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Abstract: We describe here a new design strategy for obtaining boron complexes with aggregation-
and crystallization-induced emission (AIE and CIE, respectively) properties based on the introduction
of skeletal distortion. According to our recent results, despite the fact that an almost planar structure
and robust conjugation were obtained, the boron azomethine complex provided a slight emission
in solution and an enhanced emission in aggregation and crystal. Quantum calculation results
propose that unexpected emission annihilation in solution could be caused through intramolecular
bending in the excited state. Herein, to realize this unique molecular motion and obtain AIE and
CIE molecules, the phenyl quinoline-based boron complexes BPhQ and BPhQm with distorted and
planar structures were designed and synthesized, respectively. BPhQm showed emission in solution
and aggregation-caused quenching (ACQ, BPhQm: ΦF,sol. = 0.21, ΦF,agg. = 0.072, ΦF,cryst. = 0.051),
while BPhQ exhibited a typical AIE and CIE (BPhQ: ΦF,sol. = 0.008, ΦF,agg. = 0.014, ΦF,cryst. = 0.017).
The optical data suggest that a large degree of molecular motion should occur in BPhQ after
photo-excitation because of the intrinsic skeletal distortion. Furthermore, single-crystal X-ray
diffraction data indicate that the distorted π-conjugated system plays a positive role in presenting
solid-state emission by inhibiting consecutive π–π interactions. We demonstrate in this paper that the
introduction of the distorted structure by boron complexation should be a new strategy for realizing
AIE and CIE properties.
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1. Introduction

Organic fluorescent dyes have attracted considerable attention as a platform for constructing
fluorescent probes to monitor biological events because of their various advantages, such as high
sensitivity, rapid response, and property tenability [1–3]. In addition, organic fluorescent dyes
can also be utilized for modern electronic devices, such as organic light-emitting diodes [4–6] and
lighting panels [7]. Therefore, the development of a new type of fluorescent organic dye is a topic
of interest in organic chemistry as well as material science. Recently, we proposed the concept of
“element-blocks”, which are minimum functional units containing heteroatoms, to create functional
materials according to preprogrammed designs [8–10]. In the series of studies on organic luminescent
dyes containing heteroatoms, unique optical properties originating from heteroatoms have been
revealed [11]. In particular, boron-containing element-blocks are promising building blocks for
obtaining luminescent materials. Boron-fused structures with bidentate π-conjugated ligands can
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enhance the rigidity and planarity of molecular frameworks because of their strong coordination
ability originating from the electron-acceptor character of boron [12–16]. Thus, boron complexation
is recognized as an established tactic for constructing highly-emissive fluorescent dyes [17–24].
Indeed, numerous studies have been accomplished on the development of emissive materials based
on boron complexes with rigid and planar skeletons [25–30]. However, in solid states, planar
organic chromophores often show the consecutive π–π stacking and subsequent physical interactions
(e.g., energy transfer, inter- or intramolecular charge transfer, and excited states reactions. As a result,
emission annihilation, called aggregation-caused quenching (ACQ), inevitably occurs [31,32]. Thus,
most organic luminescent materials suffer from ACQ, especially in applications in luminescent devices.

As one of the critical solutions for overcoming ACQ, aggregation-induced emission (AIE)
properties [33,34] and crystallization-induced emission (CIE) properties [35–37] have attracted attention.
The AIE- and CIE-active molecules show enhanced emission by aggregation and crystallization,
respectively. In dilute solutions, crucial intramolecular motions such as rotation and vibration occur,
and their excited states are readily decayed through non-radiative pathways. These motions would
be restricted in solid form, followed by significant luminescence. Furthermore, by modulating
the degree of molecular motions in the excited state, environment-responsive behaviors are often
observed [38,39]. Therefore, the deep understanding of molecular motions in the excited state and the
relationship with these motions and photochemical processes is necessary for designing advanced AIE
and CIE-active dyes.

In our previous work, we synthesized a fused azomethine–boron complex with a slightly-distorted
π-conjugated system and a protruded substituent on the boron atom [40]. Although these structural
features are favorable for obtaining solid-state emission by disturbing nonspecific π–π interactions
in the condensed state, the boron azomenthine complex is an AIE and typical CIE-active molecule.
From mechanistic studies, it is proposed that intramolecular bending should proceed in the excited
state, followed by rapid excitation decay. In other words, the “flexible” molecular skeleton is the origin
of the deactivation of excitation energy and subsequent emission annihilation through non-radiative
decay processes [38]. From this fact, we presume that intrinsic local distortion in the conjugated ligand,
which can be readily generated by boron complexation, could be the driving force for presenting
emission annihilation in solution through molecular bending activated in the excited state and the key
factor in exhibiting solid-state emission by disturbing intermolecular interactions by skeletal distortion.
To evaluate the validity of this speculation, a comparison study with potentially distorted and planar
molecules is needed.

Herein, we report opposite changes in emission efficiencies between the solution and solid of the
modified azomethine–boron complexes BPhQ and BPhQm with or without skeletal distortion around
the boron complexation moiety, respectively. In general, quinoline-based boron complexes have been
considered to be a class of highly efficient luminescent dyes in solution owing to their rigid and planar
structures [41–44]. Indeed, BPhQm possesses a planar structure, while BPhQ intrinsically involves
distortion, although electronic conjugation can be developed through both molecules. Interestingly,
increases and decreases in emission efficiencies by aggregation and crystallization were obtained
from BPhQ and BPhQm, meaning that BPhQm shows ACQ in solid, whereas BPhQ is an AIE- and
CIE-active molecule. From the series of optical measurements, we propose that skeletal distortion plays
a critical role in enhanced emission behaviors in solids as well as emission annihilation in solution.
This is the first example, to the best of our knowledge, to offer a new design strategy based on the
introduction of distortion with boron complexation for realizing AIE and CIE properties.

2. Materials and Methods

According to Scheme 1, the quinoline-based boron complex BPhQ was synthesized from the
tridentate quinoline ligand 3 (Figures S1–S6 and Schemes S1–S3, See Supplementary Materials).
The skeletal distortion was introduced into the quinoline scaffold by the formation of a five-membered
ring with a four-coordinating boron atom. We also synthesized the methylene-inserted quinoline
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boron complex BPhQm as the planar molecule (Figures S7–S9 and Scheme S4, See Supplementary
Materials). In the case of BPhQm, the double six-membered ring systems were formed by a boron
complexation reaction for releasing distortion. To improve the solubility and inhibit undesired
aggregation in the solution, BPhQ and BPhQm were modified with tert-butyl groups. Indeed, the
synthesized complexes have good solubility in common organic solvents such as chloroform, THF,
and dichloromethane. The structures of BPhQ and BPhQm were confirmed by 1H, 11B, 13C NMR,
ionization mass measurements and elemental analyses. Fortunately, we obtained single crystals of the
complexes suitable for X-ray analyses.
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3. Results and Discussion

3.1. Single Crystal X-ray Diffraction Analysis

From the comparison with the single-crystal X-ray diffraction (SCXRD) data (Figure 1 and
Tables S1–S2, See Supplementary Materials), it was shown that BPhQ had a relatively distorted
conformation according to the dihedral angle between the quinoline and the adjacent phenyl ring,
which was 154.7◦. The skeletal distorted conformation should originate from the tightly fused structure
involving five- and six-membered rings. In contrast, it was observed that BPhQm has a relatively
planar structure (the dihedral angle = 168.8◦), owing to the loosely fused six-membered ring of the
methylene group. From these data, it is evident that both complexes have expected structural features.
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Figure 1. Thermal ellipsoid (probability level 50%) of BPhQ (left) and BPhQm (right) (gray, carbon
atoms; blue, nitrogen atoms; red, oxygen atoms; pink, boron atoms; yellow, fluorine atoms. Hydrogen
atoms are omitted for clarity).

3.2. Optical Properties

To evaluate the electronic structures of the complexes in the ground state, the UV–vis absorption
spectra were measured with the dilute chloroform solutions (Table 1 and Figure 2a). Similar spectral
shapes and molar extinction coefficients were obtained from the absorption bands around 380 nm,
indicating that both complexes should have similar electronic structures. It should be noted that the
skeletal distortion in BPhQ slightly affects the electronic conjugation in the ground state.

Table 1. Optical properties of the synthesized compounds.

Compound
λmax,abs
(nm) a ε (105M–1cm–1) b

λem (nm) c ΦF
d

Sol. a Agg. e Film f Cryst. g Sol. a Agg. e Film f Cryst. g

BPhQ 377 0.11 550 537 531 518 0.008 0.014 0.021 0.017

BPhQm 387 0.097 493 460 487 479 0.21 0.072 0.16 0.051
a The longest absorption maximum in 1.0 × 10−5 M chloroform solution. b Molar extinction coefficients of the
longest absorption band in 1.0 × 10−5 M chloroform solution. c Fluorescence maxima with the excitation at the
longest absorption maximum. d Absolute quantum efficiencies. e Prepared from THF/H2O solutions with a water
fraction of 99%. f Spin-coated film on the quartz substrate (1 cm × 5 cm) prepared from chloroform solution (0.10 mL,
1000 rpm). g Prepared by the vapor diffusion method (BPhQ: from CH2Cl2 solution under hexane atmosphere;
BPhQm: from toluene solution under hexane atmosphere).Crystals 2020, 10, x FOR PEER REVIEW 5 of 12 
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chloroform solution).

In contrast to the absorption properties, the emission behaviors, representing electronic structures
in the excited state, were largely different between both complexes (Figure 2b). We evaluated
the photoluminescence (PL) properties of BPhQ and BPhQm with the same chloroform solutions.
The emission band of BPhQ was detected in the remarkable red-shifted wavelength region compared
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to that of BPhQm (BPhQ: λem = 550 nm; BPhQm: λem = 493 nm). In particular, a wider Stokes shift
was observed from BPhQ than from BPhQm, meaning that a larger degree of structural relaxation
should proceed in BPhQ after photo-excitation.

To elucidate the difference in emission wavelength between BPhQ and BPhQm, a solvatochromism
study was executed (Figures S10–S11, See Supplementary Materials). Accordingly, significant shifts
in the absorption bands were hardly observed by altering the solvent polarity, whereas the emission
bands were bathochromically shifted from 542 to 567 nm for BPhQ and from 478 to 512 nm for
BPhQm as the solvent polarity increased. These results suggest that the emission bands of both boron
complexes should be derived from the intramolecular charge transfer (ICT) states. Meanwhile, even in
cyclohexane, which is a typical non-polar solvent, there were still pronounced differences between the
two emission peak wavelengths (BPhQ: λem = 542 nm; BPhQm: λem = 478 nm). In order to obtain
deep insight into the origin of the longer-wavelength emission of BPhQ, the emissive properties were
examined with polystyrene films, including 1 wt% of BPhQ or BPhQm, where molecular motion
would be suppressed in each isolated molecule (Table 2 and Figure S12, See Supplementary Materials).
The PL spectrum of the film of BPhQ showed an emission band with a clear blue shift from that of
the solution (λem,sol. = 550 nm, λem,film. = 531 nm). In general, the blue-shifted emission in solids is
caused by suppressing geometry relaxation in the excited state under a spatially restricted environment
compared to the solution [45]. Thus, it is suggested that the longer-wavelength emission of BPhQ than
that of BPhQm should originate from the intrinsic larger degree of molecular mobility in the excited
state. Correspondingly, in the PL spectra of BPhQm in the polystyrene film, the degree of blue-shift
from the solution state was much smaller than that observed in BPhQ.

Table 2. Fluorescence lifetime and radiative and non-radiative rate constants of the synthesized compounds.

Compound
τ (ns) a kr (×108s−1) b knr (×108s−1) b

Sol. c Agg. d Film e Cryst. f Sol. c Agg. d Film e Cryst. f Sol. c Agg. d Film e Cryst. f

BPhQ
0.6 0.3 (4%)

1.7 (38%)
4.3 (58%)

2.1 (32%)
5.8 (68%)

2.0 (66%)
3.3 (34%)

0.12 0.038 0.040 0.065 15 2.7 1.9 3.8

BPhQm
2.8 1.2 (71%)

3.9 (29%)
0.6 (8%)

1.7 (70%)
3.8 (23%)

0.4 (24%)
1.0 (64%)
3.0 (12%)

0.74 0.26 0.64 0.32 2.8 3.3 3.3 5.9

a Emission lifetime at λem. b kr =ΦF/τ, knr = (1 −ΦF)/τ. c 1.0×10-5 M chloroform solution. d Prepared from THF/H2O
solutions with a water fraction of 99%. e Spin-coated film on the quartz substrate (1 cm × 5 cm) prepared from the
chloroform solution (0.10 mL, 1000 rpm). f Prepared by the vapor diffusion method (BPhQ: from CH2Cl2 solution
under hexane atmosphere; BPhQm: from toluene solution under hexane atmosphere).

We evaluated the emission efficiencies of the complexes in the solution, aggregation, and crystalline
samples (Table 1 and Figures S13–S14, See Supplementary Materials). From a comparison with the
emissive properties in the solution and solid form, it was found that BPhQ and BPhQm showed
opposite behaviors: BPhQ had AIE and CIE characteristics, while BPhQm showed typical ACQ. We
prepared aggregated samples of BPhQ and BPhQm from THF/H2O solutions with a water fraction of
99%, and the emission efficiencies were determined as the absolute fluorescence quantum efficiencies
(ΦF). The ΦF values of the aggregation and crystalline sample for BPhQ were significantly higher
than those of the solutions (ΦF,sol. = 0.008→ ΦF,agg. = 0.014, ΦF,cry. = 0.017). On the other hand, the ΦF

values of the aggregated and crystalline sample for BPhQm were lower than those of the solution state
(ΦF,sol. = 0.21→ ΦF,agg. = 0.072, ΦF,cry. = 0.051). The reduction in the ΦFs in the solid of BPhQm is
likely to be caused by non-specific intermolecular interaction in the condensed state, followed by ACQ.

To examine in detail the photophysical processes especially in BPhQ, the radiative (kr) and
non-radiative rate constants (knr)—which represent the sum of the rates in each process with or without
emission, respectively—were determined from the lifetime measurements (Table 2 and Figure S15,
See Supplementary Materials). Accordingly, it was found that BPhQ had a smaller kr and larger knr

than BPhQm in solution, meaning that both the radiative and non-radiative processes should be quite
different between BPhQ and BPhQm. In addition, the knrs of BPhQ in the aggregated and crystalline
samples were lowered from those of the solution state, suggesting that the nonradiative decay channels
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related to the intramolecular motion of BPhQ in the solution state were efficiently restricted under
rigid environments, such as in the aggregation and crystal. A similar enhancement of ΦF was also
observed in 1 wt% polystyrene dispersed film (Table 2 and Figure S15, See Supplementary Materials).
The ΦF of BPhQ in the polystyrene film was determined as 0.021, which is higher than that of the
solution state (ΦF = 0.008), whereas it was found that the knr in the polystyrene film was one order
lower than that in the solution state, representing that the improvement of the emission property in
film should be associated with the restriction of molecular motions by polymer chains. Contrary to
BPhQ, the ΦF of BPhQm decreased in the polystyrene film compared with that in the solution, and
both of the knr values were in the same range, suggesting that the molecular motions of BPhQm in
the excited state hardly play a role in the emission properties of the solution state because of its rigid
molecular structure. In summary, from the comparison with both complexes, it was figured out that
BPhQ had a larger non-radiative rate constant. Possibly, the distorted structure in BPhQ induced by
boron complexation may cause geometrical perturbation in the excited state, and thus the molecular
motions promoted non-radiative decay processes.

3.3. Packing Structures

To comprehend the solid-state luminescent properties, we compared the molecular packing
structures of the complexes determined by the SCXRD data (Figure 3). Although both complexes
belong to the triclinic system (P1 space group), the packing structures were different, probably because
of the planarity of BPhQ and BPhQm. In the crystalline packing of BPhQ, each molecule formed π–π
intermolecular interactions between dimers, with distance of 3.596 Å. However, in another molecular
surface, the distance to the adjacent molecule was 4.148 Å, and thus the π–π intermolecular interactions
through three or more molecules were inhibited, owing to the steric hindrance imposed by the distorted
π-conjugated system and the protruded fluorine atom. In contrast, the molecules of BPhQm with a
planar structure were densely packed into molecular columns that were perpendicular to the quinoline
moieties and formed face-to-face π–π interactions between both surfaces, with distances of 3.723
and 3.807 Å. From these structural data, it is proposed that π–π interactions through multiple BPhQ
molecules can be disturbed owing to the distorted structure, followed by avoiding ACQ. On the other
hand, because of the intrinsic planar structure of BPhQm, a critical ACQ should be induced through
tight intermolecular interactions, such as π–π stacking, in the solid state.
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3.4. Theoretical Calculation

In order to support the emissive properties and radiative decay processes of BPhQ and BPhQm, we
conducted time-dependent density functional theory (TD-DFT) calculations at the B3LYP/6-311 + G(d,p)
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level with the optimized structures in the S1 states (Table 3). Figure 4 represents highest occupied
molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) at the S1 state.
The LUMOs of both molecules are delocalized on the entire molecules, while the HOMOs are localized
on the quinoline moiety and the tert-butyl group-substituted phenyl ring, respectively. These alterations
in the electronic orbital distributions between HOMO and LUMO correspond to the ICT characters
of the emission bands of both complexes. The electron-rich oxygen atom might contribute to the
localization of HOMO of BPhQ at the quinolone moiety, while the electron donation by the quinoline
moiety might be weak in BPhQm, and subsequently HOMO might be able to spread in the tert-butyl
group-substituted phenyl ring.

Table 3. Photophysical parameters obtained by TD-DFT/B3LYP/6-311 + G(d,p) based on the optimized
geometries in the S1 state.

Compound Excitation
Energy

S1→S0 Transition
Contribution Oscillator Strength µ a

BPhQ 2.30 eV (540 nm) HOMO–LUMO (94%) 0.0262 0.4656 a.u.
BPhQm 2.57 eV (482 nm) HOMO–LUMO (95%) 0.1521 2.415 a.u.

a Transition dipole moment.
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Finally, we examined the electronic transitions with theoretical calculations. The oscillator
strength (f ) for the S1 to S0 transition, which is associated with kr, was quite small (f = 0.0262) in BPhQ,
proposing that the lowest-lying excited state S1 should be a weak emissive state. In contrast, the f
value of BPhQm was about six times higher than that of BPhQ (f = 0.1521)—that is, the lowest-lying
excited state S1 is a highly emissive state. These theoretical results were in good agreement with the
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experimental kr data (Tables 2 and 3). Additionally, to reveal the origin of the difference in the oscillator
strength for the S1 → S0 transition between BPhQ and BPhQm, the transition densities (ρ) for the
corresponding transitions were calculated for a simple and effective representation of the electronic
transition (Figure 5). The magnitude of the f for an electronic transition is proportional to the square of
the transition dipole moment (µ). On the other hand, µ can be expressed by the following equation:

µ =

∫
ρ(x)(−ex)dx (1)

where ρ is the transition density for the S1 state and x denotes a point in three-dimensional space.
From the equation, the µ value becomes large when ρ has a value at x at which these elements are
large—i.e., when ρ is distributed in the regions that are distant from the coordinate origin [46,47].
Figure 5 shows a more widely distributed ρ in BPhQm, indicating that the overlap between the HOMO
and LUMO was larger than that in BPhQ. Owing to this wide ρ distribution spread to the entire
molecule, BPhQm has moderate µ of 2.415 (a.u.). In contrast, BPhQ has a small µ of 0.4656 (a.u.),
since the ρ distribution range is limited in the small regions around the quinoline moiety. This is
because the HOMO of BPhQ is mainly distributed in the quinoline group (Figure 4), and the resulting
HOMO–LUMO overlap is thus small. In the presence and absence of the methylene group, the
electronic structures are also influenced.Crystals 2020, 10, x FOR PEER REVIEW 9 of 12 
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4. Conclusions

We demonstrate that the introduction of skeletal distortion by boron complexation with the
tridentate ligand is a facile strategy for obtaining AIE and CIE-active molecules. From the comparison
with phenyl quinoline-based boron complexes BPhQ and BPhQm with or without critical skeletal
distortion around the boron complex moiety, it was found that with the molecular motions, represented
by the wider Stokes shift, a smaller kr and larger knr are feasible in the excited state, followed by
emission annihilation, even though electronic conjugation can be developed through planar molecular
structures in the ground state. Further, molecular distortion seems to play a positive role in avoiding
ACQ. Consequently, we observed from both complexes contrary changes in emission efficiencies by
aggregation, such as AIE and CIE from BPhQ and ACQ from BPhQm. So far, boron complexation
has been applied for constructing a robust conjugated system, while we herein present a new manner
of boron complexation through the generation of distortion for a potential movable point in the
excited state as well as for realizing emission enhancement in the solid state. Thus, it is implied that
conjugated element-blocks with distortion might be a promising platform for obtaining advanced
stimuli-responsive optical materials.
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100 MHz. Scheme S4: Synthesis of BPhQm. Figure S7: 1H NMR spectrum of BPhQm, CDCl3, 400 MHz. Figure S8:
11B NMR spectrum of BPhQm, CDCl3, 128 MHz. Figure S9: 13C NMR spectrum of BPhQm, CDCl3, 100 MHz.
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UV–vis absorption (left) and PL spectra (right) of BPhQ in the diluted solutions (1.0 × 10−5 M) at room temperature.
Figure S11: UV–vis absorption (left) and PL spectra (right) of BPhQm in the diluted solutions (1.0 × 10−5 M)
at room temperature. Figure S12: PL spectra of BPhQ and BPhQm in the 1 wt% polystyrene dispersed films.
Figure S13: PL spectra of BPhQ and BPhQm in aggregated states (THF/H2O = 1/99, 1.0 × 10−4 M). Figure S14: PL
spectra of BPhQ and BPhQm in crystalline states. Figure S15: PL lifetime decay curves of BPhQ and BPhQm
in chroloform solution (1.0 × 10–5 M), 1 wt% polystyrene film, the aggregated and crystalline states at room
temperature. Their emissions at the PL peak tops were monitored.
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