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Abstract: This study investigates the evolution of different grain boundaries in two-dimensional
wet foam (2D) together with the width and the roughness of the interface. The foam around the
boundaries coarsened and became disordered. The level of the disorder increased with time over
a range and is consistent with the results from previous studies on relatively ordered soap froths.
Although the misorientation angle comprising the grain boundaries did not affect the evolution of the
foam, the nature of the system boundaries had a significant effect on the degree of the disorder along
the grain boundaries. This result is in good agreement with earlier published simulation results.
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1. Introduction

Disordered 2D foams are known to contain grain boundaries between the domains of the crystal
arrays of bubbles, as well as substitutional point defects. The evolution of these grain boundaries in
the context of 2D soap froths may be of interest, but the lack of studies concerning this domain is a
major disadvantage. Earlier experiments and simulations were performed on the dynamic behavior
of grain boundaries in soap bubble rafts as a function of the angle of disorientation between the two
domains [1].

Several theories have been reported on grain boundaries in crystals. However, none of
these theories have been entirely effective in explaining the overall properties of grain boundaries.
Although the width of grain boundaries was well addressed in these theories, the explanation of the
energy of the boundary failed [2,3]. On the other hand, the dislocation theory of grain boundaries has
precisely identified the atomic arrangement and has enabled the energy of the grain boundary to be
calculated as a function of the misorientation between the two crystals separated by the boundary [4–6].
The theory, however, does not provide a satisfactory explanation of mechanical behavior, except in the
very limited case of the asymmetrical low-angle boundary [7–9]. In principle, the width of a grain
boundary is affected by the difference in orientation between the two crystals it separates. When this
difference is low (a smaller number of dislocations and the grain boundaries region is not compact),
it leads to relatively wide boundaries with a width that depends on the value of the misorientation.
When the difference in orientation is large (a greater number of dislocations and the grain boundaries
region is compact), the boundaries are narrow, and the width is hardly affected by changes in the
misorientation. To study the properties of a grain boundary in more detail, an experimental model was
realized in the bubble raft model using two identical bubbles forming a 2D-crystal. When such arrays
are joined together, the boundary between them is regarded as a one-dimensional grain boundary.
A limitation of this 2D-model is that only simple tilt boundaries can be studied. Their structures are
studied as a function of the difference in orientation between the two rafts [10].

Fukushima and Ookawa et al. [11] created a boundary by applying torsional stress to a single
crystal raft, whereupon dislocations formed at the edges and traveled inward to create a boundary.
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The authors observed boundaries similar to the two types found by Lomer and Nye [10]; the symmetrical
dislocation type gives way to the random misfit type at a misorientation of 15◦–20◦.

A variety of grain boundary studies have been explored [12,13], but these studies provided very
different attention from the current work. The studies concerned the modeling of grain boundaries in
materials, building on the ground-breaking use of the bubble raft similar to a 2D crystal rather than the
present concern with the evolution of the wet foam.

Z. Zhang and X. Zou et al. [14] demonstrated that dislocations and grain boundaries in the 2D
metal can advance the material by giving it a qualitatively new physical property, magnetism, while
N. Hansen and X. Huang et al. [15] investigated the effect of grain boundaries and grain orientation on
structure and properties.

Our 2D foam model contains wet bubbles that connect the surface of a soap solution and a glass
cover plate of a few mm above the solution. This cover prevents gas loss from the bubbles to the
atmosphere so that the wet foam has an unlimited life span, allowing its growth to be examined over
long periods. The bubbles are flattened by buoyancy giving the raft a constant thickness, thus making
it a suitable 2D wet foam pattern.

Finally, Z. Huang and M. Su et al. [16] established an approach to manipulate the growth of 2D
wet foams with a micropatterned surface. According to their studies, 2D wet foams can grow beyond
the so-called Ostwald ripening when huge bubbles override smaller ones.

The current study presents a brief review of the grain boundaries. Details of the experimental
methods used to create different types of 2D foam grain boundaries are presented, and their behaviors
towards other interfaces in disordered media are compared [17–20].

2. Experimental Methods

All the information about the 2D foam, such as the area of bubbles, coordination number, etc.
were obtained from recorded images of the foam using the actual optical images from the Voronoi
diagram. The latter emphasizes the use of a photographic camera by applying an enhanced contrast.
The prints are then analyzed manually or using an image processing system.

In the current study, the dislocations were studied in two situations. The first situation comprised
the wet foam as contained in the hexagonal cells (hard cell), where the following two types of grain
boundaries are formed: the grain boundary loop and the incommensurate grain boundary. The grain
boundary loop is surrounded by a latticelike domain misoriented to the regular wet foam occupying
the remaining parts of the cell (Figure 1).
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The incommensurate grain boundary comprised a quasi-linear grain boundary between two areas
of ideal wet foam composed of different sized bubbles (Figure 2).



Crystals 2020, 10, 703 3 of 12
Crystals 2020, 10, x 3 of 12 

 

 
Figure 2. A picture of a 2D wet foam containing an incommensurate grain boundary. 

The second case used a new soft deformable cell (rubber band cell) in which relatively low angle 
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The proposed method allowed the creation of a large perfect crystal by restricting the 2D foam 
to a hexagonal shape, which helped to enforce the desired symmetry. The soap solution used in all 
the experiments was made from water and liquid detergent in the ratio 90:10. The equipment used 
for preparing the soap solution was washed to prevent impurities, which could destabilize the foam. 
Fairy liquid detergent was chosen for the stability of the foam formed. The system consisted of a glass 
tray of dimensions 450 × 350 × 60 mm3 which contained the soap solution. This was set horizontally 
on a lightbox to provide uniform illumination. A horizontal metal plate (250 × 250 mm2) containing a 
hexagonal hole of several centimeters on one side was placed in the solution. The metal plate was 
supported on four legs so that its upper face was 1–3 mm above the surface of the soap solution. The 
glass tray had a drain hole with a valve for effective control of the level of the solution inside it. The 
metal plate supported a glass cover of dimensions 200 × 200 mm2. 

The 2D foam was formed by bubbling N2 (N2 has low solubility which causes slow coarsening) 
into the solution below the hexagonal hole via a long hypodermic needle of suitable diameter. The 
bubbles were attracted to the wall of the cell and to each other by comparatively long-range forces 
due to surface tension, while at small distances there were strong repulsion forces. Different 
hypodermic needles were used to collect bubbles of different diameters; in addition, cells with 
hexagonal holes of different dimensions were used to study the effects of system size. Different types 
of 2D foam model, such as perfect foams (all bubbles 6-coordinated) and those grain boundaries, 
required different techniques for their creation. 

Figure 2. A picture of a 2D wet foam containing an incommensurate grain boundary.

The second case used a new soft deformable cell (rubber band cell) in which relatively low angle
grain boundaries between areas of ideal foam of equal size bubbles were formed, as presented in
Figure 3. In the following, the formation of all types of the aforementioned grain boundaries is defined.
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The proposed method allowed the creation of a large perfect crystal by restricting the 2D foam
to a hexagonal shape, which helped to enforce the desired symmetry. The soap solution used in all
the experiments was made from water and liquid detergent in the ratio 90:10. The equipment used
for preparing the soap solution was washed to prevent impurities, which could destabilize the foam.
Fairy liquid detergent was chosen for the stability of the foam formed. The system consisted of a glass
tray of dimensions 450 × 350 × 60 mm3 which contained the soap solution. This was set horizontally
on a lightbox to provide uniform illumination. A horizontal metal plate (250 × 250 mm2) containing a
hexagonal hole of several centimeters on one side was placed in the solution. The metal plate was
supported on four legs so that its upper face was 1–3 mm above the surface of the soap solution.
The glass tray had a drain hole with a valve for effective control of the level of the solution inside it.
The metal plate supported a glass cover of dimensions 200 × 200 mm2.

The 2D foam was formed by bubbling N2 (N2 has low solubility which causes slow coarsening) into
the solution below the hexagonal hole via a long hypodermic needle of suitable diameter. The bubbles
were attracted to the wall of the cell and to each other by comparatively long-range forces due to
surface tension, while at small distances there were strong repulsion forces. Different hypodermic
needles were used to collect bubbles of different diameters; in addition, cells with hexagonal holes
of different dimensions were used to study the effects of system size. Different types of 2D foam
model, such as perfect foams (all bubbles 6-coordinated) and those grain boundaries, required different
techniques for their creation.

The hexagonal cell was filled by bubbling N2 through a needle as it was swept in a closed path
following the cell walls. The filling continued until the area adjacent to the walls attained a maximum
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width of 5–7 bubbles. The next step was to generate an isolated ideal foam patch of the same size of
bubbles in the center of the hexagonal cell where the patch slowly spreads towards the foam in contact
with the wall of the cell. On the other hand, the bubbling N2 was stopped as soon as there was contact
between the two areas of the foam. One or two dislocations might appear in an anticipated manner
inside the internal or external lattice around the loop of the grain boundary but could conveniently
be removed by manipulation. Moreover, it was not possible to form two misoriented areas of ideally
6-fold coordinated bubbles within the hexagonal hard cell. The only grain boundary that could be
formed, apart from the loop just described, was that between two different size bubbles.

The overall filling process was completed in two stages. First, the cell was partly-filled with
bubbles of the same size. Upon filling half of the hexagonal hole, the needle was replaced by a different
gauge. The rest of the cell was then filled with the ideal foam of different bubble sizes. The two areas
of the foam were ultimately in contact with each other through a line of dislocations. The number of
dislocations in the latter depends on the difference in bubble size, provided little difference gives a
small number of dislocations; a very small difference yields a bending line of bubbles instead of a line
of dislocations.

Moreover, a modified approach is required to create a grain boundary between two misoriented
areas of hexagonal foam of different size bubbles. A cell comprising two parts is required to form an
ideal foam, with which each part should be half a hexagon (a quadrilateral with base angles of 120◦),
and the two parts should be misoriented by a slight angle to each other. Unlike the hexagonal hard cell
used in the investigation of the loop and incommensurate grain boundaries, the boundary of this new
cell was deformable (made by a rubber band:“soft boundary”), Figure 3. We believe that this “soft
boundary” condition explains certain differences in the behavior of the “hard boundary” condition
of the previous case, which will be discussed below. The same experimental method described in
the case of “incommensurate grain boundaries” was adopted; first, one of the sides of the cell was
filled with bubbles, and then a grain boundary between two domains of bubbles of different sizes was
created. In the extreme case where the cell was deformable, the same method was used to create a
grain boundary between two domains of similar-sized bubbles.

3. Results and Discussion

A series of experimental studies on the evolution of the various types of grain boundaries in an
ideal hexagonal wet foam were conducted. Here, the different properties of the grain boundaries such
as the evolution, the effect of the nature of the boundary conditions, and the angular misorientation of
the domains will be discussed. In addition, the width and roughness of the interface between the two
domains for the different types of grain boundaries was explored.

To study the evolution of the boundary, the whole stripe of dislocations forming the grain boundary
was considered as a single defect. Then, the previous definition [21] of the cluster as the set of bubbles
around the defect with at least one nonhexagonal neighbor, plus the belt of 6-coordinated bubbles
denoted as (nc) separating any pair of dislocations along its line was adopted. The disorder around the
initial dislocations, which forms the grain boundary, appeared in the early stages of the experiment and
increased due to coarsening. The first observable changes occurred around the individual dislocations.
This disorder propagated outwards with time. As the grain boundary evolved, a gradient of cell
size developed in the spreading direction. Generally, the size of the bubbles increases as the distance
to the original boundary decreases, but for this study, due to the wetness of the foam (lack of T1

process), several small bubbles appeared close to the largest bubbles. This result is in agreement
with the previously reported simulation results [22] and experiments [23]. Time (t) is an independent
variable in the simulations [17,18]. In our experiments, other factors influenced the time evolution of
foams containing dislocations. The simulations suggested increased cluster sizes with time [17,18].
This suggests that the number of bubbles in the cluster (nc) can be used as the independent variable,
instead of time itself. Although it cannot be stated as a fact that nc depends linearly on t (such as the
case for at least certain types of defects in simulations; [17]), it provides a measure of the temporal
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evolution of the system. The number of bubbles in the cluster (nc) was adopted as an independent
variable, similar to the previous definition [21]. A relatively smooth relationship was obtained by
plotting the number of bubbles nc as a function of time. The actual rate of growth within every
experiment differs for different sizes of hexagonal cells, different numbers of bubbles inside the cluster,
and different initial numbers of dislocations.

For both types of incommensurate and loop grain boundaries, the growth rate of the wet foam
about the boundaries depends on the original number of dislocations in the cell. It reveals that the
higher the number of dislocations, the higher the compactness of the 2D foam and the thinner the
liquid films between the bubbles forming the grain boundaries, leading to rapid evolution and the fast
disorder. Our data are related to three experiments which have different degrees of compactness.

A Mathematica program was used to construct the Voronoi diagram of the foam allowing the
computation of the distribution of the number of sides of bubbles. A foam in 2D can be characterized
by the statistical distributions P(n) of the numbers of sides of bubbles. It is easy to measure P(n) with
an exact mean of 6 with the assumption of threefold vertices. The function usually has a simple shape
with a single peak at n = 6, so the specification of its second moment (µ2) is usually sufficient to describe
it for practical purposes.

µ2 =
∑

n
(n− 6)

2
P(n)

Figure 4 displays the topological class distribution P(n) of the cluster and its evolution for one
experiment, where the foam was compact. As seen, the peak of the distribution remained at n = 6,
while the cluster ages P(6) decreased, and the tail of P(n) spread towards larger values of n. The general
features of this distribution are similar to those of 2D foam [24,25]. However, they differed from
the many 2D cellular network types: specifically, P(6) was always quite high and with a significant
population at n = 3. These wet 3-coordinated bubbles were very small and inclined towards the large
bubbles. The vanishing of these small bubbles by the T2 process was somewhat inhibited by the slow
diffusion of N2 to neighboring bubbles due to the small contact area [19,23].
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Vaz and Fortes [23] claimed that the peaks in µ2 such as those obtained in Figure 5 were due
to the interaction of growing clusters of disorder around disjointed dislocations. In fact, for these
grain boundaries, the detected peaks arose when the disorder regions growing around the separated
dislocations interrupted each other.

The increase in disorder reflected by the widening of P(n) can be characterized through the
temporal evolution of µ2, as shown in Figure 5 for the three sets of data. Principally, µ2 increased to
high values with t but ultimately decreased due to the disappearance of 3-fold coordinated bubbles.
Since the data represent three different experiments, the higher initial number of dislocations was
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found to represent the higher degree of disorder along the boundary. These observations are in
good agreement with the results reported in the case of a single dislocation, in particular, separated
dislocations [25]. As µ2 reached a rather small value for the cluster containing a single dislocation,
its size increased in the case of pair dislocations. This value reached a maximum when the dislocation
pair separated due to the interaction between the two clusters surrounding the original dislocations.
In principle, a grain boundary exhibited more than a single pair of specially separated dislocations.
Thus, a very high degree of disorder was expected in later times. The latter agrees with the fact that
the fewer the original number of dislocations comprising the grain boundary, the larger the area of the
6-sided belt and the slower the growth of the foam.
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Referring to the data of grain boundary loops in the usual hexagonal cell, and as mentioned
in the experimental methods, the bubbles, in this case, were of the same size. This type of grain
boundary behaves exactly like the incommensurate grain boundaries with different sizes of bubbles.
As expected, the peak of P(n) remained at n = 6, with its tail extending towards larger values of n at
later times (n >10). Figure 6 shows a smooth monotonic increase in µ2 with nc, similar to the case
of incommensurate grain boundaries. However, µ2 eventually declined, which is in agreement with
previous simulations [17].
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Typical analysis was followed for different experiments of the grain boundary, which had different
sizes of bubbles in each of the soft-sided regular and deformable cell. In general, the degree of the
disorder appeared relatively less than that observed in the case of the incommensurate grain boundary
in the hard boundary cell. However, the misorientation angles did not affect the behavior of the
grain boundary.



Crystals 2020, 10, 703 7 of 12

The irregularity of the soft cell allowed the creation of a grain boundary separating the two halves
of the foams inside the cell, where the size of the bubbles was the same. The behavior of this type differs
from that previously mentioned; an increase in time presents no significant change in the bubbles
which form the boundary. The delay of bubbles evolving is due to both the soft boundary of the cell
and the bubbles, which have the same size.

Furthermore, one could wonder about why the foam in the cell with a hard boundary reached a
higher degree of disorder than the soft boundary.

One possibility could be the difference in the grain boundary angle concerning the incommensurate
grain boundary in the hard-sided cell when the misorientation is zero (θ = 0), whereas for the grain
boundaries studied in the soft-sided cells where (θ = 0) in one experiment and (θ , 0) in the
other experiments, the evolution of the foam did not indicate a great difference between both cases.
In addition, the variation of µ2 with nc for grain boundary loops in the hard-sided cell was very similar
to that for the incommensurate grain boundaries, indicating that θ plays a fairly significant role in
the growth of disorder. Thus, we hypothesize that the difference between the cells affects evolution.
Considering the latter, two parameters were put forward that could intervene in the difference in
the evolution of the foam: the size of the cells and the boundary conditions. For the first parameter,
the hard-sided hexagonal cell used in most experiments was 6 cm on a side, whereas the soft-sided
cell was 10 cm. The experiments of the hard and soft boundaries were repeated for a 10 cm cell.
Since the size of the cell did not affect the evolution of the 2D wet foam, the boundary conditions were
regarded as the origin of the difference in the evolution of the foam. In addition, the foams in this study
were in a state of attraction together with the tension. However, in the case of a hard boundary cell,
the walls exerted a further homogeneous tension. In contrast, in the soft boundary case, the boundary
comprised an elastic material that could yield and deform in response to the tension within the foam.
The evolution of the bubbles caused strains within the foam, which could be, in the latter case, more
easily accommodated within the entire system (foam + cell) by bending the boundaries.

The difference between the two cases indicates the difficulty in forming a model, which could
adequately mimic the real physical system. A given subset of bubbles in a real foam of great extent
will presumably correspond more closely to our “soft” boundary conditions rather than the “hard”
ones used in most of the current work. The latter is attributed to the fact that the surrounding foam
can expand or contract in response to changes in the sample subset.

In literature, the topological correlation of 2D random cellular structures revealed that µ2 varies
with P(6) in a universal manner [26,27]. This relation is claimed to be the equivalent for random
tessellations of the virial equation of state in statistical mechanics [28,29]. While one might expect the
virial coefficients to vary from one case to another, depending on the form of P(n), the latter does not
seem to be the case in our current study. Data for a very wide range of 2D mosaics collapse on to a
universal curve which can be parameterized as expressed by Le Caer and Delannay [26].

µ2 P(6)2 = 0.150 ± 0.014 (1)

This implies that the various examined P(n) belong to a single universality class [28].
Contrary to a previous study [25], the relationship between P(6) and µ2 was examined, and the

data from all experiments for both hard and soft boundaries showed very strong collapse on the
same line (Figure 7). When compared with the case of point defects, the data had the same general
behavior where values higher than those stated by Lemaitre were obtained [27]. This similarity could
be due to the nature of the cluster of the grain boundary, which could reach a high degree of disorder.
We conclude that our findings vary greatly from Lemaitre’s law, although slightly closer in multiple
dislocations due to the high degree of disorder. Despite all outcomes, it is rather remarkable to notice
that while the clusters in this study have their initial conditions, the data still show a reasonable collapse
onto a common form. Seemingly, the initial conditions of the clusters have a slightly minor effect.
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As previously mentioned, the studied foams were ordered even in the late stages of the experiments,
and the large values of µ2 in the current study resulted from 3-coordinated bubbles, which in the case
of froth, disappeared through T2 processes. P(n) was further investigated for the entire foam in the
hexagonal cell in its final phases of evolution when the wet foam seemed generally very disordered.
In addition, µ2 and P(6) were investigated for some areas of foam in the initially ordered region (outside
the clusters), which became generally disordered; the data agree quite well with the trends shown
in Figure 8. The values of P(6) and µ2 fit excellently well with Equation (1) and ultimately, with the
previously reported results [22].

It is noteworthy to mention that as the Lemaitre law is valid only for foam in equilibrium, it is not
surprising that the clusters in this study do not obey this law.
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Many observations in real life could demonstrate interfacial motion in disordered media, which
represent interesting examples of the roughening process, i.e., of how interfaces propagate through
homogeneous media. For example, when coffee spills on a tablecloth, it spreads to give a certain shape
of the patch with a rough surface. In addition, when a sheet of paper is ignited at one end and kept
horizontal, it is partially burnt, and the roughness of the interface between the burned and unburned
parts will be apparent [29]. Motivated by the latter context, the foam invasion by the grain boundary
was considered, and the current approaches to such matters were briefly outlined. With an interface
propagating through a medium—for example—the edge of the burnt part of the paper was considered.
Thus, the interface was defined as the set of particles that were the “highest” at each position across
the system. If the lateral position is to be reduced to a set {i} of discrete points, two functions could be
introduced to quantitatively describe the growth:
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i. The mean height of the surface, 〈h〉, which is defined by

[h(t)] ≡
1
L

L∑
i=1

h(i, t) (2)

where h(i, t) is the height at lateral position i at time t, and L is the system size indicating the
number of positions across the system. If the rate of growth is constant, the mean height increases
linearly with time as

[h(t)] ∼ t (3)

ii. The interface width, which characterizes the roughness of the interface, is defined by the rms
fluctuation in the height,

W(L, t) ≡

√
1
L

L∑
i=1

[h(i, t) − [h(t)]]

2

(4)

To monitor the roughening process quantitatively, the width of the interface was measured as
a function of time. By definition, the growth begins from a line that represents the interface at time
zero with zero width. As growth evolves, the interface gradually roughens. A typical plot of the time
evolution of the surface width shows two regions identified by growth and saturation, separated by a
crossover time tx [29] as follows:

(a) The width grows as a power of time,

W(L, t) ∼ tβ, [t << tx] (5)

Generally, the exponent βis defined as the growth exponent which characterizes the time-dependent
dynamics of the roughness process.

(b) The width increase in the power-law crosses to a saturation regime.

Barabasi and Stanley et al. [29] plotted four different curves that correspond to the time evolution
of the width obtained by simulating systems with four different system sizes L. As L increases,
the saturation width, Wsat, increases accordingly, following a power law,

Wsat(L) ∼ Lα, [t >> tx] (6)

The exponent is defined as the roughness exponent, which is a second critical exponent that
characterizes the roughness of the saturated interface.

The crossover time tx depends on the system size,

tx ∼ Lz (7)

where z is defined as the dynamic exponent.
The data presented are from the two interfaces between the disorder about the grain boundary

and the areas of the ideal 2D foam. The data reveal that as time increased, the two surfaces of the grain
boundary moved outwards. At this stage, the width was redefined as h to describe the position of
the hexagonally coordinated bubbles representing the cluster edges. At certain points, and for a few
cases, the disorder extended into an order. Within the latter, the width was measured as the maximum
separation of two surfaces. The average value of the width, denoted as (〈h〉), was calculated from h at
the lateral positions of all 6-coordinated bubbles.
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Thus, Equation (2) is rewritten as

[〈h〉(t)] ≡
1
L

L∑
i = 1

h(i, t) (8)

where 〈h〉 is the width at a given position at time t, and L is the number of bubbles defining the surface.
Figure 9 shows the dependence of 〈h〉 on time (t) for the hard and the soft boundary cells,

respectively. It can be inferred from the Figure that at the early stages (below 40–45 h), 〈h〉 increased
linearly with t. On the other hand, 〈h〉 exhibited an evolution towards a saturation value above
40–45 h. These findings confirm the earlier reported results about the average rate of propagation of
the interfaces where h(t) is proportional with t to a certain limit [30,31].
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The rate of the propagation of the interfaces in the case of the hard boundary cell was found to be
larger than that for the soft cell. This reflects the fact that the foam in the hard cell reached a higher
degree of disorder than that in the soft cell. Since our media were 2D foam, and as time progresses,
the foam became very disordered, and eventually, the two surfaces showed a high degree of roughness,
the rms fluctuation in the width within the roughness of the interface defined by Equation (4), could be
reconsidered as

σh
≡

√
1
L

L∑
i=1

[h(i, t) − [h(t)]]

2

(9)

In the proposed foam, the interface at time zero was nearly one bubble width, fluctuating somewhat
at the i values, where dislocation occurred. As the growth (disordering) occurred, the interface gradually
roughened. A typical plot of the time evolution of the surface roughness initially had two regions:
(i) the roughness increased as the time increased due to the growth of the grain boundary, as illustrated
by Figure 10, and (ii) the bubbles comprised the interfaces adjacent to each other in a roughly straight
line, except for those containing the dislocations, which would be off the line. After a short time,
these bubbles started to evolve and become closer to each other and the line. This minimized the
roughness, but as time progressed, the disorder increased and the data evolved towards a higher
value. These general features were independent of the type of the cell, except that for the case of a soft
boundary cell, where the initial region extended to later times. The latter difference was related to
what was earlier reported; that is, as the disorder increased, the roughness also increased. Since the
degree of disorder in the case of soft grain boundaries was too low, the growth of the roughness would
also be low. The latter appeared quite significant in the late stages. When time was equal to zero (t = 0),
the interface was not exactly a straight line; thus, as the time increased, some bubbles would grow at
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the expense of other disappearing ones. Accordingly, the bubbles would become closer to each other
and the interface would evolve towards linear functionality. Our estimations agree quite well with
published results for the observed saturation state by calculating the roughness of the surfaces for
different lengths of the boundary [29].Crystals 2020, 10, x 11 of 12 
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4. Conclusions 

The evolution of grain boundaries in wet foams was studied. Different hexagonal cells, with 
regular (hard) and irregular (deformable) shapes, were designed to create models of 2D foam grain 
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in the final stages of the experiments. The relationship between P(6) and μ2 is in agreement with the 
Lemaitre law (Figure 8). Finally, the spread of the interface of the ordered wet foam bordering the 
grain boundaries and the roughening of the face between the two areas were as projected and the 
scaling of the roughening hypothesis tested (Figures 9 and 10). This provided a remarkable pattern 
of a roughening system. 
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4. Conclusions

The evolution of grain boundaries in wet foams was studied. Different hexagonal cells, with
regular (hard) and irregular (deformable) shapes, were designed to create models of 2D foam grain
boundaries. The exact behavior, which was observed in the case of low angle grain boundaries,
and between both a grain boundary loop and incommensurate grain boundary, suggests that the
misorientation angle does not affect the evolution of the wet foam. It is believed that the maxima in µ2

observed in Figures 4 and 5 are intrinsic to the evolution of the wet foam. In conclusion, the nature
of the boundary of the cell (hard or soft) significantly affects the degree of disorder achieved in
the final stages of the experiments. The relationship between P(6) and µ2 is in agreement with the
Lemaitre law (Figure 8). Finally, the spread of the interface of the ordered wet foam bordering the
grain boundaries and the roughening of the face between the two areas were as projected and the
scaling of the roughening hypothesis tested (Figures 9 and 10). This provided a remarkable pattern of
a roughening system.
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