDP and PASP are presented individually in
Figure 3. Although prepared polymer and PBTCA molecules all have a large number of carboxylic
acid groups, there are differences between the polymer, PBTCA and HEDP. Polymer molecules include
ester groups (-CO-O-) and amide groups (-CO-NH-), compared with each PBTCA molecule with
a phosphonate group [-PO(OH)2] and three carboxylic groups. In a further step, HEDP has two
phosphonate groups [-PO(OH)2] and a hydroxyl group (-OH), EDTA has four carboxylic groups
(-COOH) and DEA has two hydroxyl groups (-OH), respectively.Crystals 2020, 10, x FOR PEER REVIEW 8 of 16 
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Figure 3. Molecular structures of 2-phosphonbutane-1,2,4-tricarboxylic acid (PBTCA) (a),
hydroxyethylenediphosphonic acid (HEDP) (b) and polyaspartic acid (PASP) (c).

The differences of molecular structure lead to different precipitation inhibition performances.
According to the static scale inhibition tests, the inhibition rates of the synthesized polymer on calcium
sulfate and calcium carbonate are better than those of EDTA, DEA, hydroxyethylenediphosphonic
acid (HEDP), 2-phosphonbutane-1,2,4-tricarboxylic acid (PBTCA), polyaspartic acid (PASP) and the
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compound (the combination of two monomers) (as shown in Figure 4A). The little molecule compounds,
EDTA, DEA or the combination of monomers, are not suitable inhibitors for calcium sulfate scale,
because the scale inhibition rate is still less than 10% even when the dosage is 25 mg/L. Although the
inhibition rate of 25 mg/L PBTCA is up to 50% on the calcium sulfate scale, it is not as functional an
inhibitor as the polymer. This is due to the fact the carboxyl group, ester bond and amide bond have
scale inhibition effects on calcium sulfate and can chelate with calcium ion, making it difficult to form
scale. After adding a scale inhibitor, the scale inhibition performance has not been obviously improved.
Although test conditions are different, similar test results [26,35,36] were obtained.
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Compared with other inhibitors, the scale inhibition effect of the synthesized polymer on
calcium carbonate is inclined to be better (refer to Figure 4B). When the polymer concentration
is 15 mg/L, the precipitation inhibition rate can reach about 70%. Therefore, diethylenediamine
tetraacetate diethanolamine is a kind of polymer with inhibition on calcium sulfate and calcium
carbonate precipitation.

3.3. Different Conditions of Inhibition Test

The initial Ca2+ concentration in the solution also has influences on the precipitation inhibition
performance of prepared polymers against calcium sulfate. As the calcium ion concentration increases,
the inhibition rate decreases. Figure 5A reveals the inhibition of the polymer against calcium
sulfate at different initial Ca2+ concentrations. It can be found that when the Ca2+ concentration is
2040 mg/L, the scale inhibition effect of the polymer achieves the best performance. When the polymer
concentration is 3 mg/L, the scale inhibition rate reaches 89.58%. As the calcium ion concentration
increases, the inhibitor effect of the polymer becomes worse. However, when the calcium ion
concentration is 4000 mg/L and the amount of polymer is 25 mg/L, the scale inhibition rate can also
reach 55.6%.

With the rise of the concentration of calcium ions, the probability of collision and recombination
between calcium ions and sulfate ions increases, the precipitation is easier to appear, and the inhibition
effect weakens.

The inhibition performance of polymers on calcium sulfate precipitation is affected by the heating
time of the water bath, as shown in Figure 5B. The inhibition rates of the polymer were determined
at 6 h, 10 h, 14 h, 24 h and 36 h, and did not change much at different water bath times. When the
polymer concentration is 10 mg/L, its scale inhibition rate reaches 90%. It can be considered that the
synthetic polymer scale inhibitor possesses a strong ability to chelate calcium ions. The calcium ions’
precipitation from the solution was still delayed despite the increase of heating time. The results show
that the effect of heating time in the water bath on the polymer is small, so that it can inhibit the
precipitation of calcium sulfate for a long time.

Temperature is a significant factor affecting precipitation inhibition efficiency. Figure 5C
demonstrates the inhibition performance of polymer precipitation inhibitor on calcium sulfate when
the water bath temperature is differently set at 50 ◦C, 80 ◦C, 120 ◦C, 150 ◦C and 180 ◦C.

With the temperature of the water bath increasing, the precipitation inhibition performance
of precipitation inhibitor against calcium sulfate is getting worse (according to Figure 5C). When
the temperature of the water bath rises, the movement of the molecules will become more intense.
The probability that calcium ions collide with the sulfate ions will also increase, so that the precipitation
will be formed more easily. As a result, the effect of precipitation on calcium sulfate becomes worse
and worse.



Crystals 2020, 10, 544 10 of 15

Crystals 2020, 10, x FOR PEER REVIEW 10 of 16 

 

0 5 10 15 20 25
0

20

40

60

80

100

Sc
al

e 
In

hi
bi

tio
n 

(%
)

Dosage of Scale inhibitor (mg/L)

 2040 mg/L
 3000 mg/L
 4000 mg/L

 
(A) 

0 5 10 15 20 25
0

20

40

60

80

100

Sc
al

e 
In

hi
bi

tio
n 

(%
)

Dosage of Scale inhibitor (mg/L)

 6 h
 10 h
 14 h
 24 h
 36 h

 

(B) 

0 5 10 15 20 25
0

20

40

60

80

100

Sc
al

e 
In

hi
bi

tio
n 

(%
)

Dosage of Scale Inhibitor (mg/L)

 50 ℃
 80 ℃
 120 ℃
 150 ℃
 180 ℃

 

(C) 

Figure 5. Precipitation inhibition performances of PEDTA-DEA on calcium sulfate under different
initial calcium ion concentrations (A), (in which bath time is 10 h and temperature is 80 ◦C), different
water bath time (B), (in which initial calcium ion concentration is 3000 mg/L and temperature is 80 ◦C),
different water bath temperature (C), (in which initial calcium ion concentration is 3000 mg/L and bath
time is 10 h).
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3.4. Characterization and Analysis of Calcium Sulfate Precipitate

The precipitation of CaSO4 prepared by adding different doses of precipitation inhibitor is
compared with that without precipitation inhibitor. The changes of crystal morphology are manifested
in Figure 6.
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Figure 6. Morphology of CaSO4 crystals obtained from blank solution (a), solution with 10 mg/L
(b) and 15 mg/L (c) PEDTA-DEA. All of the solutions are heated to 80 ◦C and kept for 10 h.

Most of the CaSO4 precipitation particles without polymer inhibitor are slim and tenuous.
The surface of the needle-like precipitation is flat and smooth. With the addition of the polymer
inhibitor, the originally smooth surface becomes irregular and needle-like precipitation becomes wide
and thick. When the dosage of precipitation inhibitor increases, the surface of the CaSO4 precipitation
particles becomes uneven and many defects appear. The crystal also changes from a regular, long strip
to a short, irregular crystal. These changes illustrate that adding precipitation inhibitor has a great
influence on the growth process and morphology of CaSO4 crystal [36]. Calcium precipitation added
with precipitation inhibitor is more likely to flow with water rather than adhere to the pipeline.
There are inevitably solid impurities in the water [37] which will become the nucleation center of
gypsum. After adding scale inhibitor, the scale inhibitor will be adsorbed on the surface of solid
impurities in the form of calcium salt, thus blocking the nucleation of calcium sulfate and preventing
the formation of scale [37,38].

In order to further investigate the calcium sulfate crystal, the precipitation obtained from the static
scale inhibition experiment was subjected to XRD testing. The diffraction patterns of calcium sulfate
crystals with and without the inhibitor are shown in Figure 7.
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Figure 7. X-ray diffraction pattern of CaSO4 crystals obtained from blank solution and solutions with
10 mg/L polymer inhibitors.

In the absence of precipitation inhibitor, the diffraction peaks are mainly distributed at 14.7◦,
25.6◦ and 29.7◦, which are the diffraction peaks of calcium sulfate crystals lattice planes of (100),
(110) and (200), respectively. After adding polymer inhibitor, the main diffraction peaks appear at
11.6◦, 20.7◦, 23.4◦, 29.1◦ and 31.1◦, corresponding to lattice faces of (020), (021), (040) (041) and (−221)
of gypsum (syn) [39,40]. What is mentioned above indicates that the polymer has altered the crystal
type of calcium sulfate precipitation.

The calcium sulfate precipitation is characterized by infrared spectroscopy (shown in Figure 8).Crystals 2020, 10, x FOR PEER REVIEW 13 of 16 
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Figure 8. FTIR spectra of CaSO4 precipitation obtained from blank solution and solutions with
polymer inhibitor.

The infrared absorption peak of calcium sulfate precipitation mainly appearing at 3487 cm−1,
3396 cm−1 and the peak at 1681 cm−1 are the stretching vibration peaks of the hydroxyl group, the peaks
at 666 cm−1 and 597 cm−1 represent the stretching and bending vibration of sulfate, the peak at
1096 cm−1 is the stretching vibration of S-O and the peak at 1619 cm−1 is the stretching vibration
of S=O [41,42]. If we choose the intensity of absorption peaks at 1096 cm−1 (I1096) as standard,
the intensities of absorption peaks at 1681 cm−1, 666 cm−1 and 597 cm−1 will obviously become weaker,
while the intensities of absorption peaks at 3487 cm−1, 3396 cm−1 and 1619 cm−1 will be stronger.
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Compared with the hydroxyl vibration peak of calcium sulfate, the tendency of hydroxylation is strong,
which indicates that the crystal form of calcium sulfate has changed [43]. This is also consistent with
the results of the XRD.

As mentioned above, the crystal structure of the calcium sulfate precipitation can be significantly
changed by adding the polymer inhibitor. That is the lattice distortion caused by the polymer inhibitor
in the precipitation formation process. The polymer molecules adsorbing to the surface of the CaSO4

crystals not only hinder the growth of CaSO4 crystals but also make the crystal structure unstable and
distorted, causing the formed CaSO4 precipitation to be easily washed away.

4. Conclusions

PEDTA-DEA was successfully synthesized by a thermal polycondensation reaction with EDTA and
DEA as monomers. The synthesis conditions for PEDTA-DEA are 1:1 monomer molar ratio of EDTA
to DEA, 200 ◦C polymerization temperature and 2 h for a reaction. The polymer produces excellent
inhibition effect on calcium sulfate precipitation. According to the static test, when Ca2+ concentration
is 3000 mg/L, and the amount of the polymer inhibitor is 10 mg/L, the inhibition rate exceeds 90%.
Considering that the scale inhibition rate increases with the growth of polymer concentration, and that
the polymer inhibitor can apparently distort the precipitation crystal structure and impact on it, based
on the results of SEM, XRD and FTIR. Consequently, the polymer PEDTA-DEA is prepared as a kind of
potential precipitation inhibitor against calcium sulfate crystal.
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