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Abstract: This paper deals with the blast-resistant performance of steel fiber-reinforced concrete
(SFRC) and polyvinyl alcohol (PVA) fiber-reinforced concrete (PVA-FRC) panels with a contact
detonation test both experimentally and numerically. With 2% fiber volumetric content, SFRC and
PVA-FRC specimens were prepared and comparatively tested in comparison with plain concrete (PC).
SFRC was found to exhibit better blast-resistant performance than PVA-FRC. The dynamic mechanical
responses of FRC panels were numerically studied with Lattice Discrete Particle Model-Fiber
(LDPM-F) which was recently developed to simulate the meso-structure of quasi-brittle materials.
The effect of dispersed fibers was also introduced in this discrete model as a natural extension.
Calibration of LDPM-F model parameters was achieved by fitting the compression and bending
responses. A numerical model of FRC contact detonation was then validated against the blast test
results in terms of damage modes and crater dimensions. Finally, FRC panels with different fiber
volumetric fractions (e.g., 0.5%, 1.0% and 1.5%) under blast loadings were further investigated with
the validated LDPM-F blast model. The numerical predictions shed some light on the fiber content
effect on the FRC blast resistance performance.

Keywords: fiber-reinforced concrete; blast resistance; lattice discrete particle model-fiber; damage
mode; contact detonation

1. Introduction

Recent terrorist attacks in Boston (2013), Moscow (2011), London (2005), Madrid (2004), New York
(2001) and explosion accidents in Beirut (2020), Tianjin (2015) and San Juan Nico (1984) indicate
great vulnerability of concrete material civil infrastructures to possible explosive loadings [1–3].
To protect civilian lives from these threats and casualties, civil infrastructures should provide good
resistant performance against extreme loadings such as impact and blast. As the most widely used
construction material, plain concrete exhibits high compressive strength but relatively low tensile
strength, resulting in poor energy absorption capacity under extreme dynamic loadings. Incorporating
randomly distributed fibers into the cementitious matrix is one effective way to overcome this
defect [4–6]. The dispersed fibers in the matrix resist the crack initiation and delay its propagation,
which attribute to the composite material ductility. Hence, fiber-reinforced concrete (FRC) shows
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novel tension and bending performance, leading to enhanced energy absorption capacity under blast
loadings [7–9].

Many different types of fibers have been chosen as reinforcements added into the cementitious
matrix [10]. Some are high strength fibers, including steel, carbon and glass fibers, which can
effectively improve the strength of concrete. While others are low strength fibers like polyvinyl
alcohol (PVA) and polypropylene fibers which are more effective in ductility improvement and
cracking-resistance [11–13]. In recent literatures, it could be found that steel fibers and PVA fibers are
the most widely investigated in the field of construction materials, mainly due to their good mechanical
properties, perfect bond with cementitious matrix and relative low cost. Steel fiber-reinforced concrete
(SFRC), consisting of cementitious matrix and steel fibers with high tensile strength in the range of
850–2000 MPa, usually exhibits greatly boosted mechanical performance (i.e., compressive strength,
tensile strength, toughness, ductility) than normal plain concrete [14–16]. As a special type of SFRC,
ultra-high performance fiber-reinforced concrete (UHPFRC) presents great compressive strength over
160 MPa [17]. Owing to its superior qualities, SFRC provides a perfect solution for construction
material for infrastructure or protective shelter, where high strength and durability properties are
required. On the other hand, PVA fiber-reinforced concrete (PVA-FRC), made of cementitious matrix
and oiled PVA fibers [18], shows unique tensile strain-hardening mechanical behavior, i.e., high energy
absorption capacity. Therefore, PVA-FRC is also believed to resist impact and blast loadings [19].
This work chooses to comparatively investigate the blast resistance of SFRC and PVA-FRC panels.

Previously, most fiber reinforcement researches have dealt with the concrete mechanical properties
influenced by the fiber incorporation [20–23]. Naaman and Najm et al. have conducted extensive
works on the mechanisms of physiochemical bonding and mechanical anchorage in SFRC, while
Lee et al. focused on the pullout behavior of steel fiber in SFRC [24–27]. For PVA-FRC, many studies
were been carried out by using cost-effective materials or improving the material strain-hardening
behavior [18,28] to keep the balance between mechanical properties and cost. Since blast tests are
highly costive and even dangerous, only few works handled the blast resistance performance of
FRC by analyzing the effects of fiber content and fiber type [29–31]. It is widely acknowledged
that numerical simulation method could greatly increase research efficiency and reduce research cost.
For extreme loading tests, numerical simulation could also avoid the danger from the blast experiments.
Consequently, numerical modeling has become the main method studying the concrete behavior under
extreme dynamic loadings [32,33].

The recently developed Lattice Discrete Particle Model-Fiber (LDPM-F) was introduced herein
to investigate blast-resistant performance of FRC with different types of fiber reinforcements. LDPM
was designed to simulate the meso-structure of quasi-brittle materials through a three dimensional
(3D) assemblage of sphere particles[34]. As a natural extension for this discrete model to add the effect
of dispersed fibers to the meso-structure, LDPM-F incorporated this effect by modeling individual
fiber, randomly placed within the matrix according to a given fiber volume fraction [35]. LDPM was
good at simulating various features of the mesoscale material response, including strain softening in
tension, strain hardening in compression, cohesive fracturing and material compaction caused by pore
collapse. Material behaviors under extreme dynamic loadings could also be well predicted by LDPM,
e.g., the deep penetration in concrete, thick panel projectile perforation and Hopkinson bar tests [36].

In this work, SFRC, PVA-FRC and control plain concrete (PC) specimens were prepared and tested
with compression and bending. Sequent contact detonation tests were conducted to characterize the
blast resistance of SFRC and PVA-FRC. The blast simulation model with LDPM-F was established
with parameters calibrated by fitting the compression and bending responses. The model validation
was achieved by predicting the blast damage on the front and rear surface. Finally, behavior of
FRC panels with different fiber volume ratio (e.g., 0.5%, 1.0% and 1.5%) under blast loadings were
numerically investigated.
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2. Experimental Program

In this section, SFRC, PVA-FRC and control PC specimens were prepared and tested with
compression, bending and blast loading. For material characterization purpose, compression
specimens with a dimension of 40 mm × 40 mm × 40 mm and bending specimens with a
dimension of 40 mm × 40 mm × 160 mm of both FRC and PC were prepared and tested.
In sequence, anti-blast specimens of FRC and PC panels were also prepared with a dimension
of 600 mm × 600 mm × 100 mm, then contact detonation tests were carried out to identify their
blast-resistant performance.

2.1. FRC Preparation

According to previous work [31], the mix proportion used in this work was detailed listed in
Table 1. Portland cement (P.I 42.5) was used herein as cementitious material and fly ash was added
as mineral active fine admixture. Ground fine quartz sand worked as fine aggregate with average
diameter of 40 µm. To improve fluidity, high-performance water-reducing agent, polycarboxylate
superplasticizer (DC-WR2), was also added. For both PVA-FRC and SFRC specimens, samples were
prepared by incorporating 2% volume fraction steel or PVA fibers into the fresh cementitious matrix.
The fiber volume content of 2% is believed to improve the tensile property with good fluidity [31] since
higher fiber fraction usually causes flowability problem. The fibers used in this work were depicted in
Figure 1, whose detailed geometric information and mechanical properties were listed in Table 2.

In the preparation process, the dispersion of fibers was an important step in the mixing process,
which will directly affect the strengthening and toughening effect of the fiber on the cementitious
matrix [37–40]. Uneven dispersion can easily lead to performance degradation. Therefore, the influence
of mixing process on dispersibility was very important. The preparation process proposed in this
work was as follows: (1) First, add half of the calculated amount of water and a certain amount of
superplasticizer to the measuring cup, and stir manually until completely mixed solution is formed.
(2) Add cement and fly ash to the mixing container, then pouring the solution into the container,
followed by a stirring cycle of the automatic stirring for 240 s (first stirring at a low speed for 60 s,
then stirring at a high speed for 30 s, then pausing for 90 s, and finally stirring at a high speed for 60 s),
until the mixture appears in a clear slurry state. (3) Add the quartz sand to the slurry and stir a cycle.
(4) After pre-dispersion, fibers should be added into the mixing container slowly. Stirring two or three
cycles until the fibers are uniformly dispersed. (5) The mixed FRC was cast and compacted, sealed
with transparent plastic film. The mold was removed after air curing for 2 days, and cured in the
curing room for 25 days. The test was carried out after air curing for 1 day, and the surface treatment
of the specimen should be carried out before testing.

Figure 1. Fibers used for steel fiber-reinforced concrete (SFRC) and polyvinyl alcohol (PVA)
fiber-reinforced concrete (PVA-FRC).
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Table 1. Normalized mix proportion.

Cement Fly Ash Water Quartz Sand Superplasticizer

1.00 0.125 0.25 0.45 0.02

Table 2. Mechanical properties of fibers.

Fiber Type Diameter (µm) Length (mm) Density (g/cm3) Tensile Strength (MPa) Elastic Modulus (GPa)

PVA 30 12–15 1.30 1000 8
Steel 220 12–15 7.85 1200 200

2.2. Compression and Bending Tests

The quasi-static tests, including uniaxial compression (UC) and three-point bending test,
were carried out herein to investigate the fiber reinforcement effect on the compressive strength
and flexural strength of FRC specimens. Each specimen was cast with three samples with the average
values of the experimental results recorded for further discussion.

Uniaxial compressive tests were carried out with cubic specimens with 40 mm edge.
The dimension of the specimen and the test setup were shown in Figure 2. The compression tests were
conducted using MTS machine with controlled speed rate of 0.5 mm/min. Before testing, abrasive
paper was used to smooth the surface of the specimen for the purpose of specimen complete contact
with the loading plates. Thereafter, the average peak strength of the specimens was captured as listed
in Table 3.

Figure 2. Setup of the uniaxial compression test.

Quasi-static three-point bending test were conducted on the 40 mm× 40 mm× 160 mm specimens
and the test configuration was presented in Figure 3. The span was chosen as 120 mm, following the
experimental standard of mechanical properties of cement mortar [7]. The PC and FRC specimens
were tested under load speed of 0.1 mm/min with the peak load values recorded. The flexural strength
was calculated with f f = 3Fpl/(2bd2) [31], where Fp is peak load, l is span length, d denotes the beam
depth and b is the beam width. The average flexure strength of the specimens was listed in Table 3 and
the failure modes of the specimens after tests were depicted in Figure 4a.

The UC and 3PBT results, as listed in Table 3 and plotted in Figure 5, demonstrated that both SFRC
and PVA-FRC showed boosted compressive and bending performance compared to PC. From the
bending test results, it could be found that the flexural strength of PVA-FRC was increased to 12.34 MPa,
improved by 42.3 % compared to PC specimen. With 26.95 MPa flexural strength, SFRC presented
much more strong improvement in the bending performance. Similar results were also captured in the
UC test, PVA-FRC compressive strength was 84.81 MPa while fc for SFCR was 109.66 MPa, improved
by 20.2% and 55.4% respectively compared to control PC cubes. The reason might lie on the fact
that with the stronger and stiffer steel fibers, the first crack strength and ultimate strength of SFRC
were greatly improved. Besides, the properties of bond between fiber and cementitious matrix also
plays an important role on the performance of FRC. According to literature[26,35], bond strength of
steel fibers in the cementitious matrix is usually within the range between 5–8 MPa, while this value
could be 2–5 MPa for PVA fibers bond. What’s more is that the snubbing effect of steel fibers is also
stronger than that of PVA fibers. While PVA fiber sometimes exhibits good pullout hardening behavior,
it doesn’t contribute much to FRC overall strength.
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Table 3. Static test results.

Test Data PC PVA-FRC SFRC

Flexural strength f f (MPa) 8.67 12.34 26.95
Compressive strength fc(MPa) 70.57 84.81 109.66

Figure 3. Setup of the three-point bending test.

(a) (b)

Figure 4. Failure modes of tested and simulated specimens after 3PBT. (a) Test results, (b) Simulation
results.
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Figure 5. Fiber reinforcement effect on compressive and flexure strength.

2.3. Blast Test

The explosion tests via contact detonation were carried out in this section to simulate the bomb
explosion scenario. Each mixture (i.e., PC, SFRC and PVA-FRC) was prepared with 2 identical panels
with dimension of 600 mm × 600 mm × 100 mm for the blast tests. The labels of these specimens
were listed in Table 4, whereas S1 represented the control plain concrete, S2 and S3 were the PVA-FRC
and SFRC panels respectively. The test setup was shown in Figure 6 where the slab was placed on
two bottom steel supporters whose length was 600 mm and section size was 50 mm × 50 mm. All the
panels were tested with 100 g and 44 mm height cylinder TNT charge placed at the center of the panel
upper surface. An electric detonator was used herein to trigger the TNT charge.

(a)

(b)

Figure 6. Blast test setup. (a) Test setup, (b) Top view.

The damage modes of the specimens after the blast tests were depicted in Figure 7. The detailed
damage conditions were listed in Table 5 and depicted in Figure 8 for the sake of visualization. It should
be noted that the crater depth of only SFRC panels was given because that only SFRC panels structure
stayed intact after blast, PC and PVA-FRC panels were all perforated. In Figure 7, the plain concrete
specimens S1 were totally torn apart under blast loadings. The natural brittleness makes the PC panels
could not bear the extreme dynamic loading. While the FRC specimens S2 and S3 behaved much
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greater blast-resistance than control PC specimens. The PVA-FRC slabs (No.2-1, No.2-2) showed the
boost blast-resistant performance. Panel No.2-1 was broken into 3 main blocks and 9 smaller pieces,
28 cracks were observed on the front surface and 21 cracks on the rear surface. Panel No.2-2 had
similar damage mode, featured with 4 main blocks and 5 smaller pieces, and its front and rear surface
had 19 and 15 main cracks. The SFRC specimens (No.3-1, No.3-2) behaved the greatest blast resistance,
whose structure were remain intact after blast loading. Only craters and some fine cracks were found
on the front and rear surface. There were about 20 fine cracks on the front and 26 cracks on the rear.
Downward tendency was found in Figure 8 in terms of both front and rear crater sizes, which again
proved its good blast resistance.

Table 4. Concrete mixture for blast test.

No. Quantity PVA Fiber Volume Ratio (%) Steel Fiber Volume Ratio (%)

S1 2 - -
S2 2 2.00 -
S3 2 - 2.00

Table 5. Damaged crater for each specimen.

No. Front Crater Size (mm) Front Crater Depth (mm) Rear Crater Size (mm)

S1-1 - - -
S1-2 - - -
S2-1 245 × 320 - 336 × 390
S2-2 234 × 289 - 207 × 273
S3-1 139 × 156 20 230 × 290
S3-2 152 × 204 33 241 × 280

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 7. Damage modes of specimens after contact detonation. (a) S1-1, (b) S1-2, (c) S2-1 front, (d)
S2-1 rear, (e) S2-2 front, (f) S2-2 rear, (g) S3-1 front, (h) S3-1 rear, (i) S3-2 front, (j) S3-2 rear.
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Figure 8. Crater sizes of SFRC and PVA-FRC panels. (a) Front surface, (b) Rear surface.

It could be concluded that plain concrete had the least blast-resistant capability, i.e., the natural
brittleness make PC could seldom bear the blast loadings. FRC showed good blast resistance mainly
because the fibers embedded into the matrix enhanced the strength and toughness of the concrete.
Under blast loadings, the fiber-bridging effect resisted and limited the cracking, the energy absorption
capacity and strength of the composite were greatly improved. With the stronger and stiffer embedded
steel fibers, the SFRC exhibited the best resistance against blast loadings. Figure 9 showed the steel
fiber recovered from damaged panels under scanning electron microscope (SEM) test. Magnified
by 1000 times, it could be found that in contrast to smooth surface of pre-test steel fiber in Figure
9a, clear scratches due to friction were observed on the pulled out steel fiber surface. Moreover,
some cementitious micro particles were adhered to the fiber surface in Figure 9b. These phenomena
indicated that most of the steel fibers were pulled out during the blast process and there was a perfect
bond between the steel fiber and the matrix. However, most PVA fibers found raptured after the test,
that’s another reason why PVA-FRC panels were perforated while SFRC panels were still intact. It
was worth noting the FRC rear crater dimensions are much larger than the front crater. The reason for
this phenomenon may lie in the fact that rear surface suffers reflected tensile stress wave, which could
cause severer damage to the concrete panel since its tensile behavior is much weaker compared to its
compressive behavior.

(a) (b)

Figure 9. SEM images for steel fiber surface. (a) Original steel fiber, (b) Fiber after blast.

3. Review of LDPM-F

The LDPM model was selected as the simulation tool for FRC blast modeling. Prior to numerical
study, the basic information of LDPM for PC and LDPM-F for FRC were reviewed briefly. LDPM
model generation procedure and governing constitutive equations are explained in the following parts,
in accordance with [34].
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3.1. LDPM Model Construction

LDPM simulates concrete meso-structure through the following steps [41,42]:
The first step is the aggregate generation, which is carried out assuming that each aggregate can

be approximated as a sphere. Then, the spherical aggregate size distribution function proposed by
Stroeven [43] is considered

f (d) =
qdq

0
[1− (d0/da)q]dq+1 (1)

in which d0 and da are the minimum and maximum spherical aggregate diameter respectively, and q is
a material parameter. Reference [34] shows that Equation (1) is associated with a sieve curve in the
form

f (d) = (
d
da

)n f (2)

where n f = 3− q. When n f = 0.5, Equation (2) corresponds to the classical Fuller curve [34], which
is extensively used in concrete technology. For a given cement content c, water-to-cement ratio w/c,
specimen volume V, minimum particle diameter d0 and maximum aggregate diameter da along with
the considered Equation (1), the spherical aggregate system can be generated using a random number
generator [34], which is depicted in Figure 10a. Delaunay tetrahedralization of the spherical aggregate
center is utilized to define the interactions of the spherical aggregate system, as shown in Figure 10b.
Figure 10c shows the final polyhedral particle discretization of the notched beam specimen.

(a)

(b)

(c)

Figure 10. Lattice Discrete Particle Model (LDPM) polyhedral particles and cell discretization for a
typical notched beam specimen. (a) Aggregate system, (b) Particles with interaction facets, (c) LDPM
cell discretization.

3.2. LDPM Kinematics

The triangular facets forming the rigid polyhedral particles are assumed to be the potential
material failure locations. Each facet is shared between two polyhedral particle and is characterized by
a unit normal vector n and two tangential vectors m and l. Accordingly, three strain components are
defined on each triangular facet using Equations (1) and (2), which for LDPM gives:

εN =
nTJuCK

`
; εL =

lTJuCK
`

; εM =
mTJuCK

`
(3)
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where uc is the displacement vector calculated at the facet centroid, ` is the length of the tetrahedron
edge which means the distance between two particles. It was demonstrated that the meso-scale strain
defined in Equation (3) corresponds to the local reference system projection of Green-Lagrange strain
tensor of continuum mechanics [34,44,45].

When a facet strain increases beyond the tensile elastic limit, the mesoscale crack opening can
be computed as w = wNn + wMm + wLl, in which wN = `(εN − σN/EN), wM = `(εM − σM/ET) and
wL = `(εL − σL/ET), EN and ET are the elastic normal and tangential stiffness respectively.

3.3. LDPM Constitutive Equations

In the elastic regime, the normal and tangential meso-scale stress are proportional to the
corresponding strains:

σN = ENεN ; σM = ETεM; σL = ETεL; (4)

where EN = E0, ET = αE0, E0 is the normal modulus and α is the shear-normal coupling parameter.

For fracture behavior, through the relationship between equivalent strain, ε =
√

ε2
N + α(ε2

M + ε2
L),

and equivalent stress, σ =
√

σ2
N + (σM + σL)2/α, the fracture response is demonstrated as

σN = εN(σ/ε); σM = αεM(σ/ε); σL = αεL(σ/ε); (5)

Equivalent stress corresponding to the tensile boundary is considered as

σbt = σ0(ω)exp[−H0(ω) 〈εmax − ε0(ω)〉 /σ0(ω)] (6)

where εmax is the maximum equivalent strain, 〈∗〉 = max(∗, 0), ω is a coupling variable representing

the interaction degree between shear and normal loading and defined as tanω = εN√
αεT

, εT =
√

ε2
M + ε2

L.
Until the maximum equivalent strain reaches the elastic limit, the fracture damage begins to decline
the boundary σbc with the softening modulus H0(ω), which governs the post-peak slope and is
assumed as H0(ω) = Ht(

2ω
π )nt , where nt is the softening exponent and Ht = 2E0/(lt/l − 1) is the

softening modulus in pure tension. lt = 2E0Gt/σ2
t , le is the length of the tetrahedron edge and Gt is

the meso-scale fracture energy. LDPM assumes σ0(ω) as a variation providing a transition between
pure tension and pure shear and the variation is denoted as

σ0(ω) = σtγ
2
st(−sin(ω) +

√
sin2(ω) + 4αcos2(ω)/γ2

st)/(2αcos2ω) (7)

where γst = σs/σt is the shear-tensile strength ratio.
The second physical phenomenon simulated in LDPM is pore collapse from compression and

compaction. For compressive loading(εN < 0), the normal stress is computed by meeting the inequality
−σbc(εD, εV) ≤ σN ≤ 0, where σbc is a strain-dependent boundary associated with the volumetric
strain εV and the deviatoric strain εD. The volumetric strain εV = (V − V0)/3V0 (V and V0 are the
current and original volumes of a tetrahedron), is calculated at the tetrahedron level. The limitation
of the elastic regime is defined as: εc0 = σc0/E0, where σc0 is the meso-scale compressive yielding
strength. Beyond the limitation, pore collapse begins, where the compressive boundary is assumed to
have an initial linear evolution, up to a volumetric strain value εc1 = kc0εc0, kc0 is a material parameter.
For axial compression with lateral confinement, γDV = εD/εV can significantly affect the response.
The compressive boundary for the pore collapse phase is denoted as

σbc = σc0 + 〈−εV − εc0〉Hc(γDV) (8)
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Following the pore collapse, modeling compaction starts with the compressive boundary
experiencing an exponential evolution. In this case, the boundary can be expressed as:

σbc = σc1(γDV)exp[(−εV − εc1)Hc(γDV)/σc1(γDV)] (9)

where σc1(γDV) = σc0 + (εc1 − εc0)Hc(γDV)

3.4. Formulation of LDPM-F

For the simulation of fiber-matrix interaction, LDPM-F adopts some assumptions, including
that fiber is totally straight, ignoring the bending stiffness of fibers. Before the complete frictional
pull-out stage, the embedded segment of a fiber was completely debonded from the surrounding
matrix. The debonding stage is characterized by two main factors: The bond fracture energy Gd and the
frictional stress τ0 [46]. The critical slippage value is considered as vd, which represents full debonding.
For a given embedment length Le, it can be expressed as [47]

vd =
2τ0L2

e
E f d f

+ (
8GdL2

e
E f d f

)1/2 (10)

where E f is the elastic modulus of the fiber. For the debonding stage (v < vd), fiber load is given as [47]

P(v) = [
π2E f d3

f

2
(τ0v + Gd)]

1/2 (11)

For the pull-out stage (v > vd), the pull-out resistance is entirely frictional and considered as [47]

P(v) = P0(1−
v− vd

Le
)[1 +

β(v− vd)

d f
] (12)

where P0 = πLed f τ0, and β is a dimensionless coefficient.
In most situations, it is quite different between the orientation of the embedded segment and

the free segment of a fiber under crack-bridging force Pf . As shown in Figure 11 [35,48], the original
angle between the embedded segment and the free segment is denoted as ϕ f . At the point where the
fiber exists the matrix, bearing stresses are created in the matrix [49,50]. When the bearing stresses
reached a critical value, spalling occurs, causing that the embedment length of the fiber is reduced by a
corresponding length s f . The crack-bridging force in the fiber experiences a sudden drop, along with
the angle between two fiber segments is reduced to ϕ

′
f . The spalling length is obtained by [51] and is

considered as

S f =
Pf Nsin(θ/2)

kspσtd f cos2(θ/2)
(13)

where Pf N is the normal component of the total pullout crack-bridging force Pf , σt is the matrix tensile
strength, θ = arccos(nT

f n) and ksp is a material spalling parameter.
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Figure 11. Spalling effect of fiber pullout.

The snubbing effect is also taken into account. When a fiber is pulled out from the matrix, at the
point where the fiber exits the crack, LDPM-F assumes that the fiber wraps around the surrounding
matrix in a totally flexible manner. The summation of the crack-bridging force paralleled to the
embedded segment is denoted as P. The additional bearing force caused by the snubbing effect is
considered as Pf , and Pf > P. The Pf is obtained as

Pf = exp(ksn ϕ
′
f )P(v) (14)

where P is a function of relative fiber slippage v and ksn is a material snubbing parameter.
From Equations (13) and (14), it can be seen that the influence of fiber deflection angle on the
fiber pullout response was introduced in LDPM-F, based on which LDPM-F could capture a more
comprehensive effect that crack-bridging fiber has on the surrounding matrix. Due to the spalling and
snubbing effect that was naturally introduced in LDPM-F, it is reasonable to effectively simulate the
fiber orientation effect through LDPM-F.

In order to determine whether the crack-bridging force would cause the fiber rupture during the
fiber pull-out process, krup is introduced herein. Then, it is necessary to check for each fiber

σf = 4Pf /πd2
f ≤ σu f e−krup ϕ

′
f (15)

where σu f is the ultimate strength of the fiber and krup is a material rupture parameter.
Consider a fiber, with initial orientation n f , subject to a crack opening vector w. The tangential

component of w is defined as wT =
√

w2
M + w2

L. Assuming that the spalling length is the same on the

both sides, the crack-bridging segment vector is computed as w
′
= w + 2s f n f . The crack-bridging

force vector is assumed to be paralleled to the crack-bridging fiber and is denoted as P f = Pf n
′
f ,

where n
′
f = w

′
/
∥∥∥w

′
∥∥∥.

As discussed above, the realistic LDPM-F simulation response depends on two sets of parameters:
(1) The LDPM material parameters which govern the behavior of plain concrete; (2) the parameters
which govern the fiber-matrix interaction. All the parameters should be identified by fitting
experimental data [16,52].

4. Numerical Modeling of FRC Contact Detonation

Numerical investigation on the blast-resistant performance of steel and PVA FRC was carried out
in this section with LDPM-F. Figure 12 depicted the fiber distribution in a panel specimen simulated
by LDPM-F. The geometry of an individual fiber can be characterized by two primary parameters:
Diameter d f and length L f , for a given fiber volume fraction Vf , individual fibers will be inserted in the
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matrix with randomly generated positions and orientations. In this work, L f and d f were consistent
with the actual fiber dimensions.

Figure 12. Fiber distribution in a panel.

For the calibration purpose, uniaxial compression and 3-point bending test were firstly simulated
with LDPM-F to calibrate the parameters controlling plain concrete and fiber properties. Furthermore,
the validated LDPM-F blast model was further applied to investigate the fiber content effect on the
blast-resistant performance. SFRC and PVA-FRC panels with fiber content of 0.5%, 1.0%, 1.5% were
modeled with LDPM-F and the simulation results were compared to FRC with fiber content of 2.0%.

4.1. LDPM-F Parameter Calibration

For calibrating the parameters governing the plain concrete mechanical properties, the UC and
3PBT simulations of PC were carried out herein. The simulation constrains of UC and 3PBT simulations
were depicted in Figure 13. The simulated response curve were shown in Figure 14 and the failure
modes of the simulated 3PBT results were depicted in Figure 4b. It could be found that the simulation
results were fitted well to the test results in terms of both mechanical responses and damage modes.
The calibrated parameters were listed in Table 6.

(a)

(b)

Figure 13. Simulation constrains. (a) Uniaxial compression, (b) 3-point bending test.
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Figure 14. LDPM parameter calibration with test data. (a) Uniaxial compression, (b) 3-point bending
test.

Table 6. LDPM parameters.

E0 [MPa] α [-] σt [MPa] σc0 [MPa] σs/σt [-] lt[mm] nt [-] Hc0/E0 [-] σN0 [MPa] kc0 [-]

80,610 0.25 4.55 150 5.55 200 0.1 0.4 600 4

The fiber parameters were also calibrated herein by fitting the simulation results to the test
results. The UC and 3PBT simulation constrains of FRC were the same with that of plain concrete.
Both PVA-FRC and SFRC were simulated with the response curves plotted in Figures 15 and 16.
Both PVA-FRC and SFRC presented similar compressive strength and flexural strength with test
data. The predicted failure modes of the FRC specimens after 3PBT were depicted in Figure 4b,
good consistency was also presented compared to test results, which further verified the calibrated
parameters. The calibrated PVA and steel fiber parameters were listed in Table 7. After the calibration
of LDPM parameters with plain concrete and LDPM-F parameters with FRC, the FRC panel blast
model can be established for validation.

Table 7. Lattice Discrete Particle Model-Fiber (LDPM-F) parameters.

Fiber Type E f [MPa] ksp [-] σu f [MPa] krup [-] ksn [-] τ0 [MPa] Gd [N/m] β [-] γ f [-]

Steel fiber 210,000 500 2800 0.2 0.2 6.0 0.0 0.0 0.6
PVA fiber 30,000 300 1000 0.0 0.2 2.5 3 0.05 1.0
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Figure 15. Comparison between simulation and PVA-FRC tests. (a) Uniaxial compression, (b) 3-point
bending test.
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Figure 16. Comparison between simulation and SFRC tests. (a) Uniaxial compression, (b) 3-point
bending test.

4.2. FRC Blast Simulation

Simulations of FRC panels under blast loadings were carried out with LDPM-F describing the
FRC material properties. The FRC blast simulation model was plotted in Figure 17, wherethe blast
model setup was consistent with the contact detonation test. The FRC panel was incorporated into
2% volume ratio fibers and the bottom supporters were set as rigid bodies, whose vertical freedom
was constrained. The interaction between the FRC panel and the rigid supporters was set as penalty
contact. The explosion source was set vertically 22 mm away from the center of the panel front surface.

After 5 ms simulation termination time, the numerically derived damage modes of PC and FRC
were shown in Figure 18, in which the sizes of the craters on the front and rear surfaces were also
presented in detail. The comparison of damage modes between test and simulation results were
demonstrated in Figure 19, and detailed data was listed in Tables 8 and 9.

As can be seen in Figure 18, the PC panel was blown into pieces under blast loadings, just like the
test results that the brittleness of the plain concrete was completely demonstrated. The PVA-FRC panel
was also perforated by the blast loadings. Compared to PC specimen, the entire panel was greatly
enhanced by the PVA fibers in terms of crater sizes on the front and rear surface and the panel integrity.
The fiber-bridging effect brought by PVA fibers improved the concrete energy absorption capacity to
some extent, as a result the PVA-FRC could withstand a certain amount of blast loadings. However,
the steel FRC panels had the least damage, e.g., only craters and a few fine cracks occurred on the
surface suggesting that the SFRC panel has the best blast-resistant performance.

Figure 17. Blast simulation model.
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(a)

(b)

(c)

Figure 18. The damage modes of plain concrete (PC) and FRC under blast loadings. (a) Plain concrete
(PC), (b) PVA-FRC, (c) SFRC.

Table 8. The comparison of the PVA-FRC crater size between test and simulation results.

No. Front Surface (mm) Rear Surface (mm)

S2-1 245 × 320 336 × 390
S2-2 234 × 289 207 × 273

Simulation prediction 183 × 221 293 × 332

Table 9. The comparison of the SFRC crater size between test and simulation results.

No. Front Surface (mm) Rear Surface (mm)

S3-1 139 × 156 230 × 290
S3-2 152 × 204 241 × 280

Simulation prediction 112 × 149 200 × 208
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(a)

(b)

Figure 19. The comparison between damage modes of test and simulation results. (a) PVA-FRC, (b)
SFRC.

The crater sizes of PVA-FRC and SFRC predicted by LDPM-F were listed in Tables 8 and 9.
The comparison of damage modes between test and simulation results were shown in Figure 19. Good
agreements were achieved in terms of both crater sizes and crack distribution, which strongly validated
the LDPM-F blast model. As a result, the validated LDPM-F blast model was extended to investigate
on the fiber content effect on the blast resistance of FRC for further discussion.

4.3. Fiber Content Effect

In this section, for the purpose of investigating on the blast resistance and damage modes of
FRC with fiber content lower than 2.0%, the fiber content effect on the blast resistance was carried
out herein through the validated LDPM-F blast model. For both PVA-FRC and SFRC, specimens
embedded into fibers with fiber volume fraction of 0.5%, 1.0% and 1.5% under blast loadings were
numerically simulated. The simulation setup was totally same with the contact detonation test.
Thereafter, the simulation results were depicted in Figures 20 and 21 in front, side and rear view.

As can be seen in Figure 20, PVA-FRC with fiber content less than 2%, had limited blast resistance
improvement since all panels were torn into some smaller blocks due to the reduction of PVA fibers
amount. With less PVA fibers bridging cracking gaps, PVA-FRC exhibits reduced ductility and thus
losing energy absorption capacity. It can be argued that 2% fiber volume fraction was a proper
content for PVA-FRC shelter construction material since lower content leads to significant blast
resistance degradation.

On the contrary, SFRC still behaved substantial blast-resistant performance even for the panel
with only 0.5% steel fiber content. It was vividly suggested in the Figure 21 that all the SFRC panels
maintain good integrity. With the increase of steel fiber content, less cracks with smaller cracking
opening occurred on the panel surface. The strong bond between steel fiber and cementitous matrix
contribute to the enhanced bending mechanical behavior even with much less fiber content. The crater
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sizes of SFRC with different fiber content were denoted in Figure 22 and listed in Table 10. It was
demonstrated that as fiber content increases, the front surface crater has some oscillation while the rear
surface crater sizes gradually decreases. The front crater mainly caused by compressive stress wave
was less affected by the steel fiber content. On the other hand, the reflected tensile stress wave results
in rear crater forming which was more sensitive to incorporated fiber dosage.

(a)

(b)

(c)

Figure 20. Damage modes of PVA-FRC with different fiber content under blast loadings. (a) 0.5% fiber
volume fraction, (b) 1.0% fiber volume fraction, (c) 1.5% fiber volume fraction.

Table 10. The crater sizes of SFRC with different fiber content.

Fiber Content Front Surface (mm) Rear Surface (mm)

0.5% 139 × 210 280 × 299
1.0% 120 × 161 272 × 281
1.5% 200 × 144 265 × 241
2.0% 112 × 149 200 × 208
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(a)

(b)

(c)

Figure 21. Damage modes of SFRC with different fiber content under blast loadings. (a) 0.5% fiber
volume fraction, (b) 1.0% fiber volume fraction, (c) 1.5% fiber volume fraction.
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Figure 22. Crater sizes prediction of SFRC panels with different fiber content. (a) Front surface, (b)
Rear surface.
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5. Conclusions

This work aimed at comparative investigating on the blast-resistant performance of steel
fiber-reinforced concrete and PVA fiber-reinforced concrete. Experimental program was conducted to
characterize the mechanical properties and blast resistance. LDPM-F was introduced to model FRC
contact detonation. The validated model was further applied for fiber content effect study. Several
conclusions were drawn as follows: (1) The plain concrete could hardly bear the blast loadings. SFRC,
PVA-FRC with fiber volume fraction of 2% showed much better blast resistance due to the improved
ductility resulting from fiber incorporation. (2) Compared with PVA-FRC, SFRC exhibits higher
compressive strength and bending ductility, thus providing better blast resistance against contact
detonation. (3) The established LDPM-F blast model can predict the damage modes as well as crater
sizes for both PVA-FRC and SFRC panels. (4) For fiber content lower than 2%, the blast-resistant
performance of PVA-FRC was greatly degraded, while SFRC specimens still showed good integrity
under blast even for panel with only 0.5% volume fraction steel fiber. (5) SFRC panel front surface crater
is less affected by the steel fiber content while the rear surface crater is more sensitive to incorporated
fiber dosage.
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