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Abstract: Grain boundary sliding is an important deformation mechanism, and therefore its
description is essential for modeling different technological processes of thermomechanical treatment,
in particular the superplasticity forming of metallic materials. For this purpose, we have developed a
three-level statistical crystal plasticity constitutive model of polycrystalline metals and alloys, which
takes into account intragranular dislocation sliding, crystallite lattice rotation and grain boundary
sliding. A key advantage of our model over the classical Taylor-type models is that it also includes a
consideration of grain boundaries and possible changes in their mutual arrangement. The constitutive
relations are defined in rate form and in current configuration, which makes it possible to use additive
contributions of intragranular sliding and grain boundary sliding to the strain rate at the macrolevel.
In describing grain boundary sliding, displacements along the grain boundaries are considered
explicitly, and changes in the neighboring grains are taken into account. In addition, the transition
from displacements to deformation (shear) characteristics is done for the macrolevel representative
volume via averaging, and the grain boundary sliding submodel is attributed to a separate structural
level. We have also analyzed the interaction between grain boundary sliding and intragranular
inelastic deformation. The influx of intragranular dislocations into the boundary increases the number
of defects in it and the boundary energy, and promotes grain boundary sliding. The constitutive
equation for grain boundary sliding describes boundary smoothing caused by diffusion effects.
The results of the numerical experiments are in good agreement with the known experimental data.
The numerical simulation demonstrates that analysis of grain boundary sliding has a significant
impact on the results, and the multilevel constitutive model proposed in this study can be used to
describe different inelastic deformation regimes, including superplasticity and transitions between
conventional plasticity and superplasticity.

Keywords: crystal plasticity; multilevel statistical constitutive model; grain boundary sliding;
superplasticity; 1420 alloy

1. Introduction

Superplastic (SP) deformation is promising for manufacturing complex-shaped parts with the
required properties from metals and alloys. Using this approach, one can produce lightweight large-size
structures without welded seams or with a small number of welded seams and joints. Its application
makes it possible to reduce the number of technological operations, to carry out the forming process
with low stresses and to decrease the consumption of materials. The structures produced by this
method have smooth surfaces and exhibit only slight surface deviations from the desired geometry,
which is of particular importance for thickness variation minimization and for high-precision filling of
dies [1–10].
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In technological processes, the SP deformation regime develops at relatively moderate
(about 0.5–0.6) homologous temperatures so that the size and equiaxed shape of individual grains
remain unchanged [11–13]. At a higher temperature, the SP deformation can be realized under
continuous dynamic recrystallization (DRX) conditions. However, in this case, expensive heat-resistant
equipment is required, and it is almost impossible to guarantee the necessary continuity (absence of
excessive porosity) of the complex-shaped parts during their manufacture. Besides, the residual
stresses arising after high-temperature processing may be high, and the shape of an object may distort.
Our study addresses the 1st type SP regime, called “structural SP with steady grain’s state”. This term
has a more precise meaning compared to the pioneer works on superplasticity (e.g., [14]), in which only
the average grain structure parameters were kept unchanged, and the material was redistributed among
grains during the continuous DRX (the term “steady state structural SP” is used in the literature [15] in
this broad sense).

In most works, the properties of the materials in the SP regime are determined on the basis
of the results of uniaxial tensile tests. For many alloys, including those widely used in industry,
within some temperature and strain rate ranges, there occurs a stress-strain dependence of staged
nature, which can be attributed to the effects of different deformation mechanisms, their interaction
with each other and a change in their roles during deformation. Similar dependences (bell-shaped
curves) are given in the literature for aluminum alloys close to single-phase alloys [16–20], magnesium
alloys [21,22] and titanium alloys [23,24]. These analyses reported the absence of a pronounced
deformation localization zone (a neck), which allowed researchers to make an assumption about the
uniformity of the stress–strain state.

In [25,26], basing on the analysis of information from most of the reviewed sources, the authors
set forth a scenario that has been realized in deformation testing alloys close to single-phase alloys
with a transition to the SP regime under prescribed temperature and strain rate conditions (the test
temperature does not exceed 0.7 of the homologous temperature).

At the initial deformation stage (an ascending branch of the tension curve), the effects of
intragranular dislocation sliding (IDS) and grain rotation mechanisms become stronger, which causes a
crystallographic texture to occur, whereas the role of grain boundary sliding (GBS) remains insignificant.

At the transient stage (the tension curve gradually bends), the role of GBS increases. The grain
boundaries are more prepared for this sliding because of the influx of lattice dislocations that increase
the boundary internal energy and improve the smoothing of the grain surfaces by grain boundary
diffusion. Depending on the initial structure of the material, test temperature and strain rate conditions,
recrystallized grains begin to grow at the expense of the non-recrystallized phase and an integral
decrease in the density of intragranular dislocations. During the deformation process, a grain rotation
occurs. The GBS causes a shear of adjacent grains against one another.

The specific features of the structural SP regime (part of the curve that corresponds to a steady-state
flow stress or its gradual decrease) are as follows. The GBS, accompanied by the accommodative
processes of IDS and grain boundary diffusion, grain rotations and shear of adjacent grains against one
another, is prevailed. The stability of the structure (all grains remain unchanged, and the structure
becomes an equiaxial ultrafine-grained structure) is achieved via the simultaneous realization of
accommodative IDS and grain rotation. GBS (as well as dislocation sliding at an transient stage) leads
to weakening or disappearance of the texture formed after the first stage of testing.

Therefore, the available complex deformation scenario for the implementation of even the simplest
(uniaxial at the macrolevel) SP tests includes several interacting mechanisms with changing roles
and significant structure evolution of the material. A similar situation is typical for the technological
processes involving SP. Temperature and strain rate conditions may change significantly in different
parts of the structure, and thus these processes will proceed in different ways in these objects. This causes
a need for the development of mathematical models for describing the peculiar features of existing
metal-forming technologies.
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Much research has been published regarding the multilevel models developed within the
framework of the crystal plasticity for describing IDS, twinning and rotation of crystallite lattices [27–36].
An important direction towards obtaining this class of constitutive models and an accurate description
of traditional mechanisms (dislocation motion and interaction) in the context of solid-state physics
includes a consideration of other significant deformation mechanisms. In order to describe the
structural SP with steady grain’s state and preparatory stage, it is necessary to constitute an improved
single-crystal plasticity model capable of accounting for GBS, grain growth and some other deformation
mechanisms mentioned above. GBS is the leading mechanism in the SP deformation and in the transition
to it, and therefore its description is an issue of primary importance. However, to the best of our
knowledge, this problem has not received due attention in the literature.

In [37], the activity of GBS was estimated in terms of the direct crystal plasticity model by analyzing
tangential stresses on grain boundaries. In [38,39], where the deformation of grains was described with
allowance for crystal plasticity, the grain boundary was modelled as a separate deformable medium
(phenomenological relations were applied), but the grain sliding was not taken into account explicitly.
In [40], almost the same approach is proposed, the mixture model with a smooth transition between
phases is considered (the grain is described by the crystal plasticity model, the boundary is modeled
by the J2—plasticity theory).

As noted above, the grain growth can play a significant role at the preparatory stage before the
onset of SP regime. Recently, direct (based on solving the boundary volume problem at mesolevel via
FEM) [41–43] and self-consistent crystal plasticity models [44,45] have been developed for describing
the discontinuous DRX. However, it should be noted that these models include rather complicated
procedures needed in grained restructuring and to redefine the stress field so that they satisfy a
balance equation.

A self-consistent crystal plasticity model that is able to account for GBS and some other SP
mechanisms has been introduced in a recently published article [46], the authors of which set forth an
idea to describe “superplastic mechanisms (GBS, diffusion etc.)” in a complex manner by making use
of an additional inelastic component for each grain. Although this approach shows some promise,
it can be assumed that it hardly be used to formulate the kinetic equations needed to determine a given
component via physical analysis (taking into account the interaction of GBS with another deformation
mechanisms), also, it will lead to a significant complication of numerical procedures; besides, it is
difficult to interpret the grain interaction effect using this approach. Direct crystal plasticity models
are difficult to develop for GBS describing because of the need to describe the loss of continuity.
For this reason, there occurs a necessity to apply special methods for solving boundary value problems.
In recent years, some attempts have been made towards developing such mathematical apparatus
(for example, in [47]), yet its successful practical application requires serious additions, including
those promoting an increase in its computational efficiency. The issue of resource intensity is of great
importance in solving boundary value problems applied to modeling SP technologies. Due to the
totality of the arguments given, we have chosen a statistical model.

The structure of the model, in which part of inelastic strain rate due to GBS is separated at
the macrolevel, is proposed in [48]. The models of similar structure are also used in [49,50], where
the authors analyzed GBS in nanomaterials without considering physical processes that govern it
(for instance, the equations for critical stresses were dropped from the consideration).

In [26], the first version of a multilevel statistical constitutive model for describing SP regime
and transitions to it was developed. The model was formulated in the rate form in the current
configuration, which made it possible to apply the hypothesis of additive contributions of IDS and
GBS to strain rate at the macroscale level. In a series of works [51–54], the choice of this approach for
formulating geometrically nonlinear equations was justified. It turned out that, in the absence of GBS,
the model offers the results, which agree well with the data obtained using other mesoscale models,
including those with the most popular formulation of constitutive equations in terms of the unloaded
configuration [28,55].



Crystals 2020, 10, 822 4 of 18

In this paper, we describe in detail the modifications necessary to adapt the statistical crystal
plasticity model to the consideration of GBS. In contrast to the model presented in [26], the structure
of the model proposed here, as well as the kinetic equations used to describe SP and GBS effects,
are changed. This modified model is a basis for developing a constitutive model advanced by an explicit
account of discontinuous DRX (grain growth) and its effect on other deformation mechanisms, which are
needed to describe both SP and transitions to it (an appropriate publication is scheduled for the near
future). Since many deformation mechanisms operate and interact during the SP regime, we use here
the simplest phenomenological relations (at the corresponding scales). Probable modifications of these
relations are planned to perform in our further study on this topic. On the other hand, the presented
constitutive model and numerical computations have revealed very important and interesting aspects
regarding the crystal plasticity development for the simulation of deformation with active GBS.

Section 2 includes a description of a three-level constitutive model and presents mesolevel
equations for IDS and crystallite lattice rotations, as well as relations for GBS. Section 3 discusses the
simulation results obtained in this study and gives their analysis.

2. Three-Level Model with Description of GBS, IDS and Grain Lattice Rotations

In contrast to the classical Taylor-type statistical models, the advanced model proposed in this
study is able to account for the interfaces between crystallites. Intergranular boundaries are considered
in the model as separate objects, connected at each moment of time with boundaries (grain facets).
For these objects, internal variables are introduced, and kinetic equations for their evolution are
formulated. A set of intergranular boundaries forms a separate structural level (level for description of
GBS), and the model is modified into a three-level model: macrolevel (representative macrovolume),
structural level for description of GBS that can be considered as a macrolevel submodel, and mesolevel
(grains with boundaries). The schematic diagram of the model structure is given in Figure 1.

Figure 1. Schematic diagram of the model structure. Additions to a typical statistical crystal plasticity
model structure are marked by blue color.

At the initial moment, the aggregates of grains and intergranular boundaries are constructed,
and the relations between them are assigned (for the intergranular boundary, the numbers of the grains
adjacent to it are set). Due to GBS, the mutual arrangement of grains in the statistical model will change
and this will gradually change the numbers of grains that form intergranular boundaries. The initial
structure (samples of grains and intergranular boundaries) can be formed both coincident with spatial
packing (e.g., the grain structure can be approximated by using Voronoi tessellation) and in a random
way (due to the statistical equality of the model elements).
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The calculation results confirm the closeness of the integral parameters obtained at the macrolevel,
including the change in the GBS proportion in the total strain rate and the change in the distribution
function of grain lattice orientations, for different generations of the sample relations. This approach
can be called a modification of the “statistical model which takes into account intergranular boundaries,
mutual grain arrangement and its change”. As regards the possibility of redefining the relations
between the elements, it is similar to the movable cellular automata method [56].

For simplicity of the presentation, the formulations are given for isothermal deformations
because a maintained constant temperature is observed in most tests and technological modes of SP
forming. The changes necessary to consider the non-isothermal case are easy to introduce into the
constitutive model.

We suppose that the macroscale stresses integrally characterize the elastic bonds in the material,
and therefore the macroscopic stresses are equal to average mesoscale stresses

K = 〈k〉 (1)

where K, k is the weighted Kirchhoff stress tensor at macro- and mesolevels (the grain index is omitted),
k =

o
ρ/ ρ̂ σ, σ is the Cauchy stress tensor,

o
ρ is the crystallite density in the reference configuration,

and ρ̂ is the crystallite density in the current configuration. The continuity conditions are assumed
to be fulfilled along the grain contact boundaries (no material discontinuities are present along the
normal to the boundary).

The strain rate due to GBS Zin
gb at the macrolevel is determined by averaging the GBS shear

rates along the grain contact boundaries. Instead of standard (for the statistical Taylor type model)
transmission of the velocity gradient (l = L) to the lower level, the following relation is used

l = L−Zin
gb (2)

where l, L is the transposed velocity gradient at meso and macrolevels, respectively. It can be said that
some of the applied kinematic impacts are realized due to GBS at the macrolevel without contributing
to the deformation of grains. Theoretically, there may be a situation where, after reaching a certain
state of boundaries, the entire instantaneous deformation is realized due to GBS (among the grain
layers), i.e., L = Zin

gb, l = 0. This situation may occur in the bicrystal subjected to simple shear loading
in the boundary plane. Relations describing GBS and an example that illustrates (2) are given below.
First, let us consider the relations at the mesolevel.

To describe the deformation of each crystallite (the crystallite index is omitted), the following
system of elastoviscoplastic equations is used

kcor
≡

.
k + k ·ω–ω · k = п : (l−ω− zin),

l = L−Zin
gb,

zin =
K∑

i=1

.
γ
(i)b(i)

⊗ n(i),

.
γ

(k)
=

.
γ 0

(
τ(k)/τ(k)c

)m
H(τ(k) − τ

(k)
c ), k = 1, . . . , K,

τ(k) = (b(k)
⊗ n(k)) : k, k = 1, . . . , K,

.
τ
(k)
c =

[
relations f or

.
τ
(k)
c

]
, k = 1, . . . , K,

ω = [relations f orω],
.
o · oT =ω.

(3)

In relations (3), summation over one and two contracted index is denoted by “·” and “:”, the outer
tensor product is denoted by “⊗”, kcor

≡

.
k + k ·ω–ω · k is the rate of change (corotational derivative)

of the Kirchhoff stress tensor, in which the principle of frame-indifference is satisfied,ω is the spin
tensor of the rigid movable coordinate system (RMCS) related to the crystallite lattice, o is the RMCS
orientation tensor, п is the fourth order tensor of crystallite elastic properties (its components are
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constant in the crystallite RMCS basis), zin is the inelastic strain rate component at the mesolevel;
γ(k),

.
γ

(k), τ(k), τ(k)c are the cumulative shear, shear rate, effective tangential and critical tangential
stress of the slip system k, b(k), n(k) is the direction vector and normal to the plane of the slip system
k, H(·) is the Heaviside function (hereinafter), and m is a dimensionless parameter. A doubled
number of slip systems is used (only positive shears along them are considered). Note that in the
constitutive equation, the transposed relative velocity gradient (l–ω) is used as a measure of the total
strain rate minus the RMCS rotation [54]. Parameter

.
γ 0 is assumed to be related to the strain rate

intensity
.
γ0 = lu =

√
(l–ω) : (l–ω)T (a similar relationship of the nominal shear rate due to IDS with

macroscopic strain rate modulus is introduced in [57]).
It was shown in [53,54] that for small elastic deformations typical of metals and alloys and in

the absence of GBS, the mesolevel model (3), describing the elastoviscoplastic deformation, yields
results close to the data obtained by other alternative mesolevel models, including those with the most
commonly used formulation of constitutive relations in the unloaded configuration [28,55]. However,
use of the rate formulation (3) in the current configuration is preferable for the model development in
the case of an increase in the number of considered mechanisms (in our case, we take into account
GBS), since it is possible to accept the strain rate component’s additive hypothesis.

The RMCS, in which the crystallite properties are assumed to be constant, is coupled with the
symmetry elements of the crystallites, which remain unchanged during the IDS; the definition of the
spin in the absence of GBS is discussed in detail in [51,54]. It was shown in [58] that the use of a full

constrained Taylor spin
¯
ωT = 1

2 (l− lT) +
K∑

i=1

1
2

.
γ

i
(ni
⊗ bi
− bi
⊗ ni) gives similar results. The GBS effect

on grain rotation is demonstrated, e.g., in [59]. When GBS is activated along the grain boundaries,
it becomes possible to rotate it additionally due to the action of shear stresses along the boundaries;
this effect is described by the component added to the specified spin [26]

ωgb = χ
.
γ 0µτH(‖

〈
zin

gb

〉
grain
‖), (4)

here χ is the model parameter characterizing the viscous boundary resistance to rotations, µτ is the

moment due to the tangential forces acted on all grain boundary facets,
〈
zin

gb

〉
grain

is the mean strain

rate due to the GBS (〈〉grain denotes the averaging over the total number of boundary facets of the

current grain), and the norm of the 2nd rank tensor T is defined as ‖T‖ =
√

T : TT.
An important characteristic of the mesoscale model is that it includes kinetic equations for critical

shear stresses τ(k)c along the slip systems. Relations for describing the change τ
(k)
c have been proposed

in many works, for instance, in [57,60,61]. The purpose of our research is to describe GBS and, as an
example illustrating the application of this model, we consider the deformation in the SP regime.
According to the above scenario, the grain structure in the SP regime can be considered as a recrystallized
structure. In this case, the increase in τ

(k)
c due to the intragranular barriers can be neglected (in the

general case, one can use the equations given in the articles already mentioned, or in [26], or in any
other publications). On the other hand, since consideration is given here to a fine-grained structure,
then it is reasonable that there occurs an increase in the resistance of dislocations to motion due to the
boundary defects (orientation mismatch dislocations) and generation of near-boundary dislocation
pile-ups during the misorientation between the neighboring grains [62,63].

In order to take into account the boundary effect on IDS, the shear rate relation used in direct
crystal plasticity models is usually modified so that it can be applied to the near boundary region.
In [64–66], the well-known relation [60] was modified to describe the evolution of the dislocation
density over the slip systems, taking into account the pile-ups of dislocations near the boundary. In [67],
for the near boundary region, the application of Arrhenius-type relation for IDS shear rates made it
possible to analyze the additional activation energy proportional to the energy spent on orientation
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mismatch dislocations’ generation; the shear rates in the near boundary area obtained in [68] turned
out to be dependent on the mutual orientation of the slip systems and the shear stresses acting on them.

In accordance with the basic principles of constructing statistical models, the model proposed in
this work effectively takes into account the rising of resistance to IDS due to orientation mismatch
dislocations and dislocation piles-up near the boundary by increasing of the critical shear stresses τ(k)c
for the grain (as a homogeneous element in a statistical sample). In the absence of GBS at the grain
boundary, we apply the following approximate relation

.
τ
(k)
c[withoutGBS]

= ψ(R
(N)
−R

(N)neib)H(R
(N)
−R

(N)neib),

R
(N)

=
K∑

i=1

.
γ

(i)N · b(i)H(N · b(i)),

R
(N)neib =

K∑
i=1

.
γ

(i)
neibN · b(i)

neibH(N · b(i)
neib).

(5)

where N is the (outer) external normal to the current grain boundary, R
(N)

is the estimate (of density)
of the rate of dislocation inflow into the outer boundary from it, R

(N)neib is the estimate (of density) of
the rate of passage of dislocations through the boundary into the neighboring grain. The index “neib”
denotes the neighboring grain and ψ is the model parameter (Pa).

After the specified GBS occurs on the current grain boundary, a linear combination of the
characteristics of the neighboring grains on this boundary in (5) is used, which is similar to the
determination of shear stresses for the intergranular boundary carried out by (9). According to (5),
in the case of the incompatibility of IDS in the neighboring grains, part of the lattice dislocations forms
orientation mismatch dislocations in the boundary, which is taken into account through an increase in
the resistance to IDS (in sight, the model can be expanded through the explicit introduction of variables
for the densities of various types of defects).

With account for the possible activity of GBS, (5) takes the form

.
τ
(k)
c =


[(

R
(N)
−RGBS(N)

)
/R

(N)

]
.
τ
(k)
c[without GBS]

, ifR
(N)
≥ RGBS(N),

−α
[(

RGBS(N) −R
(N)

)]
(τ

(k)
c − τc0)H(τ

(k)
c − τc0), if R

(N)
< RGBS(N),

RGBS(N) = β
4∑

i=1
(

.
γ

(i)
gb )(N)

,

(6)

where RGBS(N) is the estimate of the rate of increase in the grain boundary dislocation density, on which
orientation mismatch dislocations are dissociated during GBS, β is the dimensionless parameter,

0 < β < 1,
4∑

i=1
(

.
γ

(i)
gb )(N)

is the total value of the shear rates along the grain facet with the normal N

against its size (four possible directions of positive shear rates are considered), α the dimensionless
parameter, and τc0 is the minimum possible critical stress for a grain with a low defect density.

The quantity (
.
γ

(i)
gb )(N)

is defined as (
.
γ

(i)
gb )(N)

=
S(i)gb
v vgb0

(
τ
(i)
gb /τ(i)cgb

)n
H(τ

(i)
gb − τ

(i)
cgb), where S(i)gb is

the area of the boundary facet, v is the grain volume, vgb0 is the characteristic rate of grain boundary

dislocation displacement along the facet, τ(i)gb , τ(i)cgb are the tangential and critical stresses for the contact
boundaries, n is a dimensionless parameter; the relations for determining the above quantities are
considered below. Use of (6) makes it possible to explicitly take into account the fact that, during
the GBS, some part of orientation mismatch dislocations dissociates in grain boundary dislocations,
which results in a weakening of the grain boundary hardening or causes its softening (depending on
the ratio of IDS and GBS rates).

According to the above relations, GBS does not occur for a fine-grained material with a structure
prepared for SP at a low homological temperature, and therefore a significant grain boundary hardening
may happen due to IDS, which is mainly caused by the boundary effects. At a temperature required
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for SP, GBS will be active and, according to (6), the critical IDS stresses will decrease. Thus, the model
is evidently capable of taking into account the effect of GBS on IDS.

During the GBS, relative displacements of crystallites (grains, subgrains) occur along their
common boundary due to the motion of grain boundary dislocations. Note that, in the absence of an
explicit dislocation description of (as in the mesoscale model, describing intragranular deformation),
the averaged characteristics (shears) are used. To determine the kinematic characteristics of GBS for
each grain boundary, a basis of vectors ngb, b(1)

gb иb(2)
gb is introduced into a three-dimensional space: ngb

is a normal to the facet plane, b(1)
gb and b(2)

gb are the mutually orthogonal unit vectors of displacement
directions in the facet plane. The dyad of sliding direction and normal determines the GBS slip system.

When constructing the model under study, a transition from the local displacements along the
contact boundaries to the deformation characteristics is carried out for the macrolevel representative
volume. The movement of grain boundary dislocations in the slip plane is considered, and the
viscoplastic relation is used to set their average displacement rate. Thus, we write [69]
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γ

(i)
gb0

ob
=

S(i)gb
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boundary area, V is the macrolevel representative volume size, n is the parameter, and 4Kgb is the
general number of base displacement directions on all boundary facets in the representative volume
at the macrolevel. Generally speaking, rigorous determination of vgb0 requires the introduction of
another scale-structural level (microscale) in the model so that one can get an opportunity to explicitly
consider the characteristics of the varying defect structure (change ρ

(i)
gb with account for the interaction

with lattice dislocations). Such an in-depth description may be useful for further development of the
model. Analysis of the results obtained indicates that at this stage of research we shall confine ourselves
to considering a three-level model, which makes it possible to achieve the objectives formulated.
Therefore, in order to describe the characteristic displacement rate of grain-boundary dislocations
moved along the boundary facet vgb0, we have taken an approximate relationship between the strain

rate intensity lu =

√
(l−ω) : (l−ω)T and the grain size r: vgb0 = lur (similar relationship between

the nominal shear rate due to IDS and the macroscopic strain rate modulus was introduced in [57]).
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the critical stresses τ(i)cgb needed to activate GBS. The accounting of temperature and rate sensitivity is

carried out using the kinetic relations for τ(i)cgb.

The inelastic component of the relative velocity gradient due to GBS Zin
gb is determined by the

shear rates (7) as

Zin
gb =

4Kgb∑
i=1

.
γ

(i)
gb b(i)

gb ⊗ n(i)
gb , (8)
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where Kgb is the number of intergranular boundaries considered in the model, for which internal
variables are specified, and the corresponding grains are assigned (during GBS, these neighboring
grains change by others).

For illustration, we consider here a simplest test case, assuming that cubical grains and boundaries
are identical. Suppose that, at the current time, deformation develops only at the expanse of GBS, i.e.,
due to shears along the boundaries indicated in blue in Figure 2. This situation may take place when
the tangential stresses on the corresponding GBS slip systems are equal to the critical stresses, i.e.,
shearing occurs in the grain layers.

Figure 2. Test case scheme. In statistical sampling the upper grains are considered to be bordering the
lower grains.

According to (7), the shear rate in a representative volume generated by the shear along one
boundary is calculated as
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In the case under consideration, a set of N GBS slip systems develops actively, and for each

of these modes the shear indicated above will develop as well. Thus, Zin
gb =

4Kgb∑
i=1

.
γ

(i)
gb b(i)

gb ⊗ n(i)
gb =

lu
(
τ
(i)
gb /τ(i)cgb

)n
k1 ⊗ k2 and, if we assume that for active boundaries τ

(i)
gb = τ

(i)
cgb, and the spin of RMCS

for grains ω = 0, then we have Zin
gb = luk1 ⊗ k2. This indicates that the described kinematic effect

associated with a simple shear will develop at the expanse of GBS.
The tangential stresses for GBS slip systems at the intercrystallite boundary, which, in the context

of the accepted model representation, is assumed to be associated with one of the adjacent grains
(the neighboring grains are replaced by others in this case), are determined as

τ
(i)
gb = (b(i)

gb ⊗ n(i)
gb ) : σgb,

σgb =
σ
2 + 1

2 ((γmax − γgb)/γmaxσA + γgb/γmaxσB),
(9)

where σgb is the characteristic stress for the boundary under study (index is omitted), γmax is the shear
value at which the grains constituting the boundary are changed (loss of contact with the original
neighboring grain A), σ, σA, σB are the stresses in the (base) grain coupled with the boundary, grain A
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and grain B which replaces grain A on the boundary, γgb is the shear which occurred till the current

moment of time along all the four base directions in the boundary,γgb =

√(
γ
(1)
gb − γ

(3)
gb

)2
+

(
γ
(2)
gb − γ

(4)
gb

)2
,

γ
(i)
gb are the cumulative shears that occurred in the boundary till the current moment of time (in four

different directions, b(3)
gb = −b(1)

gb , b(4)
gb = −b(2)

gb ).
At γgb = 0, the characteristic stress is defined by the average stress for the initially adjacent

base grain and grain A, and at γgb = γmax by averaging stresses for the base grain and grain B.

In determining the cumulative shear, the shear rate direction along the boundary (vector
4∑

i=1

.
γ

(i)
gb b(i)

gb )

is prescribed, and it corresponds to the onset of the GBS along the facet under study; the spatial
arrangement of crystallites is taken into account. The value γmax, characterizing the moment at which
the grains are changed for current contact boundary, can be obtained as follows

γmax = lgbSgb/V (10)

where lgb, Sgb denote the boundary size in the shear direction and the boundary area, and V is the

representative macrovolume size. After the total shear reaches this limiting value, the shear γ
(i)
gb

for the intercrystallite boundary examined here is reset to 0. Formula (10) is simplified for the
homogeneous grain structure: γmax = lgbSgb/V ≈ v/V ≈ 1/N, where N is the number of grains in a
representative volume.

The important element of the constitutive model is that it involves kinetic equations for the grain
boundary critical shear stresses τ(i)cgb, i = 1, 2, . . . , 4Kgb (to shorten the writing of formulas, the index of
the number of the GBS slip system is omitted). In the general case, these relations should take into
account an increase (decrease) in the grain structure resistance to GBS, the emergence of hard-phase
particles to the boundaries during DRX and the mechanical smoothing of the boundaries; a version of
these relationships is given in [26]. In this work, attention has been focused on the SP regime at the
final stage of the SP deformation test, when the indicated factors can be neglected (it is assumed that
the corresponding processes have been completed). Therefore, the GBS hardening is expressed as

.
τ cgb = (F + G)H(τ cgb − τcgb∗) (11)

The constituent F characterizes a decrease in the critical stresses caused by an increase in the
boundary energy due to the influx of intragranular dislocations. The term G characterizes the processes
which are associated with grain-boundary diffusion and which lead to a decrease in critical stresses
(diffusion-induced adjustment of the boundaries). The critical stresses cannot be smaller than a certain
minimum level τcgb∗.

The rate of decrease in critical stresses caused by an increase in the boundary energy due to the
influx of intragranular dislocations (this effect is considered, for instance, in [70,71]) is described by the
following equation

F = −
2∑

j=1

K j∑
k=1

µ jg
.
γ

(k)( j)(N(k)( j)
· b(k)( j)

)
H

(
N(k)( j)

· b(k)( j)
)
+ ν

4∑
i=1

.
γ
(i)
gb (12)

where j is the index denoting the neighboring crystallite adjacent to the boundary; as in (7), consideration
is given to the initial neighboring grain A and grain B that replaces it, µ j is the weight coefficient
equal to (γmax − γgb)/(2γmax) for grain A and γgb/(2γmax) for grain B (thus, in (12), the same linear

combination as in (9) is used);
.
γ

(k)( j) is the shear rate along the slip system k in the crystallite j
adjacent to the facet under study, K j is the number of slip systems in the grain j, b(k)( j) is the unit
vector of the slip direction k in the crystallite j, N(k)( j) is the outer normal to boundary facet plane for
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the crystallite j and g is the model parameter characterizing the relationship between the boundary
energy and the critical shear stress of GBS. The last term describes a decrease in the boundary energy
due to GBS, which causes the softening value to decrease, ν is the model parameter characterizing
the corresponding effect, four possible directions of positive shear rates are considered; the value of F
cannot be positive.

The constituent for the rate of change in critical stresses caused by the processes associated with
grain boundary diffusion is defined as [26]

G = −c exp
(
−

Ud
κθ

)
|σbb/σ|q (13)

where σbb =
∣∣∣∣b(i)

gb ·σgb · b
(i)
gb

∣∣∣∣ is the normal stress in the shear direction along the boundary b(i)
gb (in the

area orthogonal to b(i)
gb), calculated by analyzing the stresses σgb characteristic of the boundary under

study (7), σ, c are the model parameters, Ud is the activation energy for grain boundary diffusion, θ is
the temperature, κ is the Boltzmann constant. Term (13) characterizes a decrease in the critical shear
stress of GBS due to diffusion-induced boundary smoothing, facilitating the dissociation processes
of the orientational mismatch dislocations into grain boundary dislocations and lattice dislocations,
dislocation climb.

3. Results and Discussion

The model described in this paper was applied to simulate the uniaxial tensile tests in
which a representative volume of polycrystalline aluminum alloy 1420 (Al-5.5%Mg-2.2%Li-0.12%Zr)
was investigated.

Since in most experiments the rate of crosshead displacement is assumed to be constant [25],
in our numerical experiment the decreasing strain rate corresponding to this case is set in the tension
direction (along the OX3-axis of the laboratory coordinate system), i.e., D33 =

.
H33 = D0/(1 + D0t),

where D33 is the strain rate tensor component, H33 is the logarithmic Hencky strain measure component,
D0 is the initial strain rate, and t is the time. The rest of the components of the (transposed) velocity
gradient, which determines the kinematic effect used in the model, are found from the condition
of uniaxial stress state [72]. The experiments were performed at the constant temperature of 523 K,
which corresponds to a homological temperature of 0.56 (it is assumed that the equilibrium exchange
rate with the environment having this temperature is significantly higher than the rate of possible
dissipation-related temperature change during inelastic deformation). Deformation was considered
only at the third stage of the SP deformation test [16] in the deformation interval from H33 = 1.1
to H33 = 1.45. Therefore, in modeling the final stage of this experiment, we set D0 = 3.33 · 10−4s−1

(for experiment with initial strain rate 0.001s−1, these data were used for identification procedure) and
D0 = 3.33 · 10−3s−1 (for experiment with initial strain rate 0.01s−1, these data were used for verification).
It is worth mentioning here that at this stage of research we intend to create the structure of a crystal
plasticity model capable of describing GBS. For simplicity of the structure representation, the model
does not take into account grain growth; only SP regime (changes in grain sizes are ignored) is modeled.
Thus, a comparison with the experimental curve is performed at the third stage of the experiment,
where grain growth is neglected in contrast to the early stages.

Within the framework of the proposed statistical model, the representative volume of the alloy
1420 was described through sampling from 343 f.c.c. crystallites, each of which had 26 neighboring
boundary facets. The model parameters used in the numerical experiments performed were the same:
constants for an observer in a rigid moving coordinate system associated with a lattice, elastic crystallite
modulus p1111 = 106.8GPa, p1122 = 60.4GPa, p1212 = 28.3GPa; viscoelastic law parameters for IDS
m = 10; spin parameter χ = 1.5(MN ·m)−1; parameters of the hardening law due to the boundary
effect ψ = 1.7N, β = 1, α = 0.1; parameters of the submodel describing GBS n = 5, g = 40MPa,
c exp

(
−

Ud
kθ

)
= 0.03MPa/s, σ = 35MPa, q = 3.
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The state of the material is determined by the values of the internal variables, which depend on
the history of impacts. In our model, such variables are the critical shear stresses for IDS and GBS
and the crystallite orientation tensors. In the numerical experiments, the deformation is considered
only at the final stage of the SP deformation test. To take into account deformation at previous stages,
we set different values for different strain rates: τ(k)c = 20MPa, τ(i)cgb = 35MPa (grain size r = 2µm) for

D0 = 3.33 · 10−4s−1 and τ
(k)
c = 32MPa, τ(i)cgb = 50MPa (grain size r = 1.5 µm) for D0 = 3.33 · 10−3s−1.

In both cases, a blurred stretch texture was taken as the initial texture.
Figure 3 gives the dependences of the Cauchy stress tensor component Σ33 at the macroscale on

the component H33 of the logarithmic strain measure and the corresponding experimental data [16]
(the dependence of stresses on the linear strain measure component from [16] is transformed into the
dependence on H33) for two different initial strain rates.

Figure 3. Dependences of stress intensity Σu = Σ33 on H33 obtained through modeling and during
the experimental tensile tests (dots) of 1420 alloy [16] for the initial strain rate: (a) D0 = 3.33 · 10−4s−1

(identification), (b) D0 = 3.33 · 10−3s−1 (verification).

It is seen that the simulation results are in a good agreement with the experimental results.
Some deviations in stresses can be attributed to the fact that the grains are intensively replaced due to
GBS (Figure 4).

Figure 4. Number of contacting grain changes versus strain H33 for the initial strain rate: (a)
D0 = 3.33 · 10−4s−1, (b) D0 = 3.33 · 10−3s−1.

It follows from Figure 4 that, as the deformation increases, the number of replaced neighboring
grains increases in a monotone way. Figure 5 shows the inelastic strain rate values obtained due to GBS
(Zin

gb)33
. These values correspond to the current strain rate D33 and are determined at equal intervals

of the strain H33.
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Figure 5. Inelastic strain rate values obtained at the expanse of the GBS (Zin
gb)33

, corresponding to the
current strain rate D33 and determined at equal intervals of the strain H33 for the initial strain rate:
(a) D0 = 3.33 · 10−4s−1, (b) D0 = 3.33 · 10−3s−1.

Note that the lines in Figure 5 are somewhat arbitrary: Zin
gb changes at each step, the diagrams

contain the values (Zin
gb)33

averaged on some sequent steps made at equal intervals of the strain H33.
These diagrams characterize a contribution of GBS to the strain rate at the corresponding moments.
This contribution turns out to be great, which provides evidence that GBS plays an essential role in
superplastic deformation. At lower strain rates (the time taken for achieving the prescribed deformation
increases), the shear rates vary gradually, and a slightly larger contribution of GBS takes place (Figures 4
and 5). The latter can be explained by the more significant effects of diffusion mechanisms, and the
model developed is able to take this fact into account.

It is known that in the SP regime the GBS effect results in blurring the texture formed at the initial
stage of the SP deformation test [73,74]. Figure 6 presents the pole figures constructed for the initial
state (H33 = 1.1) and the state occurred after reaching the strain H33 = 1.45 (the figures illustrate the
simulations at the initial strain rate D0 = 3.33 · 10−4s−1; the results obtained for the higher initial strain
rate are in good qualitative agreement with the abovementioned data).

Figure 6. Pole figures for directions <111> (projection from the OX3-axis): (a) for the initial moment
(H33 = 1.1 ), (b) after tension at H33 = 1.45.

The results obtained demonstrate that the model can be used to implement the deformation
scenario described above at the third stage in the SP regime with a gradual decrease in the flow stress
(Figure 3). This regime is characterized by the predominance of the GBS mechanism (Figures 4 and 5);
the equiaxial fine-grained structure is stable due to the simultaneous implementation of accommodative
IDS and grain rotations, when the shape change of grains occurs at each moment of time, but, because
of unceasing rotations, the resulting grain deformation is close to zero. GBS leads to blurring the
texture formed after the first stage of testing (Figure 6).

At this stage of our investigation, the most important aim was to develop a general structure
of the model, which should include all the key physical mechanisms of deformation and take into



Crystals 2020, 10, 822 14 of 18

account their interactions. Within the framework of this structure, specific relationships can be
modified on the basis of more detailed information from solid-state physics and through the use of
the experimental data. The findings about the action and interaction of mechanisms, changes in the
material structure, along with the data on the evolution of the stress–strain state at the macroscale
level, are useful for parameter identification. Actually, a simple uniaxial loading at the macrolevel
is a three-dimensional loading at the mesoscale, in which all the deformation modes are manifested
themselves, and corresponding information makes it possible to use the results of simple tests to
develop a model suitable for studying complex three-dimensional loads that can be observed in
technological processes.

Note that the issue about the end of grain growth remains debatable. The scenario given above
implies that the process of DRX is completed before the onset of the SP regime. This permits describing
the SP regime (the final stage of the SP test) with the proposed constitutive model, which does not take
into account grain growth. At the same time, the structure of the model, which involves the relations
describing an increase in the initially (in the state before SP deformation testing) recrystallized grains
due to the absorption of the material of nonrecrystallized grains, will allow one to consider other
options, in particular, those including the continuation of the DRX until the end of the deformation
process, to describe changes in the stress–strain state of the material during the entire SP test.
The advanced model holds promise for simulating technological processes, in which the history of
impacts (in particular, grain growth) may differ significantly in different parts of the products.

4. Conclusions

Even in the case of a simple uniaxial tensile test with access to the SP regime, a complex deformation
process scenario takes place. According to this scenario, different physical mechanisms act and interact
with each other, their significance changes and the material structure evolves greatly. Practically the
same situation may arise in the technological processes which are based on the use of SP. This generates
a need to develop mathematical models for describing changes in the material structure and the
physical and mechanical properties of the material depending on its state. Recent studies show that a
multilevel approach involving internal variables, physical theories of viscoplasticity, and an explicit
description of the material structure and physical deformation mechanisms, holds the most promise.
One of the main directions in this class model development is to expand the number of significant
mechanisms to be taken into account.

In the investigation, we have modified the statistical crystal plasticity model for GBS describing.
This model serves as the basis for an improved constitutive model that accounts for SP deformation
and transitions to it. In contrast to classical Taylor-type statistical models, this model provides a
consideration of the boundaries between crystallites as separate objects, but connected at each moment
of time with boundaries (grain facets). For these objects, parameters characterizing their properties
are introduced and kinetic equations are formulated. A set of grain boundaries forms a separate
structural level (the level of GBS description), and the model is modified into a three-level one.
The kinetic equations proposed for GBS include accounting for a decrease in the critical stresses due to
an increase in the boundary energy caused by the influx of intragranular dislocations and due to the
processes associated with grain-boundary diffusion (diffusion-induced adjustment of the boundaries).
The model accounts for the fact that, due to GBS, some orientational boundary mismatch dislocations
dissociate into grain-boundary dislocations, which leads, depending on the ratio of IDS and GBS
rates, to the weakening of hardening or to softening for IDS. Besides, when GBS is active on the
grain boundaries, the model includes an additional spin term due the action of shear stresses on the
boundaries. The results of the numerical experiments are found to be in satisfactory agreement with
the experimental data, the model reproduces the scenario of the deformation process at the final stage
of the SP deformation uniaxial tensile tests.

The authors believe that the constitutive model proposed in this study and analysis of the
numerical results has revealed some important and interesting aspects related to the development of
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crystal plasticity for modeling deformation with active GBS. On the basis of the proposed structure
of a multilevel statistical constitutive model, an improved model is currently being developed by
means of an explicit account of discontinuous DRX (grain growth) and its effect on other deformation
mechanisms. The use of this advanced model will allow an accurate description of the SP regime,
a transition to this regime and exit from it, which ensures correct modeling of technological processes
(the history of impacts may differ significantly in different parts of the articles manufactured during
these processes).
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