Electronic Supplementary Information

Fluorinated Tolane Dyads with Alkylene Linkage: Synthesis and

Evaluation of Photophysical Characteristics

Shigeyuki Yamada,*a Eiji Uto, a Tomohiro Agou, b Toshio Kubota b and Tsutomu Konno a

- ^a Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- ^b Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki 316-8511, Japan

Tel: +81-75-724-7517; E-mail: syamada@kit.ac.jp

Table of contents

1.	Synthetic procedure	•••••	S-2
2.	NMR spectra	•••••	S-3
3.	Quantum chemical calculation	•••••	S-19
4.	Crystal Structure	•••••	S-29
5.	PL behavior in CH ₂ Cl ₂ solution	•••••	S-30
6.	PL behavior in crystalline powder	•••••	S-32
7.	PL behavior after mechanical stimulus	•••••	S-33

1. Synthetic procedure

1-1. Preparation of 1-bromo-4-(methoxymethoxy)benzene

In a two-necked round-bottomed flask, equipped with a Teflon[®]-coated stirrer bar, was placed 4bromophenol (3.7 g, 21 mmol) and ethyldiisopropylamine (5.3 g, 41 mmol) in CH₂Cl₂ (25 mL). The solution was cooled to 0 °C and added dropwise chloromethyl methyl ether (MOMCI, 1.9 g, 24 mmol), and the whole was stirred at room temperature for 20 h. After 20 h, organic layer was washed with an aqueous NaOH solution (1.5 mol L⁻¹, 30 mL, two times), extracted with EtOAc (30 mL, three times). Organic layer collected was dried over anhydrous Na₂SO₄, which was separated by filtration. The filtrate was evaporated in vacuo and subjected to silica-gel column chromatography to obtain the desired title compound (3.60 g, 16.6 mmol, 78%) as a colorless oil.

1-Bromo-4-(methoxymethoxy)benzene

Yield: 78% (Colorless oil), ¹H NMR (CDCl₃): δ 3.46 (s, 3H), 5.14 (s, 2H), 6.93 (d, *J* = 9.0 Hz, 2H), 7.38 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (CDCl₃): δ 55.9, 94.4, 114.1, 118.0, 132.3, 156.4. The spectral data were fully in accordance with the reported data.[1]

1-2. Preparation of 1-(methoxymethoxy)-4-[2-(trimethylsilyl)ethyn-1-yl]benzene

In a two-necked round-bottomed flask, equipped with a Teflon[®]-coated stirrer bar, reflux condenser, was placed 1-bromo-4-(methoxymethoxy)benzene (3.60 g, 16.6 mmol), trimethylsilylacetylene (2.4 g, 25 mmol), Cl₂Pd(PPh₃)₂ (0.61 g, 0.87 mmol), PPh₃ (0.24 g, 0.91 mmol), Cul (0.33 g, 1.7 mmol) in Et₃N (90 mL), and the suspended solution was stirred at reflux for 21 h. After being stirred for 21 h, precipitate formed during reaction was separated by atmospheric filtration, and the filtrate was poured into saturated aqueous NH₄Cl solution. Crude product was extracted with EtOAc (three times) and the organic layer combined was washed with brine (once). Organic layer collected was dried over anhydrous Na₂SO₄, which was separated by filtration. The filtrate was evaporated in vacuo and subjected to silica-gel column chromatography to obtain the desired title compound (1.96 g, 8.4 mmol, 50%) as a yellow oil.

1-(Methoxymethoxy)-4-[2-(trimethylsilyl)ethyn-1-yl]benzene

Yield: 50% (Yellow oil); ¹H NMR (CDCl₃): δ 0.24 (s, 9H), 3.46 (s, 3H), 5.17 (s, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ 0.02, 55.8, 94.1, 94.3, 105.2, 115.2, 116.4, 133.4, 157.4. The spectral data were fully in accordance with the reported data.[2]

1.3. Preparation of 4-(methoxymethoxy)phenylacetylene (3)

In a round-bottomed flask, equipped with a Teflon[®]-coated stirrer bar, was placed 1-(methoxymethoxy)-4-[2-(trimethylsilyl)ethyn-1-yl]benzene (1.96 g, 8.4 mmol) and potassium carbonate (1.81 g, 13 mmol) in MeOH (40 mL). The whole was stirred at room temperature for 3 h. After stirring for 3 h, organic layer was poured into saturated aqueous NH₄Cl solution. Crude product extracted with EtOAc (three times) and organic layer combined was washed with brine (once). Organic layer collected was dried over anhydrous Na₂SO₄, which was separated by filtration. The filtrate was evaporated in vacuo and subjected to silica-gel column chromatography to obtain the desired **3** (1.27 g, 7.8 mmol, 94%) as a yellow oil.

4-(Methoxymethoxy)phenylacetylene (3)

Yield: 94% (Yellow oil); ¹H NMR (CDCl₃): δ 3.02 (s, 1H), 3.47 (s, 3H), 5.18 (s, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.8 Hz); ¹³C NMR (CDCl₃): δ 56.2, 76.2, 83.6, 94.3, 115.5, 116.2, 133.7, 157.7. The spectral data were fully in accordance with the reported data.[3]

^[1] An, P.; Shi, Z.-F.; Dou, W.; Cao, X.-P.; Zhang, H.-L. Org. Lett. 2010, 12, 4364–4367.

^[2] Krause, M.; Ligneau, X.; Stark, H.; Garbarg, M.; Schwartz, J.-C.; Schunack, W. J. Med. Chem. 1998, 41, 4171–4176.

^[3] Smeyanov, A.; Schmidt, A. Synth. Commun. 2013, 43, 2809–2816.

2. NMR Spectra

Figure S2. ¹³C NMR spectrum of 4 (Solvent: CDCl₃)

Figure S3. ¹⁹F NMR spectrum of 4 (Solvent: CDCl₃)

Figure S4. ¹H NMR spectrum of 5 (Solvent: CDCl₃)

Figure S5. ¹³C NMR spectrum of 5 (Solvent: CDCl₃)

Figure S6. ¹⁹F NMR spectrum of 5 (Solvent: CDCl₃)

Figure S7. ¹H NMR spectrum of 2a (Solvent: CDCl₃)

Figure S8. ¹³C NMR spectrum of 2a (Solvent: CDCl₃)

Figure S9. ¹⁹F NMR spectrum of 2a (Solvent: CDCl₃)

Figure S10. ¹H NMR spectrum of 2b (Solvent: C₆D₆)

Figure S11. ¹³C NMR spectrum of 2b (Solvent: C₆D₆)

Figure S12. ¹⁹F NMR spectrum of 2b (Solvent: C₆D₆)

Figure S13. ¹H NMR spectrum of 2c (Solvent: CDCl₃)

Figure S14. ¹³C NMR spectrum of 2c (Solvent: CDCl₃)

Figure S15. ¹⁹F NMR spectrum of 2c (Solvent: CDCl₃)

Figure S16. ¹H NMR spectrum of 2d (Solvent: CDCl₃)

Figure S17. ¹³C NMR spectrum of 2d (Solvent: CDCl₃)

Figure S18. ¹⁹F NMR spectrum of 2d (Solvent: CDCl₃)

Figure S19. ¹H NMR spectrum of 2e (Solvent: CDCl₃)

Figure S20. ¹³C NMR spectrum of 2e (Solvent: CDCl₃)

Figure S21. ¹⁹F NMR spectrum of 2e (Solvent: CDCl₃)

Figure S22. ¹H NMR spectrum of 2f (Solvent: CDCl₃)

Figure S23. ¹³C NMR spectrum of 2f (Solvent: CDCl₃)

Figure S24. ¹⁹F NMR spectrum of 2f (Solvent: CDCl₃)

3. Quantum chemical calculation

All computations were performed using density functional theory (DFT) and the Gaussian 16 (Revision B.01) software package. Geometry optimizations were executed using the CAM-B3LYP hybrid functional and the 6-31+G(d) basis set with the implicit solvation model (conductor-like polarizable continuum model (CPCM)) for CH_2Cl_2 . The vertical excitation energies and dipole moments of optimized structures were calculated using the time-dependent DFT (TD-DFT) method at the same level of theory.

	S ₀ state	1			S ₁ state						
	Transition Energy f				Transition	Energy	f				
		[nm]				[nm]					
1b	HOMO→LUMO (91%)	315	1.368		HOMO→LUMO (91%)	390	1.6341				
2a	HOMO–1→LUMO (45%)	315	2.5817		HOMO→LUMO (94%)	389	1.6569				
	HOMO→LUMO+1 (45%)				HOMO–1→LUMO+1 (91%)	322	1.4782				
2b	HOMO–1→LUMO (45%)	315	2.7947		HOMO→LUMO (94%)	389	1.6559				
	HOMO→LUMO+1 (45%)				HOMO–1→LUMO+1 (91%)	323	1.4819				

Table S1. Calculated photophysical data in ground S₀ and excited S₁ states.

Optimized Geometry in So ground state

E(RCAM-B3LYP) = -1544.65951023 Hartree Dipole moment (Debye): X= 7.4314 Y= -0.8586 Z= -0.0001 Tot= 7.4809

HOMO–1 (–8.96 eV) HOMO (–7.51 eV) Figure S25. Optimized Geometry, HOMO and LUMO Distribution of 1b in S₀ ground state.

Optimized Geometry in S1 excited state

Figure S26. Optimized Geometry, HOMO and LUMO Distribution of 1b in S1 ground state.

Optimized Geometry in So ground state

Optimized Geometry in S₁ excited state

Figure S28. Optimized Geometry, HOMO and LUMO Distribution of 2a in S1 ground state.

Optimized Geometry in So ground state

Figure S30. Optimized Geometry, HOMO and LUMO Distribution of 2b in So ground state.

	Atom Type		Coordinates (Angstroms)				1	0	1.844434	-1.652892	-0.000191
NO.	No.		x	У	z	23	8	0	5.599778	0.944764	0.000045
1	6	0	-2.560621	0.102992	0.000025	24	6	0	6.495986	-0.170238	-0.000065
2	6	0	-3.186619	-1.146996	0.000059	25	1	0	6.311077	-0.783424	-0.890485
3	6	0	-4.560997	-1.264072	0.000042	26	1	0	6.311079	-0.783597	0.890237
4	6	0	-5.393718	-0.145832	-0.000011	27	6	0	7.912099	0.369256	-0.000009
5	6	0	-4.779390	1.103163	-0.000044	28	1	0	8.048951	1.006663	0.882032
6	6	0	-3.399003	1.218102	-0.000026	29	1	0	8.048984	1.006775	-0.881965
7	9	0	-2.445065	-2.259619	0.000109	30	6	0	8.952347	-0.750365	-0.000058
8	9	0	-5.097177	-2.490325	0.000077	31	1	0	8.802246	-1.391463	0.879556
9	9	0	-5.489060	2.234840	-0.000096	32	1	0	8.802267	-1.391373	-0.879742
10	9	0	-2.865232	2.444576	-0.000062	33	6	0	10.388359	-0.227413	-0.000013
11	6	0	-1.149042	0.230085	0.000036	34	1	0	10.538742	0.413580	-0.878626
12	6	0	0.056221	0.338173	0.000038	35	1	0	10.538707	0.413512	0.878656
13	6	0	1.475677	0.467928	0.000038	36	6	0	11.427580	-1.346187	-0.000038
14	6	0	2.078468	1.739007	0.000164	37	1	0	11.319955	-1.984246	0.884839
15	1	0	1.455681	2.627607	0.000264	38	1	0	11.319957	-1.984205	-0.884945
16	6	0	3.453623	1.862654	0.000163	39	6	0	-6.884188	-0.358182	-0.000030
17	1	0	3.925989	2.839430	0.000262	40	9	0	-7.274604	-1.061363	1.082554
18	6	0	4.266044	0.720289	0.000033	41	9	0	-7.578058	0.785828	-0.000084
19	6	0	3.680485	-0.549048	-0.000095	42	9	0	-7.274564	-1.061440	-1.082580
20	1	0	4.286666	-1.445983	-0.000197	43	1	0	12.446422	-0.944770	-0.000028
21	6	0	2.295766	-0.666015	-0.000091						

 Table S2. Cartesian Coordinates of 1b (S₀ state)

	Atom	Туре	Coord	22	1	0		
INO.	No.		x	у	z	23	8	0
1	6	0	2.521532	0.105140	-0.000009	24	6	0
2	6	0	3.189467	-1.163168	0.000031	25	1	0
3	6	0	4.548883	-1.264884	0.000038	26	1	0
4	6	0	5.399012	-0.136295	0.000007	27	6	0
5	6	0	4.760272	1.121786	-0.000032	28	1	0
6	6	0	3.397730	1.238933	-0.000039	29	1	0
7	9	0	2.441547	-2.277918	0.000061	30	6	0
8	9	0	5.102039	-2.491396	0.000075	31	1	0
9	9	0	5.479740	2.255769	-0.000062	32	1	0
10	9	0	2.847369	2.464149	-0.000077	33	6	0
11	6	0	1.157235	0.223517	-0.000015	34	1	0
12	6	0	-0.084454	0.331144	-0.000020	35	1	0
13	6	0	-1.449697	0.449023	-0.000025	36	6	0
14	6	0	-2.084582	1.741208	-0.000069	37	1	0
15	1	0	-1.463055	2.629759	-0.000100	38	1	0
16	6	0	-3.445108	1.846457	-0.000073	39	6	0
17	1	0	-3.934913	2.814329	-0.000106	40	9	0
18	6	0	-4.257812	0.683738	-0.000032	41	9	0
19	6	0	-3.661010	-0.598407	0.000011	42	9	0
20	1	0	-4.272253	-1.491942	0.000042	43	1	0
21	6	0	-2.294407	-0.714250	0.000014			

Table S3. Cartesian Coordinates of 1b (S1 state)

22	1	0	-1.831460	-1.694926	0.000048
23	8	0	-5.571542	0.900659	-0.000038
24	6	0	-6.494802	-0.203873	0.000004
25	1	0	-6.313171	-0.813435	0.891982
26	1	0	-6.313178	-0.813498	-0.891933
27	6	0	-7.897410	0.366710	-0.000010
28	1	0	-8.021460	1.005481	-0.882513
29	1	0	-8.021452	1.005544	0.882448
30	6	0	-8.957243	-0.734901	0.000034
31	1	0	-8.819095	-1.378153	-0.879740
32	1	0	-8.819087	-1.378090	0.879853
33	6	0	-10.382720	-0.183761	0.000021
34	1	0	-10.520571	0.459767	0.878714
35	1	0	-10.520580	0.459703	-0.878717
36	6	0	-11.442673	-1.282819	0.000067
37	1	0	-11.347328	-1.922659	-0.884859
38	1	0	-11.347319	-1.922595	0.885038
39	6	0	6.870720	-0.343190	0.000018
40	9	0	7.291268	-1.054133	-1.080213
41	9	0	7.570454	0.802539	-0.000017
42	9	0	7.291262	-1.054064	1.080296
43	1	0	-12.453453	-0.861713	0.000056

	Atom	Туре	Coord	inates (Angstr	oms)	35	1	0	-1.276413	-2.961020	0.796032
No.	No.		x	У	z	36	6	0	-2.523288	-1.485274	-0.120808
1	6	0	11.406040	0.294422	0.010782	37	1	0	-2.555641	-0.818370	0.749433
2	6	0	11.732940	1.651802	-0.060098	38	1	0	-2.571169	-0.874408	-1.030590
3	6	0	13.044171	2.079055	-0.034141	39	8	0	-3.646857	-2.368224	-0.082668
4	6	0	14.107281	1.182331	0.063163	40	6	0	-4.896179	-1.848809	-0.074751
5	6	0	13.791569	-0.171564	0.133198	41	6	0	-5.181092	-0.481028	-0.113371
6	6	0	12.473941	-0.598068	0.107014	42	1	0	-4.388960	0.255838	-0.154027
7	9	0	10.759743	2.563861	-0.154390	43	6	0	-6.503913	-0.055288	-0.099369
8	9	0	13.288830	3.392924	-0.104535	44	1	0	-6.721902	1.007367	-0.128998
9	9	0	14.737945	-1.109412	0.228301	45	6	0	-7.557462	-0.974847	-0.046749
10	9	0	12.231509	-1.911554	0.177878	46	6	0	-7.255813	-2.348347	-0.009506
11	6	0	10.060495	-0.150422	-0.012090	47	1	0	-8.062000	-3.073518	0.031146
12	6	0	8.911115	-0.528387	-0.029082	48	6	0	-5.943849	-2.778428	-0.023685
13	6	0	7.557462	-0.974846	-0.046731	49	1	0	-5.702967	-3.835953	0.005234
14	6	0	7.255813	-2.348346	-0.009483	50	6	0	-8.911116	-0.528388	-0.029099
15	1	0	8.061999	-3.073517	0.031173	51	6	0	-10.060495	-0.150423	-0.012104
16	6	0	5.943848	-2.778427	-0.023662	52	6	0	-11.406040	0.294422	0.010772
17	1	0	5.702966	-3.835952	0.005261	53	6	0	-11.732940	1.651802	-0.060094
18	6	0	4.896178	-1.848808	-0.074733	54	6	0	-13.044170	2.079056	-0.034130
19	6	0	5.181091	-0.481027	-0.113357	55	6	0	-14.107281	1.182332	0.063166
20	1	0	4.388959	0.255838	-0.154017	56	6	0	-13.791569	-0.171565	0.133188
21	6	0	6.503912	-0.055287	-0.099355	57	6	0	-12.473942	-0.598069	0.106998
22	1	0	6.721901	1.007368	-0.128988	58	9	0	-10.759742	2.563862	-0.154378
23	8	0	3.646856	-2.368224	-0.082650	59	9	0	-13.288829	3.392926	-0.104510
24	6	0	2.523287	-1.485273	-0.120798	60	9	0	-14.737946	-1.109412	0.228285
25	1	0	2.571173	-0.874410	-1.030581	61	9	0	-12.231510	-1.911556	0.177849
26	1	0	2.555637	-0.818367	0.749442	62	6	0	-15.509790	1.729147	0.087199
27	6	0	1.267986	-2.334559	-0.103829	63	9	0	-15.773827	2.437912	-1.029358
28	1	0	1.276409	-2.961018	0.796040	64	9	0	-15.686647	2.565435	1.130374
29	1	0	1.283799	-3.010170	-0.967288	65	9	0	-16.444072	0.776078	0.181222
30	6	0	0.000000	-1.481971	-0.131876	66	6	0	15.509791	1.729146	0.087184
31	1	0	-0.000002	-0.797853	0.727043	67	9	0	15.686644	2.565467	1.130333
32	1	0	0.000002	-0.853516	-1.032280	68	9	0	16.444072	0.776079	0.181241
33	6	0	-1.267987	-2.334560	-0.103835	69	9	0	15.773834	2.437876	-1.029395
34	1	0	-1.283795	-3.010168	-0.967296						

Table S4. Cartesian Coordinates of 2a (So state)

 Table S5. Cartesian Coordinates of 2a (S1 state)

No	Atom	Туре	Coord	inates (Angstr	oms)	35	1	0	-1.263664	-2.888959	0.788241
NO.	No.		x	У	z	36	6	0	-2.523492	-1.434400	-0.144529
1	6	0	11.381841	0.268738	0.014119	37	1	0	-2.560064	-0.758760	0.718748
2	6	0	11.754021	1.651289	-0.055350	38	1	0	-2.576756	-0.833394	-1.060570
3	6	0	13.056789	2.051987	-0.028749	39	8	0	-3.639397	-2.325854	-0.096154
4	6	0	14.133253	1.142042	0.068018	40	6	0	-4.892958	-1.815869	-0.087718
5	6	0	13.787419	-0.224247	0.135917	41	6	0	-5.188327	-0.450717	-0.136294
6	6	0	12.484980	-0.640655	0.110093	42	1	0	-4.402134	0.291910	-0.186443
7	9	0	10.779982	2.570126	-0.148590	43	6	0	-6.514303	-0.034902	-0.119901
8	9	0	13.326291	3.368241	-0.097224	44	1	0	-6.740493	1.025793	-0.157025
9	9	0	14.737989	-1.168120	0.228897	45	6	0	-7.560524	-0.961984	-0.055321
10	9	0	12.217775	-1.955073	0.177719	46	6	0	-7.248291	-2.332797	-0.008710
11	6	0	10.077627	-0.147926	-0.007600	47	1	0	-8.048734	-3.063723	0.041103
12	6	0	8.889564	-0.524512	-0.026052	48	6	0	-5.933117	-2.753031	-0.025025
13	6	0	7.582620	-0.935699	-0.043211	49	1	0	-5.684121	-3.808445	0.011297
14	6	0	7.240613	-2.332383	0.028545	50	6	0	-8.917434	-0.525487	-0.034703
15	1	0	8.037979	-3.064222	0.095376	51	6	0	-10.069406	-0.155741	-0.014840
16	6	0	5.934968	-2.729133	0.013564	52	6	0	-11.417976	0.279791	0.011617
17	1	0	5.664786	-3.778321	0.067653	53	6	0	-11.754416	1.634738	-0.060775
18	6	0	4.892160	-1.771607	-0.072498	54	6	0	-13.068470	2.053016	-0.031143
19	6	0	5.198888	-0.393271	-0.146228	55	6	0	-14.125014	1.149150	0.071384
20	1	0	4.410186	0.345358	-0.213880	56	6	0	-13.799759	-0.202398	0.143105
21	6	0	6.508112	0.015280	-0.132285	57	6	0	-12.479310	-0.619875	0.113246
22	1	0	6.749142	1.071123	-0.188318	58	9	0	-10.787827	2.553268	-0.160056
23	8	0	3.655633	-2.267334	-0.077205	59	9	0	-13.322396	3.365024	-0.102952
24	6	0	2.517189	-1.390661	-0.146617	60	9	0	-14.739310	-1.146509	0.243423
25	1	0	2.574592	-0.809742	-1.073738	61	9	0	-12.227527	-1.931494	0.185895
26	1	0	2.547943	-0.704667	0.707083	62	6	0	-15.531199	1.686376	0.099398
27	6	0	1.273053	-2.253830	-0.112721	63	9	0	-15.803165	2.393299	-1.016393
28	1	0	1.286348	-2.859323	0.800938	64	9	0	-15.710745	2.521428	1.143098
29	1	0	1.296116	-2.946674	-0.961832	65	9	0	-16.458657	0.726953	0.195995
30	6	0	-0.001058	-1.410687	-0.159724	66	6	0	15.522403	1.670202	0.092983
31	1	0	-0.008460	-0.711795	0.686994	67	9	0	15.731708	2.518363	1.135164
32	1	0	-0.003838	-0.798799	-1.071279	68	9	0	16.456475	0.710955	0.186334
33	6	0	-1.261556	-2.273803	-0.119356	69	9	0	15.818403	2.393106	-1.020075
34	1	0	-1.273033	-2.959935	-0.974445						

	Atom	Туре	Coord	inates (Angstr	oms)		36	9	0	-14.692279	-2.542040	-0.000024
NO.	No.		x	У	z		37	9	0	-15.242282	2.167061	0.000069
1	6	0	1.788625	-0.786625	-0.000061	-	38	9	0	-12.626854	2.464578	0.000043
2	1	0	1.676899	-1.428784	0.881933		39	6	0	-16.549390	-0.471594	0.000037
3	1	0	1.676902	-1.428758	-0.882074		40	9	0	-16.915524	-1.187499	1.082546
4	6	0	0.706110	0.291915	-0.000047		41	9	0	-16.915550	-1.187488	-1.082471
5	1	0	0.830307	0.937503	-0.879815		42	9	0	-17.281329	0.648418	0.000052
6	1	0	0.830306	0.937480	0.879737		43	6	0	3.182748	-0.192193	-0.000052
7	6	0	-0.706111	-0.291917	-0.000056		44	1	0	3.343722	0.427823	0.890296
8	1	0	-0.830303	-0.937489	-0.879835		45	1	0	3.343708	0.427882	-0.890361
9	1	0	-0.830311	-0.937497	0.879717		46	8	0	4.119701	-1.272399	-0.000094
10	6	0	-1.788625	0.786623	-0.000057		47	6	0	5.444391	-0.998151	-0.000069
11	1	0	-1.676902	1.428769	0.881947		48	6	0	5.982159	0.292057	-0.000038
12	1	0	-1.676899	1.428770	-0.882060		49	6	0	6.298417	-2.109610	-0.000081
13	6	0	-3.182748	0.192192	-0.000060		50	6	0	7.361633	0.460284	-0.000018
14	1	0	-3.343713	-0.427854	-0.890388		51	1	0	5.343003	1.165857	-0.000030
15	1	0	-3.343718	-0.427852	0.890269		52	6	0	7.668021	-1.935033	-0.000062
16	8	0	-4.119701	1.272399	-0.000065		53	1	0	5.862432	-3.103159	-0.000106
17	6	0	-5.444391	0.998150	-0.000055		54	6	0	8.223153	-0.642459	-0.000029
18	6	0	-5.982159	-0.292058	-0.000050		55	1	0	7.776214	1.463132	0.000007
19	1	0	-5.343003	-1.165857	-0.000053		56	1	0	8.323348	-2.799892	-0.000071
20	6	0	-7.361633	-0.460285	-0.000040		57	6	0	9.636953	-0.460667	-0.000009
21	1	0	-7.776213	-1.463133	-0.000036		58	6	0	10.837561	-0.309759	0.000009
22	6	0	-8.223153	0.642458	-0.000036		59	6	0	12.244049	-0.134620	0.000029
23	6	0	-7.668021	1.935032	-0.000043		60	6	0	12.827561	1.135709	0.000020
24	1	0	-8.323348	2.799891	-0.000040		61	6	0	13.119258	-1.221032	0.000059
25	6	0	-6.298417	2.109609	-0.000052		62	6	0	14.197290	1.298669	0.000041
26	1	0	-5.862432	3.103159	-0.000056		63	6	0	14.495035	-1.059962	0.000079
27	6	0	-9.636953	0.460665	-0.000026		64	6	0	15.066935	0.208961	0.000081
28	6	0	-10.837561	0.309758	-0.000017		65	6	0	16.549390	0.471596	0.000083
29	6	0	-12.244049	0.134619	-0.000004		66	9	0	14.692278	2.542040	0.000014
30	6	0	-12.827562	-1.135709	-0.000021		67	9	0	12.049091	2.222690	-0.000015
31	6	0	-14.197291	-1.298669	-0.000008		68	9	0	15.242284	-2.167060	0.000096
32	6	0	-15.066935	-0.208961	0.000021		69	9	0	12.626856	-2.464579	0.000064
33	6	0	-14.495034	1.059962	0.000038		70	9	0	17.281329	-0.648415	0.000323
34	6	0	-13.119257	1.221032	0.000026		71	9	0	16.915498	1.187701	1.082467
35	9	0	-12.049092	-2.222691	-0.000050		72	9	0	16.915574	1.187291	-1.082550

Table S6. Cartesian Coordinates of 2b (So state)

	Atom	Туре	Coord	inates (Angstr	oms)	36	9	0	14.668548	2.579983	-0.000079
No.	No.		x	У	z	37	9	0	15.256804	-2.124659	-0.000049
1	6	0	-1.795713	0.690526	0.000085	38	9	0	12.643882	-2.443364	-0.000003
2	1	0	-1.690172	1.332465	0.882580	39	6	0	16.542621	0.524525	-0.000093
3	1	0	-1.690173	1.332469	-0.882408	40	9	0	16.903096	1.243451	1.082457
4	6	0	-0.705401	-0.380645	0.000082	41	9	0	16.903059	1.243441	-1.082661
5	1	0	-0.824365	-1.026722	-0.879847	42	9	0	17.283729	-0.589490	-0.000101
6	1	0	-0.824361	-1.026723	0.880012	43	6	0	-3.181649	0.080092	0.000083
7	6	0	0.701412	0.216126	0.000078	44	1	0	-3.346062	-0.534362	0.892047
8	1	0	0.819859	0.862526	-0.879783	45	1	0	-3.346059	-0.534362	-0.891881
9	1	0	0.819864	0.862527	0.879938	46	8	0	-4.133849	1.159070	0.000081
10	6	0	1.792655	-0.853538	0.000075	47	6	0	-5.441627	0.906882	0.000079
11	1	0	1.686307	-1.496487	0.882115	48	6	0	-6.003872	-0.390692	0.000074
12	1	0	1.686297	-1.496491	-0.881962	49	6	0	-6.284666	2.047666	0.000081
13	6	0	3.181787	-0.247352	0.000065	50	6	0	-7.366980	-0.542760	0.000069
14	1	0	3.337555	0.373969	-0.890304	51	1	0	-5.368995	-1.267665	0.000073
15	1	0	3.337566	0.373973	0.890429	52	6	0	-7.641931	1.906415	0.000076
16	8	0	4.127161	-1.319944	0.000061	53	1	0	-5.820580	3.028145	0.000085
17	6	0	5.449822	-1.035025	0.000052	54	6	0	-8.242141	0.597770	0.000069
18	6	0	5.977056	0.259454	0.000042	55	1	0	-7.803890	-1.535292	0.000064
19	1	0	5.330886	1.128091	0.000041	56	1	0	-8.286744	2.778198	0.000077
20	6	0	7.355155	0.438819	0.000032	57	6	0	-9.603742	0.444132	0.000060
21	1	0	7.761627	1.444974	0.000023	58	6	0	-10.842406	0.305401	0.000046
22	6	0	8.225517	-0.656950	0.000032	59	6	0	-12.203433	0.154359	0.000019
23	6	0	7.680848	-1.953953	0.000043	60	6	0	-12.841090	-1.129395	-0.000010
24	1	0	8.343107	-2.813513	0.000043	61	6	0	-13.105892	1.267346	0.000010
25	6	0	6.312665	-2.139577	0.000053	62	6	0	-14.197810	-1.263022	-0.000033
26	1	0	5.884747	-3.136630	0.000061	63	6	0	-14.465344	1.118193	-0.000014
27	6	0	9.637835	-0.463699	0.000020	64	6	0	-15.074059	-0.154671	-0.000022
28	6	0	10.837165	-0.303045	0.000009	65	6	0	-16.540675	-0.396230	-0.000070
29	6	0	12.242203	-0.116551	-0.000016	66	9	0	-14.722071	-2.502014	-0.000077
30	6	0	12.815420	1.158458	-0.000036	67	9	0	-12.067155	-2.226096	-0.000021
31	6	0	14.183776	1.332553	-0.000061	68	9	0	-15.211252	2.234783	-0.000029
32	6	0	15.062290	0.249932	-0.000066	69	9	0	-12.584458	2.505036	0.000022
33	6	0	14.500650	-1.023591	-0.000046	70	9	0	-17.267254	0.732446	0.000093
34	6	0	13.126207	-1.195792	-0.000021	71	9	0	-16.943774	-1.117324	1.080024
35	9	0	12.028071	2.239133	-0.000032	72	9	0	-16.943764	-1.117000	-1.080391

Table S7. Cartesian Coordinates of 2b (S₁ state)

4. Crystal Structure

Single crystal of **2a** was obtained by recrystallization from CDCl₃. The obtained single crystal was mounted on a glass fiber. X-ray diffraction patterns were recorded on a Rigaku XtaLabMini diffractometer or a Rigaku Saturn 724 diffractometer equipped with a VariMax Mo optic system using Cu*K* α radiation (λ = 1.54187 Å). The reflection data were integrated, scaled, and averaged using the *CrysAlilsPro* (ver. 1.171.38.46, Rigaku Oxford Diffraction, 2015). Empirical absorption corrections were applied using the *SCALE3 ABSPACK* scaling algorithm (*CrysAlisPro*). The structures were solved by a directed method (*SHELXT-2014/5*) and refined using a full-matrix least square method on *F*² for all reflections (*SHELXL-2014/7*). The crystallographic data were deposited into the Cambridge Crystallographic Data Centre (CCDC) database (CCDC 2011588 for **2a**). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

Figure S31. Crystal and the packing structures of 2a

	2a
CCDC No.	2011588
Empirical formula	$C_{35}H_{18}F_{14}O_2$
Formula weight	736.49
Temperature [K]	293(2)
Crystal color / Habit	Colorless / block
Crystal size [mm]	0.12 x 0.11 x 0.10
Crystal system	Monoclinic
Space group	P 21/n
<i>a</i> [Å]	12.4775(9)
<i>b</i> [Å]	14.3824(13)
<i>c</i> [Å]	35.1870(17)
α [°]	90
β[°]	98.060(5)
γ[°]	90
V [ų]	6252.2(8)
Z	8
$R[F^2>2\sigma(F^2)]^{[a]}$	0.0702
wR (F ²) ^[b]	0.1689

Table S8. Crystallographic data for 2a

[a] $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. [b] $wR = \{[\Sigma w(|F_0| - |F_c|)]/\Sigma w|F_0|\}^{1/2}$.

5. PL behavior in CH₂Cl₂ solution

UV-vis absorption spectra were recorded on a JASCO V-500 absorption spectrometer (Tokyo, Japan). Samples for absorption measurements were prepared by dissolving crystalline **2a**–**f** in a common organic solvent to a concentration of 1.0×10^{-5} mol L⁻¹ and transferring the solution to a quartz cuvette with an optical path length of 1 cm. Steady-state photoluminescence (PL) spectra and PL quantum yields (PLQYs) in solution and crystalline states were obtained using a JASCO FP-6000 fluorescence spectrometer (Tokyo, Japan) and an absolute PLQY measurement system (Hamamatsu Photonics KK., C11347-01, Hamamatsu, Japan). PL measurements were performed for 1.0×10^{-6} mol L⁻¹ solutions using quartz cuvettes with an optical path length of 1 cm. The excitation wavelength (λ_{ex}) corresponded to the maximum absorption wavelength.

Figure S32. Absorption and PL spectra of (A) 2a, (B) 2b, (C) 2c, (D) 2d, (E) 2e, and (F) 2f in CH₂Cl₂ solution states.

AIE evaluation

Figure S33. (a) PL spectra of **2a** in a mixed solvent of THF and H₂O. (b) Relationship between water ratio and photoluminescence efficiency (\mathcal{D}_{PL}). (c) Photoluminescence color of the solution without/with UV irradiation ($\lambda_{ex} = 365$ nm).

6. PL behavior in crystalline powder

For excitation and PL measurements, crystalline powder samples were placed between two quartz glass plates, and the samples were placed above a quartz Petri dish and characterized using a calibrated integrating sphere for measurements of PL behavior and PLQY in the crystalline state using a C11347-01 absolute PLQY measurement system (Hamamatsu Photonics KK, Hamamatsu, Japan).

Figure S34. Excitation (dotted line) and PL spectra (solid line) of (A) 2a, (B) 2b, (C) 2c, (D) 2d, (E) 2e, and (D) 2f in crystalline powder states.

7. PL Behavior after mechanical stimulus

Figure S35: Excitation (dotted line) and PL spectra (solid line) of (A) **2a**, (B) **2b**, and (C) **2d** after mechanical stimulus. (D) Stimuli-responsive PL behavior of **2a**; pristine crystalline powder (red), after grinding (blue), and recrystalline sample after thermal treatment (green).