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Abstract: Nonlinear architecture liquid crystalline materials of supramolecular 1:1 H-bonded
complexes (I/II and I/III) were prepared through a self-assembly intermolecular interaction between
azopyridine (I) and 4-n-alkoxybenzoic acid (II) as well as 4-n-alkoxyphenylazo benzoic acid (III).
The H-bond formation of the prepared supramolecular hydrogen bonded (SMHB) complexes was
confirmed by Fourier-transform infrared spectroscopy (FT-IR) and differential scanning calorimetry
(DSC). Optical and mesomorphic behaviors of the prepared complexes were studied by polarized
optical microscopy (POM) as well as DSC. Theoretical calculations were performed by the density
functional theory (DFT) and used to predict the molecular geometries of the synthesized complexes,
and the results were used to explain the experimental mesomorphic and optical properties in terms
of their estimated thermal parameters. Ordinary and extraordinary refractive indices as well as
birefringence at different temperatures were investigated for each sample using an Abbe refractometer
and modified spectrophotometer techniques. Microscopic and macroscopic order parameters were
calculated for individual compounds and their supramolecular complexes.

Keywords: nonlinear supramolecular liquid crystal complexes; optical studies; refractive index;
birefringence; DFT theoretical calculations

1. Introduction

Many liquid crystalline compounds display one or more distinct mesophases depending on the
basis of the molecular arrangement such as nematic (N) and smectic phases [1–3]. Optical properties,
such as absorbance, transmittance, refractive index and birefringence are very important for liquid
crystal (LC) applications. Transmission with a long temperature range was measured for nematic
LC [4]. Additionally, the index of refraction and birefringence were determined by wedge and
Newton’s rings techniques for LC in the N-Sm phase [5–8]. Yildiz et al. used Abbe refractometer and
rotating-analyzer techniques for measuring ordinary (no) and extraordinary (ne) refractive indices
and birefringence (∆n) [5,9]. In addition, the dependence of birefringence on temperature was
studied for LCs [10–18]. The factors of the birefringence, of thermal stability and order parameter
were also reported [19,20]. Recently, supramolecular liquid crystals (SMLCs) intensively attracted
the attention of many scientific research studies [21–31]. Among the self-assembly method LCs is
H-bonding intermolecular interactions with noncovalent bonds [32–36]. Among the H-bond acceptors
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and donors, pyridine derivatives and carboxylic acids were shown to be the best choice in many
studies. Furthermore, the use of multifunctional compounds in the establishment of noncovalent
interaction could produce good properties of SMLC network architectures [37,38]. The photoresponsive
properties of azopyridines make them a good choice for liquid-crystal materials due to their aptitude for
thermal and photo trans-cis-isomerisation [39,40]. Recently, the designing of new structures according
to computational prediction attracts the attention of many researchers [39,41–50]. Studying the
optical parameters of the LCs requires some information about the molecular geometries. The DFT
method becomes an effective tool for its excellent performance and consistency with the experimental
data [27,28,43,48,51–61].

The aim of the present work was to design angular H-bonded supramolecular complexes
(Scheme 1) of new conformations and investigate their optical properties using different techniques.
In addition, DFT theoretical calculations were carried out to estimate the molecular geometry of
the prepared H-bonded complexes as well as to predict their thermal parameters. Ordinary and
extraordinary refractive indices, birefringence and order parameters were measured and compared for
all supramolecular H-bonded complexes.
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Scheme 1. 1:1 SMHB complexes (a) I/II and (b) I/III. 

  

Scheme 1. 1:1 SMHB complexes (a) I/II and (b) I/III.

2. Experimental

Preparation of 1:1 Supramolecular Complexes

4-n-Octyloxybenzoic acid (II) was purchased from Merck Company (Germany). The transition
temperature of the azopyridine-based derivative (I) was checked with the previously reported
one [62,63].
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Equal molar amounts of the individual components of the target SMHBLCs complex (I/II and I/III)
was melted with stirring till an intimate blend then cooled to room temperature (Scheme 2) [64,65].
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However, the ester linkage of the azopyridine base C=O group influenced the stretching vibration; 
the wavenumber of C=O of the complex I/II increased from 1724.4 to 1728.1 cm−1 and 1734.0 cm−1 for 
the other, I/III. Furthermore, an important provident of the H-bonding in the supramolecular 
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C-types. [50,69–74] The Fermi band of the A type existed in the range of 2912 to 2835 cm−1 under the 
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of the C-type of the interaction of the stretching vibration of the OH and the overtone of the torsional 
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3. Results and Discussion

3.1. FT-IR Spectroscopic Confirmation of SMHB Complex Formation

The spectral data of the FT-IR were recorded in order to prove the H-bonded supramolecular
complex formation. The spectra were measured for individual components as well as their
supramolecular complexes I/II and I/III (Figure 1). The C=O stretching vibration is well known to be
at 1681 cm−1 [66–68]. The formation of the H-bonding between the proton acceptor nitrogen atom and
the COOH group of the H-donor of acid exchanged the dimeric H-bonds of carboxylic acid.

The sharing of the hydroxyl group of the COOH in H-bonding decreased its vibrational strength.
As shown from Table 1, theoretically, the length of OH-bond increased from 0.97573 Å with H-bonding
to 1.032 and 1.038 Å for complexes I/II and I/III, respectively. Moreover, its stretching vibration
decreased to 2561.3 cm−1 instead of 3662.6 cm−1 of the free acid for the complex I/II. Experimental
FT-IR spectra illustrated that there was no considerable impact of the H-bonding on the C=O strength
vibration, where, there was only a 4 cm−1 decrease (ύC=O = 1681.7 cm−1). However, the ester linkage
of the azopyridine base C=O group influenced the stretching vibration; the wavenumber of C=O of
the complex I/II increased from 1724.4 to 1728.1 cm−1 and 1734.0 cm−1 for the other, I/III. Furthermore,
an important provident of the H-bonding in the supramolecular complexes (SMCs) is the existence of
three Fermi resonating frequencies of the OH group, A-, B- and C-types [50,69–74]. The Fermi band of
the A type existed in the range of 2912 to 2835 cm−1 under the C-H stretching vibrations. Furthermore,
the important vibrational frequency of the O-H (B-type) at 2352 cm−1 could be assigned to the in-plane
bending stretching vibration. However, the Fermi band of the C-type of the interaction of the stretching
vibration of the OH and the overtone of the torsional effect was in the range of 1901.3 and 1902.8 cm−1.

Table 1. The calculated bond length (Å) wave numbers (cm−1) of characteristic groups of the base I,
acids II and III and their supramolecular complex I/II and I/III.

Compound ύOH
(cm−1)

O-H
(Å)

ύC=O
(cm−1)

C=O
(Å)

ύC=NPyr
(cm−1)

C=NPyr

(Å)
ύNr=NPyr
(cm−1)

N=NPyr

(Å)
ύH-bond
(cm−1)

H-Bond
(Å)

I - - - - 1615.9 1.347 1475.6 1.211 - -

II 3662.6 0.976 1691.9 1.238 - - - - - -

III 3660.7 0.976 1691.1 1.237 - - 1475.8 1.282 - -

I/II 2561.3 1.032 1668.5 1.251 1617.7 1.348 1475.5 1.281 2561.3 1.619

I/III 2469.9 1.038 1669.1 1.250 1618.2 1.348 1475.4 1.282 2469.9 1.597
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3.2. Mesomorphic Properties

Differential scanning calorimetry (DSC) measurements were recorded to study the mesomorphic
transition behavior of 1:1 SMHB complexes I/II and I/III, and the type of mesophases was proved
by measuring the polarized optical microscopy (POM). Thermal analyses of these complexes were
recorded from the second heating scan and the DSC profiles upon heating/cooling cycles for I/II and
I/III SMHB complexes (Figure S1, Supplementary Materials). Illustrative textures of the investigated
mesophases from the POM are shown in Figure 2. The 1:1 molar supramolecular complex formation
can also be confirmed from the crystallization peak symmetry (Figure S1).
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The azopyridine (I) mesophase behavior was observed to have a smectic A (SmA) phase with a
stability of 121.5 ◦C [65,75], while the 4-octyloxybenzoic acid (II) was dimorphic, exhibiting smectic
C (SmC) and nematic (N) phases with a mesomorphic stability of 147 ◦C [62,63], and 4-octyloxy
phenylazobenzoic acid (III) exhibited a SmC phase with a wide range of stability and an N phase
with a very small stability range [75]. Therefore, the investigation of the mesophase behavior of the
supramolecular complexes resulted from mixing the compounds with different mesogenic lengths
(I/II and I/III) is an interesting study. Transition temperatures and associated enthalpies of transitions
for the individual base and acids moiety as well as their corresponding 1:1 molar supramolecular
complexes (I/II and I/III) are listed in Table 2. As can be seen from Table 2, upon heating, the complex
I/II indicated an endothermic peak with 27.4 kJ/mol followed by a small endothermic smectogenic
peak with 1.5 kJ/mol. The complex I/III illustrated a strong endothermic peak with 46.0 kJ/mol ascribed
to the melting process, and an endothermic peak with 7.2 kJ/mol was assigned to the SmA-N transition
followed by a small peak of nematic transition with 3.5 kJ/mol. Thus, the variation of peak enthalpy
changed between the individual compounds and their SMHB complexes, which may be attributed
to the different molecular geometries of each component. Data in Table 2 show that the I/II complex
exhibited a monomorphic smectic A phase (SmA) with a thermal stability of 104.6 ◦C, while the second
complex I/III possessed a dimorphic phase of enantiotropic SmC and N meophases with a higher
thermal stability (198.7 ◦C). It can be concluded that the incorporation of azophenyl moiety in the
acid component III leads to an enhancement of the thermal stability (i.e., the mesogenic core length is
influenced by the mesophase stability) of their supramolecular complex I/III rather than I/II.
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Table 2. Phase transition temperatures (T, ◦C) and enthalpy of transition (∆H, kJ/mol) for the individual
compounds (I, II and III) and their supramolecular complexes (I/II and I/III).

Sample TCr-SmC ∆HCr-SmC TCr-SmA ∆HCr-SmA TSmC-N ∆HSmC-N TSmA-I ∆HSmA-I TN-I ∆HN-I

I - - 96.1 23.5 - - 121.5 1.6 - -

II 101.0 47.0 - - 108.0 4.7 - - 147.0 1.9

III 147.0 55.6 - - 241.0 7.9 - - 262.5 3.2

I/II - 76.4 27.4 - 104.6 1.5 - -

I/III 91.8 46.0 - - 137.0 7.2 - - 198.7 3.5

Cr = solid crystal; N = nematic; SmA = smectic A; SmC = smectic C; I = isotropic.

3.3. DFT Calculations

The DFT calculations were performed on a B3LYP 6-31G (d,p) basis set in the gas phase set
out by Gaussian 09 software; see supplementary data. Due to the presence of many conformers
of the base (I), the thermal parameters of two conformers (Ia and Ib) of less sterically hindered
structures were investigated. The results of the theoretical calculations showed that the complexes
could be forming a U-shaped geometry. However, the DFT calculations were performed for the
isolated molecules in the gas phase at 0 K, and the thermotropic liquid crystals were enhanced in
a molten state at a certain temperature range; conformational disorder could appear and strong
deviations from the U-shape deduced from calculations could be impacted. Moreover, the actual
confirmations in condensed phases could be very different, where the interaction as well as the
electronic nature of the surrounding molecules could affect the geometrical structure. The geometry
of the complexes was planar, where phenyl rings of the base and the acids were in the same plane.
Recently, our group reported that [76] the molecular geometry of the H-bonded complexes might
highly influence a certain mesophase behavior. The terminal intermolecular aggregations resulted
from the change of the conformation by introduction of the terminal alkoxy chains, which play an
important role for mesophase enhancement. The competitive effect of this interaction due to the
terminal chain aggregation and the carbonyl ester, in addition to the lateral cohesive interactions,
was highly impacted by the length of the terminal alkoxy chain. Moreover, increasing the core length
(especially for complex I/III) and the number of side chains helped to induce mesophase formation.
Furthermore, it widened the temperature range of the observed mesophase; this was clear in the phase
transitions of I/III (Table 2). In our present work, these supramolecular complexes showed a nonlinear
(U-shape) geometry which estimated DFT theoretical calculations. The calculated thermal variables,
dipole moments and polarizability of both estimated U-shaped structures of SMHBCs I/II and I/III
were illustrated in terms of the experimental data of the investigated mesophase, type and stability.
The findings could be clarified in terms of the Π-Π aromatic stacking and the association of the flexible
alkoxy chains. In general, the effective staking of the aromatic rings could be stabilizing the structure
more than the aggregation of the terminals. The pronounced terminal interaction could be a good
clarification for the observed nematic mesophase rather than the lateral interaction that enhances the
smectic phase (Figure 3).

The predicted data of the DFT theoretical calculations for thermal variables, the polarizability and
dipole moment of the individual compounds Ia, Ib, II, III and their supramolecular complexes I/II
and I/III are tabulated in Table 3. As shown from Table 3, the stability of the base was dependent on
the orientation of the N-atom with respect to the direction of the N=N bond, where the conformer
Ia showed more stability than Ib. Moreover, the H-bonded formation of the complex enhanced
the calculated thermal energy. The number of aromatic rings of the carboxylic acid affected the
stability of the H-bonding complexes, where, as the number of aromatic rings increased the packing
of the molecules by stacking of the aromatic rings increased, and this resulted in an increment in
the thermodynamic stability of the molecules [63,66,67,76–79]. It is noteworthy that there was no
effect of the H-bond formation on the dipole moment. However, the polarizability of the investigated
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compound was highly affected by the H-bond formation 318, 182 and 318 for the individual base I and
acids II and III, respectively, and increased to 565, 706 Bohr3 for the H-bonded complexes I/II and I/III.
The high polarizability of the complex could be predicted to have the best characteristics in nonlinear
optics (NLO) applications.
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their supramolecular complex (e) I/II and (f) I/III; (•) C-atom; (•) O-atom; (•) N-atom.

Table 3. Thermal parameters (Hartree/Particle) and dipole moment (Debye) of the base Ia and Ib, acids
II and III and their supramolecular complex I/II and I/III.

Parameter Ia Ib II III I/II I/III

Ecorr 0.74 0.73 0.35 0.44 1.08 1.17

ZPVE −1711.82 −1711.82 −810.17 −1150.57 −2522.02 −2862.42

Etot −1711.78 −1711.78 −810.15 −1150.54 −2521.96 −2862.35

H −1711.78 −1711.78 −810.15 −1150.54 −2521.96 −2862.35

G −1711.91 −1711.91 −810.22 −1150.63 −2522.14 −2862.55

Total Dipole Moment 5.2 7.7 4.3 5.3 4.6 4.2

Polarizability α 474.0 473.3 182.5 318.2 676.8 820.2

ZPVE: sum of electronic and zero-point energies; Etot: sum of electronic and thermal energies; H: sum of electronic
and thermal enthalpies; G: sums of electronic and thermal free energies.

3.4. Frontier Molecular Orbitals and Molecular Electrostatic Potential

The projected ground state isodensity surface projection for the FMOs, HOMO and LUMO, as well
as their energies difference (∆E) of I, II and III and their supramolecular complexes I/II and I/III are
shown in Figure 4. Many parameters such as chemical hardness (η) and the global softness (S) might
be calculated from the energy gap between HOMO and LUMO of I, II, III, I/II and I/III. These values
were calculated as follow:

The hardness:
(η) = (I − A)/2 (1)

The global softness:
(S) = 1/∆E (2)

where I is the ionization energy and A is the electron affinity, (I − A) = (ELUMO − EHOMO).
The predicted softness estimated the aptitude of the π electron cloud of more the polarizable

compound to be distorted by any interruption during by any chemical reaction associated with an
electronic transportation. However, hard less polarizable compounds are rigid enough to resist
transfer of electrons. As shown from Table 4, the FMO energy difference and the global softness
(S) chemical hardness (η) were significantly affected by the H-bond formation of the complexes I/II
and I/III. The H-bond formation between the acid and the base decreased the energy difference
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between FMOs (HOMO and LUMO), ∆E = 85.97, 117.34 and 79.07 kcal/mol for the base and acids,
respectively; however, it decreased to 73.42 and 67.77 kcal/mol under complex formation for I/II and
I/III, respectively. Moreover, the formation of the complex increased the global softness to 0.014 and
0.015 for I/II and I/III instead of 0.012, 0.009 and 0.013 for the base I and acids II and III, respectively.
Moreover, the presence of the extra-conjugation of the azo group N=N of the acid III increased the
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Table 4. Molecular orbital energies, hardness (η) and global softness (S) of base I, acids II and III and
their supramolecular complex I/II and I/III.

Compound EHOMO
(Kcal/mol)

ELUMO
(Kcal/mol)

∆E(ELUMO − EHOMO)
(Kcal/mol)

η=
∆E(ELUMO − EHOMO)/2 S = 1/∆E

I −149.97 −64.00 85.97 42.98 0.012

II −151.86 −34.51 117.34 58.67 0.009

III −143.70 −64.63 79.07 39.53 0.013

I/II −142.44 −69.03 73.42 36.71 0.014

I/III −137.42 −69.65 67.77 33.89 0.015

The charge distribution map for I, II and III and their supramolecular complex I/II and I/III was
predicted according to the molecular electrostatic potential (MEP) under the same basis sets (Figure 5).
For the negatively charged atomic sites, the red region was located over the aromatic rings and its
maximum localized on the carbonyl oxygen of the H-bonded COOH, while alkoxy chains were the
blue regions, the least negatively charged atomic sites. Figure 5 shows that there was a considerable
impact of H-bond formation on the mapped charge distribution. Recently, our group showed the
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relation between the extent and orientation of the mapped charges and the degree of the lateral and
terminal interactions [39,41–50]. Such interactions could be used to explain the reason for the variation
of the type of the enhanced mesophase in terms of the competitive attractions between end-to-end
and side-to-side.
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Figure 5. Molecular electrostatic potentials (MEP) of (a) base I, acids (b) II and (c) III and their
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3.5. Refractive Index Measurements

An Abbe refractometer, from Bellingham, England, with a thermostat heating control unit within
±0.1 ◦C, was used to determine the refractive index at certain degrees of temperature. The compounds
used were exposed to a He-Ne laser source of linearly polarized light (543 nm). The prisms of the Abbe
refractometer were modulated for obtaining the planar and homeotropic alignment for measuring
no and ne of the LC sample, respectively. The refractive indices no and ne for the compounds (I, II,
I/II and I/III) were measured during the cooling process with an accuracy of ±0.0005, as in Figures 6–9.
It is obvious that as the temperature increased, the values of no increased with decrement in ne values.
The sample III needs a high temperature to turn into the liquid crystalline phase, so that the Abbe
refractometer cannot measure its refractive indices.
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The effective geometry αeg parameter represents the spreading of light in the liquid crystals which
can be obtained by the following equation [80]:

αeg =
no

ne
(3)

Figure 10 shows that the values of αeg for compound I, II, I/II and I/III increased with increment
in the temperature in the LC mesophase. At the isotropic phase, the αeg reached unity because of the
lower molecular orientation ordering of the material.
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3.6. Birefringence Measurements

3.6.1. Measuring Birefringence by Using Abbe Refractometer

Birefringence ∆n of the LC is one of the essential parameters for LCs, which affects the operation
of the electro-optic devices [81–83]. Figure 11 shows the values of ∆n = ne − no for the compounds I, II,
I/II and I/III, which were obtained by measuring no and ne at a variable temperature by using a laser
light source of wavelength (543 nm). It was noticed that as the temperature increased, the ∆n values
decreased gradually [81–86].
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dispersion relation.

The values of birefringence for the individual compounds I and II were greater than that of the
supramolecular complex I/II and I/III. The linear geometries of samples I and II caused an enhanced
orientational director order, thus increasing the birefringence, while the nonlinear (U-shape) geometries
of supramolecular complexes I/II and I/III (as shown in Figure 3) caused a decrement in the director
order and birefringence. Additionally, the degree of packing of I/III was higher than that of I/II due
to the long aromatic moiety of azo acid III with respect to the alkoxy acid II which caused a higher
increase in the value of ∆n for I/III than that of I/II, as shown in Figure 11. The values of ∆n were
plotted with the best fit in Figure 11, where the dots are the values calculated from the measured no

and ne, and the solid line corresponds to the fitting of the curve using the relationship of dispersion
of Cauchy.

3.6.2. Measuring Birefringence by Using Modified Spectrophotometer

Birefringence and the transition temperature for LC can be detected from the transmittance
spectra during the processes of heating and cooling by using the modified spectrophotometer (MS)
technique, as shown in Figure 12 [19,20]. The optical setup consists of diffraction grating (D), rotating
disc (Sample, blank, shutter) (R), the mirror (M), the beam splitter (B), the polarizer and analyzer
(P1 and P2), respectively, and the sample (S) was put into the electric oven with the unit of heating
control rate 1 ◦C/min. Each sample was placed between two slices of the glass separated by four joints
of 30 µm thickness in a uniform planar orientation with a parallel director to the cell walls. The edges
of the LC cell were sealed with a heat resistant adhesive to avoid the leakage of the material during
heating process. The sample cell in the electric oven was placed between two polarizers. The reference
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cell was also put between two polarizers, as shown in Figure 12. The intensity of the transmitted light
was measured by the (MS) technique as a function of wavelength (200–800 nm) at certain temperatures
for compounds I, II, I/II and I/III during heating and cooling temperatures.
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Figure 12. Optical set-up of the modified spectrophotometer (MS) technique for measuring the
transmittance and phase transition of LC samples, with diffraction grating (D); rotating disk (R);
mirror (M); beam splitter (B); two polarizers (P1 and P2); and the sample (S) inside electric oven.

Figure 13 indicates the difference in light transmittance at various temperatures with wavelength
during the cooling process for the LC sample (I/II) as a representative sample of the data obtained,
where the sample was placed between two crossed polarizers. This shape exhibited that the
transmittance directly increased from 450 to 550 nm in wavelength and then became almost constant.
The increasing transmittance during the LC phase was attributed to the orientational order of the
mesogens. The phase transition was measured using the (MS) technique, and the results obtained
were consistent with those measured by (DSC) and (POM) methods.
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Birefringence (∆n) was calculated from the light transmittance of the sample in the LC phase as
follows [22,23,34–36]:

∆n =
λ
πt

sin−1

√
T⊥(λ)
T‖(λ)

(4)

where T‖ and T⊥ are the transmission of light produced when the sample was placed between two
parallel and crossed polarizers. The values of T⊥ and T‖ at such temperature and wavelength were
measured for compounds I, II, I/II and I/III by using the (MS) technique. The sample thickness t
was measured using a traveling microscope which was 30 µm. The values of ∆n of compounds I, II,
I/II and I/III in the LC phase under certain temperatures were measured by using a laser source of
wavelength 543 nm, as listed in Table 5. These results are equal to the obtained values of ∆n by using
the Abbe refractometer within the error (±0.005) at the same wavelength and temperature degrees.
The (MS) technique enabled us to measure the birefringence directly by knowing the transmission
coefficients at different wavelengths.

Table 5. The values of birefringence ∆n (by using the MS technique at 543 nm), ∆no and β constant for
all compounds.

Sample ∆n Temp. (100 ◦C) ∆no β

I 0.18 ± 0.05 0.35 0.12

II 0.23 ± 0.05 0.55 0.32

I/II 0.16 ± 0.05 0.21 0.02

I/III 0.17 ± 0.05 0.38 0.34

3.7. Order Parameters Measurements

The phase transition in the liquid crystal at the transition point TC (the clearing temperature
point) was accompanied with the emergence of some physical quantities such as microscopic and
macroscopic order parameters. The microscopic order parameter S, which is responsible for the atomic
displacement at the phase transition point TC, was calculated from the measured values of refractive
indices (ne and no) of the LC compounds I, II, I/II and I/III by applying the hypothesis of Vuks as
follows [87]:

S
(∆α
α

)
=

(
n2

e − n2
o

)
〈
n2〉− 1

(5)

where α and ∆α are the mean molecular polarizability and the anisotropy polarizability, respectively.
The scaling factor ∆α/αwas obtained by using Haller’s extrapolation method, and by substituting in
Equation (5), the order parameter S could be calculated for each sample [20,21,83]. Figure 14 shows the
correlation between S and ∆n for the compounds I, II, I/II and I/III, which was directly proportional.

In addition, the macroscopic order parameter can describe some physical properties such as
polarization vector and elasticity of the mesogens in the liquid crystal phase. The macroscopic order
parameter Q was related to the birefringence ∆n and ∆no in the LC and crystalline phase, respectively,
as follows [28,29]:

Q =
∆n
∆no

(6)

where the value of ∆no (at T = 0 ◦C) can be obtained by using the Haller formula as follows [19–26]:

∆n = ∆no

(
1−

T
Tc

)β
(7)

TC is the transition point (the temperature transition from LC to the isotropic phase) and β is
the material constant. From the relation between ∆n and Ln(1−T/TC), the values of ∆no and β were
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obtained for all samples, as shown in Table 5. As shown in Figure 15, the correlation between Q and
∆n appeared directly proportional for the compounds I, II, I/II and I/III.Crystals 2020, 10, x FOR PEER REVIEW 17 of 23 
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Figure 15. Variable of macroscopic parameter (Q) with birefringence (∆n) for all samples used.

It was noted that the values of S and Q for the samples I/II and I were greater than those for the
compounds I/III and II. This behavior may be attributed to the fact that TC for I/II and I was measured
at the transition from the Smectic to isotropic phase, while for I/III and II, TC was measured at the
transition from the nematic to isotropic phase, which changed the results for the different orientational
order parameters for each compound.

It is well known that the mesomorphic and optical activities for certain liquid crystalline compounds
depend mainly on mesomeric properties, intermolecular interactions and the stereo conformation of the
molecule. In our present study, supramolecular H-bonded complexes, I/II and I/III, the association of
the angular molecules and consequently, their mesophases stabilities depend mainly on several factors,
namely: 1. Lateral adhesions of molecules that increase with the alkoxy-chain length. 2. Molecular
geometry which varies according the planarity of complexes. 3. The steric effects. 4. End-to-end
interaction that varies according to the polarity of the terminals and consequently, the polarizability of
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the whole complex. Comparing the thermal stabilities of prepared SMHBCs (I/II and I/III) indicates
that all of these parameters (polarity, polarizability, coplanarity), do not have similar effects on the
mesomorphic and optical behavior in these investigated complexes.

4. Conclusions

Mesomorphic and optical characterizations were carried out by DSC and polarized optical
microscopy (POM) for the compounds I, II and their mixtures (I/II and I/III). The theoretical calculations
were performed by the DFT method to predict the geometrical conformation for the present complexes
as well as their thermal parameters. Computational calculation results revealed that the H-bonded
complexes were of an angular structural shape. Ordinary and extraordinary refractive indices were
determined by using the Abbe refractometer technique at different temperatures in the LC phase.
Birefringence was also calculated from the difference between the measured data of ne and no and from
the transmittance of light at the LC phase of each sample between two crossed and parallel polarizers
by using a modified spectrophotometer. The values of birefringence for the individual compounds
I and II are greater than that of the supramolecular complex I/II and I/III because of the higher
planarity of the individual compounds than that of the coplanar supramolecular complex. Additionally,
the values of ∆n for I/III were higher than that for I/II due to the long aromatic moiety of azo acid III
with respect to the alkoxy acid II, which affects their degree of packing ability. In spite of the higher
phase transition temperature decreases for supramolecular complexes than individual compounds,
birefringence decreases also. The values of birefringence for the individual compounds I and II are
greater than that of the supramolecular complexes I/II and I/III because of the nonlinear (U-shape)
geometrical structure of the supramolecular H-bonded complexes. Microscopic and macroscopic order
parameters were determined at different temperatures and briefly discussed. Finally, the polarity,
polarizability and coplanarity estimated parameters from DFT calculations do not have similar effects
on the mesomorphic and optical behavior of the investigated supramolecular complexes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/8/701/s1,
Figure S1: DSC thermograms of 1:1 SMHBCs (a) I/II and (b) I/III at heating rate 10 ◦C/min upon heating and
cooling cycles.
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